34 datasets found
  1. Largest cities in Kenya 2024

    • statista.com
    Updated Feb 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Largest cities in Kenya 2024 [Dataset]. https://www.statista.com/statistics/1199593/population-of-kenya-by-largest-cities/
    Explore at:
    Dataset updated
    Feb 13, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Kenya
    Description

    As of 2043, Nairobi was the most populated city in Kenya, with more than 2.7 million people living in the capital. The city is also the only one in the country with a population exceeding one million. For instance, Mombasa, the second most populated, has nearly 800 thousand inhabitants. As of 2020, Kenya's population was estimated at over 53.7 million people.

  2. Largest cities in Kenya in 2019

    • statista.com
    Updated Sep 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Largest cities in Kenya in 2019 [Dataset]. https://www.statista.com/statistics/451149/largest-cities-in-kenya/
    Explore at:
    Dataset updated
    Sep 11, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    Kenya
    Description

    This statistic shows the biggest cities in Kenya as of 2019. In 2019, approximately 4.4 million people lived in Nairobi, making it the biggest city in Kenya.

  3. K

    Kenya KE: Population in Largest City: as % of Urban Population

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, Kenya KE: Population in Largest City: as % of Urban Population [Dataset]. https://www.ceicdata.com/en/kenya/population-and-urbanization-statistics/ke-population-in-largest-city-as--of-urban-population
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Kenya
    Variables measured
    Population
    Description

    Kenya KE: Population in Largest City: as % of Urban Population data was reported at 31.985 % in 2017. This records a decrease from the previous number of 32.132 % for 2016. Kenya KE: Population in Largest City: as % of Urban Population data is updated yearly, averaging 35.120 % from Dec 1960 (Median) to 2017, with 58 observations. The data reached an all-time high of 50.731 % in 1962 and a record low of 31.985 % in 2017. Kenya KE: Population in Largest City: as % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Kenya – Table KE.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the percentage of a country's urban population living in that country's largest metropolitan area.; ; United Nations, World Urbanization Prospects.; Weighted average;

  4. Major Towns in Kenya by Population

    • esri-ea.hub.arcgis.com
    Updated Jun 22, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Eastern Africa Mapping and Application Portal (2017). Major Towns in Kenya by Population [Dataset]. https://esri-ea.hub.arcgis.com/datasets/Esri-EA::major-towns-in-kenya-by-population
    Explore at:
    Dataset updated
    Jun 22, 2017
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Eastern Africa Mapping and Application Portal
    Area covered
    Description

    Major Towns by PopulationTowns in Kenya: Kenya’s capital city is Nairobi. It is the largest city in East Africa and the region’s Financial, Communication and Diplomatic Capital. In Kenya there are only three incorporated cities but there are numerous municipalities and towns with significant urban populations. Two of the cities, Nairobi and Mombasa are cities whose county borders run the same as their city limits, so in a way they could be thought of as City-CountiesNairobi is the only city in the world with a game park. Nairobi National Park is a preserved ecosystem where you can view wildlife in its natural habitat. Hotels, airlines and numerous tour firms and agencies offer tour packages for both domestic and foreign tourists visiting Nairobi and the park. The tourism industry provides direct employment to thousands of Nairobi residents.

  5. Largest cities in Africa 2024, by number of inhabitants

    • statista.com
    Updated May 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Largest cities in Africa 2024, by number of inhabitants [Dataset]. https://www.statista.com/statistics/1218259/largest-cities-in-africa/
    Explore at:
    Dataset updated
    May 24, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Africa
    Description

    Lagos, in Nigeria, ranked as the most populated city in Africa as of 2024, with an estimated population of roughly nine million inhabitants living in the city proper. Kinshasa, in Congo, and Cairo, in Egypt, followed with some 7.8 million and 7.7 million dwellers. Among the 15 largest cities in the continent, another two, Kano, and Ibadan, were located in Nigeria, the most populated country in Africa. Population density trends in Africa As of 2022, Africa exhibited a population density of 48.3 individuals per square kilometer. At the beginning of 2000, the population density across the continent has experienced a consistent annual increment. Projections indicated that the average population residing within each square kilometer would rise to approximately 54 by the year 2027. Moreover, Mauritius stood out as the African nation with the most elevated population density, exceeding 640 individuals per square kilometre. Mauritius possesses one of the most compact territories on the continent, a factor that significantly influences its high population density. Urbanization dynamics in Africa The urbanization rate in Africa was anticipated to reach close to 44 percent in 2021. Urbanization across the continent has consistently risen since 2000, with urban areas accommodating 35 percent of the total population. This trajectory is projected to continue its ascent in the years ahead. Nevertheless, the distribution between rural and urban populations shows remarkable diversity throughout the continent. In 2021, Gabon and Libya stood out as Africa’s most urbanized nations, each surpassing 80 percent urbanization. In 2023, Africa's population was estimated to expand by 2.35 percent compared to the preceding year. Since 2000, the population growth rate across the continent has consistently exceeded 2.45 percent, reaching its pinnacle at 2.59 percent between 2012 and 2013. Although the growth rate has experienced a deceleration, Africa's population will persistently grow significantly in the forthcoming years.

  6. i

    State of the Cities Baseline Survey 2012-2013 - Kenya

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Jun 26, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ray Struyk (2017). State of the Cities Baseline Survey 2012-2013 - Kenya [Dataset]. https://catalog.ihsn.org/catalog/7010
    Explore at:
    Dataset updated
    Jun 26, 2017
    Dataset provided by
    Sumila Gulyani
    Wendy Ayres
    Ray Struyk
    Clifford Zinnes
    Time period covered
    2012 - 2013
    Area covered
    Kenya
    Description

    Abstract

    The objective of the survey was to produce baselines for 15 large urban centers in Kenya. The urban centers covered Nairobi, Mombasa, Naivasha, Nakuru, Malindi, Eldoret, Garissa, Embu, Kitui, Kericho, Thika, Kakamega, Kisumu, Machakos, and Nyeri. The survey covered the following issues: (a) household characteristics; (b) household economic profile; (c) housing, tenure, and rents; and (d) infrastructure services. The survey was undertaken to deepen understanding of the cities’ growth dynamics, and to identify specific challenges to quality of life for residents. The survey pays special attention to living conditions for residents of formal versus informal settlements, poor versus non-poor, and male and female headed households.

    Analysis unit

    Household Urban center

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Kenya State of the Cities Baseline Survey is aimed to produce reliable estimates of key indicators related to demographic profile, infrastructure access and economic profile for each of the 15 towns and cities based on representative samples, including representative samples of households (HHs) residing in slum and non-slum areas. For this baseline household survey, NORC used a two- or three-stage stratified cluster sampling design within each of the 15 urban centers. Our first-stage sampling frame was based on the 2009 census frame of enumeration areas. For each of the 15 towns and cities, NORC received the sampling frame of EAs from the Kenya National Bureau of Statistics (KNBS). In the first stage, NORC selected a sample of enumeration areas (PSUs). The second stage involved a random selection of households (SSUs) from each selected EA. In order to manage the field interviewing efficiently, we drew a fixed number of HHs from each selected EA, irrespective of EA size. The third stage arose in instances of very large EAs (EAs containing more than 200 households) in which EAs were divided into 2, 3 or 4 segments, from which one segment was selected randomly for household selection.

    Stratification of Enumeration Areas: A few stratification factors were available for stratifying the EAs to help to achieve the survey objectives. As mentioned earlier, for this baseline survey we wanted to draw representative samples from slum and non-slum areas and also to include poor/non-poor households (HHs). For the 2009 census, depending on the location, KNBS divided the EAs into three categories: rural, urban, and peri-urban.

    Although there is a clear distinction of EAs into slum and non-slum areas, it is hard to classify EAs into poor and non-poor categories. To guarantee enough representation of HHs living in slum and non-slum areas (also referred to as formal and informal areas) as well as HHs living below and above the poverty line, NORC stratified the first-stage sampling units (EAs) into strata, based on EA type (3 types) and settlement type (2 types). Given the resources available, we believe this stratification would serve our purpose as HHs living in slum and in rural areas tend to be poor. Table 1 in Appendix C of final Overview Report (provided under the Related Materials tab) presents the allocation of sampled EAs across the strata for each of the 15 cities in the baseline survey.

    Sampling households is not as straightforward as the first-stage sampling of EAs, since the 2009 census frame of HHs does not exist. In the absence of a household sampling frame, NORC carried out a listing of HHs within each EA selected in the first stage. Trained listers, accompanied by local cluster guides (local residents with some form of authority in the EA), systematically listed all households in each selected EA, gathering the address, names of head of household and spouse, household description, latitude and longitude. To ensure completeness of listing data, avoid duplication and improve ease of locating households that were eventually selected for interview, listers enumerated households by chalking household identification number above the household doorway (an accepted practice for national surveys). The sampling frame of HHs produced from the listing activity was, therefore, up-to-date and included new formal and informal settlements that appeared after the 2009 census.

    For adequate representativeness and to manage the interviewing task efficiently, NORC planned seven completed household interviews per EA. The final recommended sample size for the Kenya State of the Cities baseline survey is found in Table 2 in Appendix C of the final Overview Report.

    Because the expected response rate was unknown prior to the start of the field period, the sampling team randomly selected ten households per enumeration area and distributed them to the interviewers working within the EA. Interviewing teams were instructed to complete at least seven interviews per EA from among the ten selected households. Interviewers were instructed to attempt at least three contacts with each selected household, approaching potential respondents on different days of the week and different times of day. Table 2 presents the final number of EAs listed per city and the final number of completed interviews per city. The table also presents the percent of planned EAs and interviews that were completed vs. planned. Please note that in several cities more interviews were completed than planned. As part of NORC's data quality plan, data collection teams were instructed to overshoot slightly the target of seven interviews per EA, if feasible, to mitigate any potential loss of cases due to poor quality or uncooperative respondents. Few cases were lost due to poor quality, therefore the target number of interviews remains over 100 percent in ten of the fifteen cities.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The questionnaire was developed by World Bank staff with input from stakeholders in the Kenya Municipal Program and NORC researchers and survey methodologists. The base questionnaire for the project was a 2004 World Bank survey of Nairobi slums. However, an extended iterative review process led to many changes in the questionnaire. The final version that was used for programming provided under the Related Materials tab, and in Volume II of the Overview.

    The questionnaire’s topical coverage is indicated by the titles of its nine modules: 1. Demographics and household composition 2. Security of housing, land and tenure 3. Housing and settlement profile 4. Economic profile 5. Infrastructure services 6. Health 7. Household enterprises7 8. Civil participation and respondent tracking

    Response rate

    The completion rate is reported as the number of households that successfully completed an interview over the total number of households selected for the EA. These are shown by city in Table 5 in Appendix C of the final Overview Report, and have an average rate of 68.66 percent, with variation from 66 to 74 percent (aside from Nairobi at 61.47 percent and Machakos at 56 percent). As described earlier, ten households were selected per EA if the EA contained more than 10 households. For EAs where fewer than ten households were selected for interviews, all households were selected. In some EAs, more than ten households were selected due to a central office error.

  7. Most populated counties of Kenya 2019

    • statista.com
    Updated Sep 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Most populated counties of Kenya 2019 [Dataset]. https://www.statista.com/statistics/1227219/most-populated-counties-of-kenya/
    Explore at:
    Dataset updated
    Sep 22, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    Kenya
    Description

    Nairobi is the most populated county in Kenya. The area formed by the country's capital and its surroundings has a population of over 4.3 million inhabitants. Of the 47 counties in Kenya, 18 have a population of more than one million people.

  8. Socioeconomic Survey of Urban Refugees in Kenya, 2021 - Kenya

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Feb 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The World Bank (2023). Socioeconomic Survey of Urban Refugees in Kenya, 2021 - Kenya [Dataset]. https://datacatalog.ihsn.org/catalog/11141
    Explore at:
    Dataset updated
    Feb 6, 2023
    Dataset provided by
    World Bankhttp://worldbank.org/
    United Nations High Commissioner for Refugeeshttp://www.unhcr.org/
    Time period covered
    2020
    Area covered
    Kenya
    Description

    Abstract

    Kenya hosts over half a million refugees, who, along with their hosts in urban and camp areas, face difficult living conditions and limited socioeconomic opportunities. Most refugees in Kenya live in camps located in the impoverished counties of Turkana (40 percent) and Garissa (44 percent), while 16 percent inhabit urban areas—mainly in Nairobi but also in Mombasa and Nakuru.

    Refugees in Kenya are not systematically included in national surveys, creating a lack of comparable socioeconomic data on camp-based and urban refugees, and their hosts. As the third of a series of surveys focusing on closing this gap, this Socioeconomic Survey of Urban Refugees's aim is to understand the socioeconomic needs of urban refugees in Kenya, especially in the face of ongoing conflicts, environmental hazards, and others shocks, as well as the recent government announcement to close Kenya’s refugee camps, which highlights the potential move of refugees from camps into urban settings.

    The SESs are representative of urban refugees and camp-based refugees in Turkana County. For the Kalobeyei 2018 and Urban 2020–21 SESs, households were randomly selected from the UNHCR registration database (proGres), while a complete list of dwellings, obtained from UNHCR’s dwelling mapping exercise, was used to draw the sample for the Kakuma 2019 SES. The Kalobeyei SES and Kakuma SES were done via Computer-Assisted Personal Interviews (CAPI). Due to COVID-19 social distancing measures, the Urban SES was collected via Computer Assisted Telephone Interviewing (CATI). The Kalobeyei SES covers 6,004 households; the Kakuma SES covers 2,127 households; and the Urban SES covers 2,438 households in Nairobi, Nakuru, and Mombasa.

    Questionnaires are aligned with national household survey instruments, while additional modules are added to explore refugee-specific dynamics. The SES includes modules on demographics, household characteristics, assets, employment, education, consumption, and expenditure, which are aligned with the Kenya Integrated Household Budget Survey (KIHBS) 2015–16 and the recent Kenya Continuous Household Survey (KCHS) 2019.

    Additional modules on access to services, vulnerabilities, social cohesion, mechanisms for coping with lack of food, displacement trajectories, and durable solutions are administered to capture refugee-specific challenges.

    Geographic coverage

    Nairobi, Mombasa, Nakuru

    Analysis unit

    Households and individuals

    Universe

    All refugees registered with UNHCR via ProGres, verified via the Verification Exercise conducted in 2021

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The survey was conducted using the UNHCR proGres data as the sampling frame. Due to the COVID-19 lockdown, the survey data was collected via telephone. Hence, the survey is representative of households with active phone numbers registered by UNHCR in urban Kenya – Nairobi, Mombasa and Nakuru. A sample size of 2,500 was needed to ensure a margin of error of less than 5 percent at a confidence level of 95 percent for groups represented by at least 50 percent of the population.

    The sample for the urban SES is designed to estimate socioeconomic indicators, such as food insecurity, for groups whose share represents at least 50 percent of the population. Considering the total urban refugee population as of August 2020 and the proportions of main countries of origin, as well as a 10 percent nonresponse rate, the target sample size is 2,500 households in total, with 1,250 in Nairobi, 700 in Nakuru, and 550 in Mombasa. A total of 2,438 households were reached: 1,300 in Nairobi, 409 in Nakuru, and 729 in Mombasa.

    The units in ProGres list are UNHCR proGres families, which are different from households as defined in standard household surveys. Upon registration, UNHCR groups individuals into ‘proGres’ families which do not necessarily meet the criteria to be considered a household. A proGres family is usually comprised by no more than one household. In turn, a household can be integrated by one or more proGres families.

    Households were selected as the unit of observation to ensure comparability with national household surveys. Households are a set of related or unrelated people (either sharing the same dwelling or not) who pool ration cards and regularly cook and eat together. As proGres families were sampled, the identification of households was done by an introductory section that confirms that each member of the selected proGres family is a member of the household and whether there are other members in the households that belong to other ProGres families. Thus, the introductory section documents the number of proGres families present in the household under observation.

    Before selecting the survey strata, the team attempted to better understand the type of bias observed by focusing on refugees with access to phones. From the proGres data, phone penetration in urban areas is high (Nairobi and Mombasa: 93 percent, Nakuru: 95 percent). To understand the type of bias observed by focusing on refugees with access to phone, we looked at socio-economic outcomes for proGres family refugees with access to a phone number and those without

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

  9. Population in Africa 2024, by selected country

    • statista.com
    Updated Feb 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Population in Africa 2024, by selected country [Dataset]. https://www.statista.com/statistics/1121246/population-in-africa-by-country/
    Explore at:
    Dataset updated
    Feb 18, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Africa
    Description

    Nigeria has the largest population in Africa. As of 2024, the country counted over 232.6 million individuals, whereas Ethiopia, which ranked second, has around 132 million inhabitants. Egypt registered the largest population in North Africa, reaching nearly 116 million people. In terms of inhabitants per square kilometer, Nigeria only ranks seventh, while Mauritius has the highest population density on the whole African continent. The fastest-growing world region Africa is the second most populous continent in the world, after Asia. Nevertheless, Africa records the highest growth rate worldwide, with figures rising by over two percent every year. In some countries, such as Niger, the Democratic Republic of Congo, and Chad, the population increase peaks at over three percent. With so many births, Africa is also the youngest continent in the world. However, this coincides with a low life expectancy. African cities on the rise The last decades have seen high urbanization rates in Asia, mainly in China and India. However, African cities are currently growing at larger rates. Indeed, most of the fastest-growing cities in the world are located in Sub-Saharan Africa. Gwagwalada, in Nigeria, and Kabinda, in the Democratic Republic of the Congo, ranked first worldwide. By 2035, instead, Africa's fastest-growing cities are forecast to be Bujumbura, in Burundi, and Zinder, Nigeria.

  10. STEP Skills Measurement Household Survey 2013 (Wave 2) - Kenya

    • catalog.ihsn.org
    • microdata.worldbank.org
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank (2019). STEP Skills Measurement Household Survey 2013 (Wave 2) - Kenya [Dataset]. https://catalog.ihsn.org/index.php/catalog/5567
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    World Bankhttp://worldbank.org/
    Time period covered
    2013
    Area covered
    Kenya
    Description

    Abstract

    The STEP (Skills Toward Employment and Productivity) Measurement program is the first ever initiative to generate internationally comparable data on skills available in developing countries. The program implements standardized surveys to gather information on the supply and distribution of skills and the demand for skills in labor market of low-income countries.

    The uniquely-designed Household Survey includes modules that measure the cognitive skills (reading, writing and numeracy), socio-emotional skills (personality, behavior and preferences) and job-specific skills (subset of transversal skills with direct job relevance) of a representative sample of adults aged 15 to 64 living in urban areas, whether they work or not. The cognitive skills module also incorporates a direct assessment of reading literacy based on the Survey of Adults Skills instruments. Modules also gather information about family, health and language.

    Geographic coverage

    • The STEP target population is the urban population aged 15 to 64 (inclusive).

    Analysis unit

    The units of analysis are the individual respondents and households. A household roster is undertaken at the start of the survey and the individual respondent is randomly selected among all household members aged 15 to 64 included. The random selection process was designed by the STEP team and compliance with the procedure is carefully monitored during fieldwork.

    Universe

    The target population is defined as all non-institutionalized persons aged 15 to 64 (inclusive) living in private dwellings in the urban areas of the country at the time of the data collection. This includes all residents, except foreign diplomats and non-nationals working for international organizations
    The following are considered "institutionalized" and excluded from the STEP survey:
    - Residents of institutions (prisons, hospitals, etc)
    - Residents of senior homes and hospices
    - Residents of other group dwellings such as college dormitories, halfway homes, workers' quarters, etc

    Other acceptable exclusions are:
    - Persons living outside the country at the time of data collection, e.g., students at foreign universities
    Deviation Requested from the Standard: The statistical population is composed of core urban households and excludes the categories identified here, as well as itinerants (as classified in the Population Census 2009 in Kenya).

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample size was 3894 households. The Kenya sample design is a stratified 3 stage sample design. The sample was stratified by 4 geographic areas: 1-Nairobi, 2-Other Large Cities (over 100,000 households), 3- Medium cities (60,000 to 100,000 HHs), and 4-Other Urban Areas. For detailed description of the sample design and sampling methodologies, refer to Part 3 of the National Survey Design Planning Report (NSDPR) as well as the STEP Survey Weighting Procedures Summary. Both documents are provided as external resources.

    Sampling deviation

    War marred and unstable regions of Kenya were excluded from the survey. Itinerants (as classified in the Population Census 2009 in Kenya) were also excluded.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The STEP survey instruments include: (i) A Background Questionnaire developed by the WB STEP team. (ii) A Reading Literacy Assessment developed by Educational Testing Services (ETS).

    All countries adapted and translated both instruments following the STEP Technical Standards: 2 independent translators adapted and translated the Background Questionnaire and Reading Literacy Assessment, while reconciliation was carried out by a third translator. In Kenya the section of the questionnaire assessing behavior and personality traits (Module 6) was translated into Swahili to adapt to respondents' language preferences, so that the respondent could choose to answer in either English or Swahili.
    - The survey instruments were both piloted as part of the survey pretest. - The adapted Background Questionnaires are provided in English as external resources. The Reading Literacy Assessment is protected by copyright and will not be published.

    Cleaning operations

    EEC Canada Inc. was responsible for data entry and processing.

    The STEP Data management process is as follows:

    1. Raw data is sent by the survey firm
    2. The WB STEP team runs data checks on the Background Questionnaire data.
      • ETS runs data checks on the Reading Literacy Assessment data.
      • Comments and questions are sent back to the survey firm.
    3. The survey firm reviews comments and questions. When a data entry error is identified, the survey firm corrects the data.
    4. The WB STEP team and ETS check the data files are clean. This might require additional iterations with the survey firm.
    5. Once the data has been checked and cleaned, the WB STEP team computes the weights. Weights are computed by the STEP team to ensure consistency across sampling methodologies.
    6. ETS scales the Reading Literacy Assessment data.
    7. The WB STEP team merges the Background Questionnaire data with the Reading Literacy Assessment data and computes derived variables.

    Response rate

    An overall response rate of 91.8% was achieved in the Kenya STEP Survey. Table 21 of the STEP Survey Weighting Procedures Summary provides the detailed percentage distribution by final status code.

  11. Urban population in East Africa 2018, by country

    • statista.com
    Updated Jan 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Urban population in East Africa 2018, by country [Dataset]. https://www.statista.com/statistics/1171608/urban-population-in-east-africa-by-country/
    Explore at:
    Dataset updated
    Jan 30, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2018
    Area covered
    Africa
    Description

    As of 2018, more than 60 million people were living in urban areas in East Africa. Ethiopia was the country with the largest urban residents in the region, in terms of absolute numbers, roughly 23 million. In its turn, in Djibouti, 760 thousand people lived in urban areas by the same period. Even though, the country was the most urbanized in East Africa, with a share of 78 percent of urban population, in 2018.

  12. 肯尼亚 KE:最大城市人口

    • ceicdata.com
    Updated Oct 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2024). 肯尼亚 KE:最大城市人口 [Dataset]. https://www.ceicdata.com/zh-hans/kenya/population-and-urbanization-statistics/ke-population-in-largest-city
    Explore at:
    Dataset updated
    Oct 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    肯尼亚
    Variables measured
    Population
    Description

    KE:最大城市人口在12-01-2017达4,222,389.000人,相较于12-01-2016的4,065,018.000人有所增长。KE:最大城市人口数据按年更新,12-01-1960至12-01-2017期间平均值为1,285,227.500人,共58份观测结果。该数据的历史最高值出现于12-01-2017,达4,222,389.000人,而历史最低值则出现于12-01-1960,为292,622.000人。CEIC提供的KE:最大城市人口数据处于定期更新的状态,数据来源于World Bank,数据归类于Global Database的肯尼亚 – 表 KE.世界银行:人口和城市化进程统计。

  13. 肯尼亚 KE:最大城市人口:占城镇人口百分比

    • ceicdata.com
    Updated Oct 15, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    肯尼亚 KE:最大城市人口:占城镇人口百分比 [Dataset]. https://www.ceicdata.com/zh-hans/kenya/population-and-urbanization-statistics/ke-population-in-largest-city-as--of-urban-population
    Explore at:
    Dataset updated
    Oct 15, 2024
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    肯尼亚
    Variables measured
    Population
    Description

    KE:最大城市人口占城市总人口的百分比在12-01-2017达31.985%,相较于12-01-2016的32.132%有所下降。KE:最大城市人口占城市总人口的百分比数据按年更新,12-01-1960至12-01-2017期间平均值为35.120%,共58份观测结果。该数据的历史最高值出现于12-01-1962,达50.731%,而历史最低值则出现于12-01-2017,为31.985%。CEIC提供的KE:最大城市人口占城市总人口的百分比数据处于定期更新的状态,数据来源于World Bank,数据归类于全球数据库的肯尼亚 – 表 KE.世行.WDI:人口和城市化进程统计。

  14. Household size in Kenya 2019, by county

    • statista.com
    Updated Sep 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Household size in Kenya 2019, by county [Dataset]. https://www.statista.com/statistics/1225097/household-size-in-kenya-by-county/
    Explore at:
    Dataset updated
    Sep 22, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    Kenya
    Description

    The average household size in Kenya was 3.9 members according to the last census done in the country in 2019. Nairobi City was the county with the smallest households, formed by an average of 2.9 people. By contrast, Mandera registered the largest household size. In the county located in North Eastern Kenya, households had 6.9 members.

  15. Kenyan counties with the highest number of COVID-19 cases 2022

    • statista.com
    Updated Sep 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kenyan counties with the highest number of COVID-19 cases 2022 [Dataset]. https://www.statista.com/statistics/1136519/cumulative-coronavirus-cases-in-kenya-by-county/
    Explore at:
    Dataset updated
    Sep 22, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Mar 31, 2022
    Area covered
    Kenya
    Description

    Nairobi has been the Kenyan county most affected by the coronavirus (COVID-19) pandemic. As of March 31, 2022, the capital registered most of the confirmed COVID-19 cases in the country, around 129 thousand. The amount corresponded to nearly 40 percent of the total cases in Kenya. In Kiambu, within the Nairobi Metropolitan Region, 19,778 infected people were registered, whereas Mombasa, Kenya's oldest and second largest city, had 17,794 cases. As of March 2021, Kenya started the vaccination campaign against the coronavirus with doses received through the COVAX initiative.

    Kenya's economy rebounds amid vaccination campaign

    The coronavirus outbreak had a significant negative impact on Kenya's economy. In the second quarter of 2020, the quarterly country’s GDP decreased by 5.5 percent, the first contraction in recent years. Around one year later, in the third quarter of 2021, Kenya already registered an improved economic performance, with the quarterly GDP growth rate measured at 9.9 percent. The educational sector pushed the result, with an expansion of 65 percent. Mining and quarrying, and accommodation and food services followed, each with a 25 percent growth rate.

    Signs of recovery in the tourism sector

    Extensively known for its rich nature and wildlife, Kenya felt dramatically the impacts of the COVID-19 pandemic in the tourism industry. The sector's contribution to the country’s GDP roughly halved in 2020, compared to 2019. By the end of 2021, however, signals of recovery were already spotted. The monthly number of arrivals in both Jomo Kenyatta and Moi international airports in December that year corresponded to roughly 70 percent of that registered in December 2019. Additionally, as of March 2022, the bed occupancy rate in Kenyan hotels amounted to 57 percent, against 23 percent in March 2021.

  16. Demographic and Health Survey 2022 - Kenya

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Jul 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kenya National Bureau of Statistics (KNBS) (2023). Demographic and Health Survey 2022 - Kenya [Dataset]. https://microdata.worldbank.org/index.php/catalog/5911
    Explore at:
    Dataset updated
    Jul 6, 2023
    Dataset provided by
    Kenya National Bureau of Statistics
    Authors
    Kenya National Bureau of Statistics (KNBS)
    Time period covered
    2022
    Area covered
    Kenya
    Description

    Abstract

    The 2022 Kenya Demographic and Health Survey (2022 KDHS) was implemented by the Kenya National Bureau of Statistics (KNBS) in collaboration with the Ministry of Health (MoH) and other stakeholders. The survey is the 7th KDHS implemented in the country.

    The primary objective of the 2022 KDHS is to provide up-to-date estimates of basic sociodemographic, nutrition and health indicators. Specifically, the 2022 KDHS collected information on: • Fertility levels and contraceptive prevalence • Childhood mortality • Maternal and child health • Early Childhood Development Index (ECDI) • Anthropometric measures for children, women, and men • Children’s nutrition • Woman’s dietary diversity • Knowledge and behaviour related to the transmission of HIV and other sexually transmitted diseases • Noncommunicable diseases and other health issues • Extent and pattern of gender-based violence • Female genital mutilation.

    The information collected in the 2022 KDHS will assist policymakers and programme managers in monitoring, evaluating, and designing programmes and strategies for improving the health of Kenya’s population. The 2022 KDHS also provides indicators relevant to monitoring the Sustainable Development Goals (SDGs) for Kenya, as well as indicators relevant for monitoring national and subnational development agendas such as the Kenya Vision 2030, Medium Term Plans (MTPs), and County Integrated Development Plans (CIDPs).

    Geographic coverage

    National coverage

    Analysis unit

    • Household
    • Individual
    • Children age 0-5
    • Woman age 15-49
    • Man age 15-54

    Universe

    The survey covered all de jure household members (usual residents), all women aged 15-49, men ageed 15-54, and all children aged 0-4 resident in the household.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sample for the 2022 KDHS was drawn from the Kenya Household Master Sample Frame (K-HMSF). This is the frame that KNBS currently uses to conduct household-based sample surveys in Kenya. The frame is based on the 2019 Kenya Population and Housing Census (KPHC) data, in which a total of 129,067 enumeration areas (EAs) were developed. Of these EAs, 10,000 were selected with probability proportional to size to create the K-HMSF. The 10,000 EAs were randomised into four equal subsamples. A survey can utilise a subsample or a combination of subsamples based on the sample size requirements. The 2022 KDHS sample was drawn from subsample one of the K-HMSF. The EAs were developed into clusters through a process of household listing and geo-referencing. The Constitution of Kenya 2010 established a devolved system of government in which Kenya is divided into 47 counties. To design the frame, each of the 47 counties in Kenya was stratified into rural and urban strata, which resulted in 92 strata since Nairobi City and Mombasa counties are purely urban.

    The 2022 KDHS was designed to provide estimates at the national level, for rural and urban areas separately, and, for some indicators, at the county level. The sample size was computed at 42,300 households, with 25 households selected per cluster, which resulted in 1,692 clusters spread across the country, 1,026 clusters in rural areas, and 666 in urban areas. The sample was allocated to the different sampling strata using power allocation to enable comparability of county estimates.

    The 2022 KDHS employed a two-stage stratified sample design where in the first stage, 1,692 clusters were selected from the K-HMSF using the Equal Probability Selection Method (EPSEM). The clusters were selected independently in each sampling stratum. Household listing was carried out in all the selected clusters, and the resulting list of households served as a sampling frame for the second stage of selection, where 25 households were selected from each cluster. However, after the household listing procedure, it was found that some clusters had fewer than 25 households; therefore, all households from these clusters were selected into the sample. This resulted in 42,022 households being sampled for the 2022 KDHS. Interviews were conducted only in the pre-selected households and clusters; no replacement of the preselected units was allowed during the survey data collection stages.

    For further details on sample design, see APPENDIX A of the survey report.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    Four questionnaires were used in the 2022 KDHS: Household Questionnaire, Woman’s Questionnaire, Man’s Questionnaire, and the Biomarker Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to Kenya. In addition, a self-administered Fieldworker Questionnaire was used to collect information about the survey’s fieldworkers.

    Cleaning operations

    CAPI was used during data collection. The devices used for CAPI were Android-based computer tablets programmed with a mobile version of CSPro. The CSPro software was developed jointly by the U.S. Census Bureau, Serpro S.A., and The DHS Program. Programming of questionnaires into the Android application was done by ICF, while configuration of tablets was completed by KNBS in collaboration with ICF. All fieldwork personnel were assigned usernames, and devices were password protected to ensure the integrity of the data.

    Work was assigned by supervisors and shared via Bluetooth® to interviewers’ tablets. After completion, assigned work was shared with supervisors, who conducted initial data consistency checks and edits and then submitted data to the central servers hosted at KNBS via SyncCloud. Data were downloaded from the central servers and checked against the inventory of expected returns to account for all data collected in the field. SyncCloud was also used to generate field check tables to monitor progress and identify any errors, which were communicated back to the field teams for correction.

    Secondary editing was done by members of the KNBS and ICF central office team, who resolved any errors that were not corrected by field teams during data collection. A CSPro batch editing tool was used for cleaning and tabulation during data analysis.

    Response rate

    A total of 42,022 households were selected for the survey, of which 38,731 (92%) were found to be occupied. Among the occupied households, 37,911 were successfully interviewed, yielding a response rate of 98%. The response rates for urban and rural households were 96% and 99%, respectively. In the interviewed households, 33,879 women age 15-49 were identified as eligible for individual interviews. Of these, 32,156 women were interviewed, yielding a response rate of 95%. The response rates among women selected for the full and short questionnaires were similar (95%). In the households selected for the men’s survey, 16,552 men age 15-54 were identified as eligible for individual interviews and 14,453 were successfully interviewed, yielding a response rate of 87%.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) non-sampling errors, and (2) sampling errors. Non-sampling errors are the results of mistakes made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Kenya Demographic and Health Survey (2022 KDHS) to minimise this type of error, non-sampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 KDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 KDHS sample is the result of a multi-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 2022 KDHS is a SAS program. This program used the Taylor linearisation method for variance estimation for survey estimates that are means, proportions or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.

    Data

  17. Urban Reproductive Health Initiative 2010 - Kenya

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kenya National Bureau of Statistics (2019). Urban Reproductive Health Initiative 2010 - Kenya [Dataset]. https://datacatalog.ihsn.org/catalog/3920
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Kenya National Bureau of Statistics
    Time period covered
    2010
    Area covered
    Kenya
    Description

    Abstract

    The Bill & Melinda Gates Foundation’s reproductive health strategy aims to reduce maternal and infant mortality and unintended pregnancy in the developing world by increasing access to high-quality, voluntary FP services. The reproductive health strategy is being implemented at the country level through the Urban Reproductive Health Initiative (URHI) being implemented in Kenya, Nigeria, India and Senegal.

    In Kenya, the URHI, hereinafter referred to as Tupange. The main objective of the project is to increase modern contraceptive use in Nairobi, Mombasa and Kisumu by 20 percentage points over the five-year life of the project. The urban centers of Machakos and Kakamega are additional “delayed” interventions sites that are included in the baseline data collection presented here although data in these delayed sites were collected only from women.

    Key elements of the Tupange include: • Integrating high-quality FP services with maternal and newborn health services, especially post-abortion, postpartum, antenatal care and HIV/AIDS services; • Improving the overall quality of FP services, particularly in high-volume settings; • Increasing access to FP services for the urban poor through public-private partnerships and other private sector approaches; • Creating sustained demand for FP services among the urban poor; and • Creating a supportive policy environment for ensuring access to FP supplies and services, particularly for the urban poor.

    Geographic coverage

    Urban areas (five cities in Kenya - Nairobi, Mombasa, Kisumu, Machakos, and Kakamega)

    Analysis unit

    Household, woman age 15-49 years, man 15-59 years

    Universe

    All women aged 15-49 years who were either usual residents or visitors present in the sampled households on the night prior to the survey were eligible for a detailed interview. In addition, in half of the sampled households in Nairobi, Mombasa and Kisumu, all men aged 15-59 years were asked to participate in a detailed interview.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The household survey sample was drawn from the population residing in the five cities/urban centers. The most recent Population and Housing Census (2009) was used to identify clusters from which a representative sample of households for each city/urban center was drawn. A total of 13,140 households were selected for interviewing, ensuring that the sample was sufficient to allow analysis of the findings by each of the five intervention sites. Nairobi was intentionally oversampled (4,260 vs. 2,220 households) due its significantly larger size. With the exception of Machakos and Kakamega, the sample in each urban area was apportioned equally between formal and informal localities.

    A two-stage cluster sampling design was used for each urban area. Stage one involved selecting a random sample of clusters in each urban area. In Nairobi, 71 clusters were randomly selected in each of the formal and informal areas (domains), for a total of 142. In Mombasa and Kisumu, 37 clusters were randomly drawn from each domain, for a total 74 per urban area. In Machakos and Kakamega, 74 clusters were randomly selected per urban area. In the second stage, a random sample of 30 households was selected within each selected cluster. Interviews with women took place in all households selected. In Nairobi, Mombasa and Kisumu, half of the households (15) in each of the selected clusters were also selected to interview men.

    Sampling deviation

    Nairobi was intentionally oversampled (4,260 vs. 2,220 households) due its significantly larger size. With the exception of Machakos and Kakamega, the sample in each urban area was apportioned equally between formal and informal localities.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Three questionnaires were used to collect baseline information-one for each of the households, one for women and one for men. In Machakos and Kakamega, only women were interviewed. Questionnaires were based on the questionnaires used by the Demographic and Health Survey program in Kenya but were modified and expanded by all in-country partners to reflect MLE and Tupange objectives.

    Questionnaires were translated from English into Kiswahili, Luhya, Kamba and Dholuo-the four most commonly spoken languages in the five cities. Final revisions were made to the questionnaires following extensive pre-testing and training of field staff. The household questionnaire was administered prior to the women's and men's questionnaires to facilitate the identification of eligible household members. The methodology and questionnaires were tested in Kisumu and Nairobi August 5-8, 2010, in clusters outside the planned intervention areas to minimize chances of contamination. Survey instruments were finalized based on feedback from and lessons learned during the pre-test.

    Cleaning operations

    A data processing team was selected and trained at the KNBS offices in Nairobi. Most of the data processing staff were selected from the reserve members from the field survey teams. Staff from MLE and APHRC conducted the five-day training between October 26 and November 1, followed by on-the-job training for an additional four days. Fifteen data entry clerks, four office editors, one system administrator, one supervisor and one manager participated in the training. Data processing began in November 2010 and was finalized in March 2011.

    To ensure that all questionnaires were processed, a “data audit” was conducted and completed at the end of March 2011. The tabulation of the survey results, particularly the program tables, was done in May 2011. Data analysts from the University of North Carolina and APHRC produced the tables and preliminary results that were shared with program teams on June 2-3, 2011.

    To ensure that all questionnaires were processed, a "data audit" was conducted and completed at the end of March 2011. The tabulation of the survey results, particularly the program tables, was done in May 2011. Data analysts from the University of North Carolina and APHRC produced the tables and preliminary results that were shared with program teams on June 2-3, 2011. Further analysis of the data that allowed inclusion of results regarding additional indicators was completed by July 2011 and an initial draft baseline report was prepared by mid-September 2011.

    Response rate

    Of the 13,140 households selected for inclusion in the sample, 12,565 were occupied and eligible for interviews. Of these, 10,992 households were interviewed successfully (197 declined), a response rate of 84 percent. There were a total of 10,502 eligible women, of whom 8,932 consented and participated in an interview, yielding a response rate of 85.1 percent. There were 3,815 eligible men, of whom 2,503 consented and participated in an interview, a response rate of 65.6 percent.

    For the household survey, non -response was primarily due to the absence of a suitable member of the household during each of three visits (37 percent; not displayed). Non-responses during the male and female interviews were due mainly to the subject's absence at the time of the household interview (76 percent and 78 percent respectively) or at any of the three follow-up visits.

  18. Counties in Kenya with the largest Muslim population 2019

    • statista.com
    Updated Sep 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Counties in Kenya with the largest Muslim population 2019 [Dataset]. https://www.statista.com/statistics/1304234/counties-in-kenya-with-the-largest-muslim-population/
    Explore at:
    Dataset updated
    Sep 22, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    Kenya
    Description

    Kenya had a Muslim population of roughly 5.6 million people, according to the last country census conducted in 2019. Nearly 50 percent of individuals adhering to Islam lived in the Northern-East counties of Mandera (856.5 thousand people), Garissa (815.8 thousand people), and Wajir (767.3 thousand people). Overall, around 10 percent of Kenya's population identified as Muslim.

  19. k

    Migration Household Survey 2009 - Kenya

    • statistics.knbs.or.ke
    • dev.ihsn.org
    • +3more
    Updated Jun 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    University of Nairobi (2022). Migration Household Survey 2009 - Kenya [Dataset]. https://statistics.knbs.or.ke/nada/index.php/catalog/25
    Explore at:
    Dataset updated
    Jun 1, 2022
    Dataset authored and provided by
    University of Nairobi
    Time period covered
    2009
    Area covered
    Kenya
    Description

    Abstract

    The main objective of this survey is to help improve the impact of migration and remittances on the economic and social situation in Kenya. At present, our knowledge base on migration and remittances in Kenya is quite limited. By providing rich and detailed information on the impact of migration and remittances at the household level, this survey will greatly increase our ability to maximize the socio-economic impact of migration and remittances in Kenya. To these ends, the survey will collect nationally-representative information in various African countries on three types of households: non-migrant households, internal migrant households and international migrant households. Comparisons between these three types of households will help policymakers identify the socio-economic impact of migration and remittances in Kenya.

    Geographic coverage

    Embu, Garissa, Kakamega, Kiambu, Kilifi, Kisii, Lugari, Machakos, Malindi, Migori, Mombasa, Nairobi, Nakuru, Siaya, Thika, Vihiga, Rachuonyo

    Analysis unit

    • Household
    • Individual

    Universe

    17 out of 69 districts in Kenya were selected using procedures described in the methodology report

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The study used the Kenya National Bureau of Statistics (KNBS) National Sample Survey and Evaluation Programme (NASSEP IV) sampling frame which has 69 districts as stratum comprising both urban and rural areas. The sample design for the study was multi-stage with the first stage covering the primary sampling units (PSUs) which was a sample of clusters developed during the 1999 census. The second stage was selection of households within the clusters. A re-listing of all households in sampled clusters was carried out to up-date the 1999 and also to be able to classify households into the three strata of interest in this study: international migrant households, internal migrant households, and non-migrant households. At the household level, interviews were held with the household head/spouse or other responsible adult with the requisite information about the household. The study uses a purposive survey methodology that first selected districts with the largest concentration of international migrants, and then selected clusters also with the highest concentration of international migrants. This was done based on the information of previous household surveys and the knowledge of the administrative officers, statistical officers and cluster guides.

    Sampling Frame At the time of the study, the available National Census was conducted in 1999. This census did not contain questions on remittances but had questions on migration. The migration question asked then was where family members were living in the last one year. This means that the census captured either those who had come back or those who had come visiting and were to return to where they migrated to. It did not distinguish clearly the migration component. Further, the census was conducted 10 years ago which meant it does not provide the current status on aspects of migration. The Kenya Integrated Household Budget Survey (KIHBS) 2005/06 and the Financial Services Deepening survey (FSD) are two surveys that have recently been conducted with an element of migration and remittances. However, the information is not adequate for the current survey. For example, the KIHBS has a question that captures issues of remittance linking them to the transfers received from abroad. Although it has about 13,000 households, only about 125 households indicated they had received such transfers. This was a very small sample compared to what was envisaged by the current study. The Financial Services Deepening survey (FSD) (2006/07) also has a question on cash transfers from abroad but all this is related to issues of access to financial services and not to issues sought in the current study. Thus, it could not be used for the current study. The KIHBS and FSD surveys was based on the KNBS NASSEP IV and although one may have thought of revisiting the households that were covered for additional information, it is against the KNBS regulations to conduct such follow-ups and the households identities are not provided. The Kenya National Bureau of Statistics household survey sampling frame, the National Sample Survey and Evaluation Programme (NASSEP IV), is based on the 1999 population and housing census. The objective of NASSEP IV frame was to construct a national master sampling frame of clusters of households in both rural and urban areas in Kenya using a sound sampling design. This sampling frame has a total of 1,800 clusters of which 1,260 are rural and 540 are urban as indicated in Appendix Table 1. Each cluster holds about 80 to 100 households. The framework is based on the old administrative units comprising of 69 districts in 8 Provinces. Currently, the districts have been subdivided and increased to 265 but this does not distort our sampling frame based on NASSEP IV as the new districts are curved out of the old districts.

    The Sample This study utilized the NASSEP IV frame to select 102 clusters (5.6% of the total clusters) in 19 districts which yielded a total sample of 2,448 households assuming an average of 24 households in each cluster. The districts were selected first, then the clusters in each district and finally the households in each cluster. Households in each cluster were re-listed (updated) and grouped into three strata--international migrant, internal migrant and non-migrant households. In the selection of clusters in each district, at least one of the targeted five clusters was urban with exception of Nairobi and Mombasa which are purely urban. The study however ended up covering 92 clusters (5.1% of the total clusters in NASSEP IV) from 17 districts. Two targeted districts-Kajiado and Baringo- were not covered due to logistical problems. First of all, the team was expected to finalize the field by 15th December so that the analysis could begin and be on time. When the fieldwork was winding up on 22nd December, the two districts were yet to be covered. Two, the two districts have more transport challenges and the team was therefore expected to use KNBS transport facilities and more research assistants to capture the households which are more widely spread on the ground. This required adequate funding and by the time the fieldwork was winding up no funds had been received from World Bank. Third, even when the funds were received in January, the team considered that the study would be capturing households in a different consumption cycle, having just gone through the festive season. Given all these factors, this saw a total of 2,123 household covered out of 2, 208 (96% of the total targeted). Of these, some households were later dropped due to a lot of missing data especially due to non response, and at the end a total of 1,942 households were cleaned up for analysis. This including 953 are urban and 989 rural drawn from 51 rural and 40 urban clusters. Selection of Districts There was a particular interest in investigating households that had international migrants and which may have received transfers from abroad. A random sample of the population would not produce adequate number of households that had received transfers or had international migration, as we learnt from the KIHBS data set. As indicated earlier, out of 13,000 households surveyed under KIHBS only 125 households receiving remittances from abroad. With this experience and information, this study selected the top nineteen districts from KIHBS (2005/07) that showed households with migration characteristics. The key factor used was that the households indicated they received cash transfers from abroad. Districts with more than one household fulfilling this criterion of having received transfers from abroad were considered. In addition, Financial Services Deepening survey (FSD) survey results were used to confirm that the selected districts had reported having received money from abroad. In addition, since this is a relatively rare phenomenon in Kenya, the selection of districts is designed such that households with the relevant characteristics have a high probability of being selected. As such those districts with a presence of cash transfers mechanisms such as M-PESA, Western Union, or Money Gram services were considered. All these information was used to update the information from KIHBS.

    Selection of Clusters In each district, 5 clusters were selected of which at least one cluster was an urban cluster as defined by KNBS, except for Nairobi and Mombasa which are purely urban. Some other district had more than one urban cluster selected based on their number of clusters and accessibility to rural clusters for example Garissa. The study covered 10 clusters in Nairobi and 6 in Mombasa with an attempt made to capture this across various income group levels.
    In selection of the clusters, the supervisors sat down with the KNBS statistics officers, cluster guides, village elders, administrative officers (Chiefs and sub-chiefs) to map out clusters where the probability of getting an international migrant was high. Of this probabilities were very subjective as it was based on how well these people understood the composition of the households in the areas they represent. This helped to identify the five clusters targeted for study.

    Selection of Households The selection process involved re-listing of the households in each cluster so as to update the list of occupied households and identify the three groups of households. Each group or stratum was treated as an independent sub-frame and random sampling was used to select households in each group. The listing exercise was

  20. National Information and Communication Technology Survey 2010 - Kenya

    • dev.ihsn.org
    • catalog.ihsn.org
    Updated Apr 25, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kenya National Bureau of Statistics (2019). National Information and Communication Technology Survey 2010 - Kenya [Dataset]. https://dev.ihsn.org/nada/catalog/74681
    Explore at:
    Dataset updated
    Apr 25, 2019
    Dataset authored and provided by
    Kenya National Bureau of Statistics
    Time period covered
    2010
    Area covered
    Kenya
    Description

    Abstract

    In an effort to address the ICT data challenges, the Communications Commission of Kenya (CCK) partnered with Kenya National Bureau of Statistics (KNBS) to undertake a comprehensive National ICT Survey. This was planned and executed during the months of May and June 2010.

    The main objective of the study was to collect, collate and analyse data relating to ICT access and usage by various categorizations in Kenya. The survey captured data and information on critical ICT indicators as defined by international bodies such as the International Telecommunications Union (ITU). These indicators focused on household and individuals; and the data was be disaggregated by age, gender, administrative regions, rural and urban locations.

    The specific objectives of the study were to; Obtain social economic information with a view of understanding usage patterns of ICT services; (a) Obtain social economic information with a view of understanding usage patterns of ICT services; (b) Collect, collate and analyze ICT statistics in line with ICT indicators; (c) Evaluate the factors that will have the greatest impact in ensuring access and usage of ICTs and; (d) Develop a database on access and usage of ICT in Kenya

    Geographic coverage

    National coverage

    Analysis unit

    District, Household, Individual

    Universe

    Households from the sampled areas.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The National Sample Survey and Evaluation Programme (NASSEP IV) maintained by the Bureau was used as the sampling frame. The frame has 1,800 clusters spread all over the country, and covers all socio-economic classes and hence able to get a suitable and representative sample of the population. The survey was distributed into four domains, namely: 1. National, 2. Major Urban areas, 3. Other Urban areas, and 4. Rural areas.

    The major urban towns included Nairobi, Thika, Mombasa, Kisumu, Nakuru and Eldoret. All other areas defined as urban by KNBS but fall outside the major municipalities above were categorized as 'other urban areas'. The rural domain was further sub-divided into their respective provinces, excluding Nairobi which is purely urban. For the 'rural' component, the districts that display identical socio-cultural and economic conditions have been pooled together to create strata from which a representative set of districts is selected to represent the group of such districts. A total of 42 such stratifications were done and one district in each categorization was selected. The major urban areas of the country namely Nairobi, Mombasa, Kisumu, Nakuru, Eldoret and Thika were all sub-stratified into five sub-strata based on perceived levels of income into the: 1. Upper income 2. Lower Upper 3. Middle 4. Lower Middle and 5. Lower.

    In this survey, all the six 'major urban' are included while just a few of the 'other urban areas' are selected depending on their population (household) distribution.

    Selection of the Clusters for the Survey The selection of the sample clusters was done systematically using the Equal Probability Selection method (EPSEM). Since NASSEP IV was developed using Probability Proportional to Size (PPS) method, the resulting sample retains its properties. The selection was done independently within the districts and the urban /rural sub-stratum.

    Selection of the Households From each selected cluster, an equal number of 15 households were selected systematically, with a random start. The systematic sampling method was adopted as it enables the distribution of the sample across the cluster evenly and yields good estimates for the population parameters. Selection of the households was done at the office and assigned to the Research Assistants, with strictly no allowance for replacement of non-responding households.

    Sampling deviation

    Owing to the some logistical challenges the following clusters were partially or not covered at all: • One cluster in Tana River due to floods. • Two clusters in Molo where households shifted to safer areas after the Post Election Violence (PEV). As a result, fewer than the expected households were covered. • One cluster in Koibatek was covered halfway due to relocation of households to pave way for a large plantation.

    Where there was no school found within the cluster, Research Assistant was allowed to sample an institution from a neighbouring cluster. In some districts, the schools were found to be very far from the cluster and therefore could not be covered. Where a cluster was to be covered over a weekend, it was often not possible to find a responsible person in institutions to respond to the questionnaire.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    Household questionnaire: This will be used to collect background information pertaining to the members of the household and businesses operated by household members. It will collect information about each person in the household such as name, sex, age, education, and relationship to household head etcetera. This information is vital for calculating certain socio-demographic characteristics of the household. The Business module in the household questionnaire will be used to collect information pertaining to usage of ICT in businesses identified in the household. To estimate the magnitude, levels and distribution of ICT usage in the country, all the selected respondents 15 years and above will be subjected to business questionnaire.

    Institutional Questionnaire: This will collect information pertaining to institutions providing ICT related programmes in the country. This information will be analyzed to identify gaps and other issues of concern, which need to be addressed in the promotion ICT provision in the country.

    Cleaning operations

    As a matter of procedure initial manual editing was done in the field by the RAs. The supervisors further checked the questionnaires and validated the data in the field by randomly sampling 20 per cent of the filled questionnaires. After the questionnaires were received from the field, an office editing team was constituted to do office editing.

    Data was captured using Census and Survey Processing System (CSPRO) version 4.0 through a data entry screen specially created with checks to ensure accuracy during data entry. All questionnaires were double entered to ensure data quality. Erroneous entries and potential outliers were then verified and corrected appropriately. A total of 20 data entry personnel were engaged during the exercise.

    The captured data were exported to Statistical Package for Social Sciences (SPSS) for cleaning and analysis. The cleaned data was weighted before final analysis. The weighting of the data involved application of inflation factors derived from the selection probabilities of the EAs and households detailed in section 2.2.7, on weighting the Sample Data.

    Response rate

    The overall response rate stood at 85.9 per cent. Nairobi had the lowest response rate at 69.4 per cent while the highest (94.6 per cent) was realized in North Eastern. More than 95.5 per cent of all the sampled households were occupied out of which 85.9 per cent were interviewed.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Largest cities in Kenya 2024 [Dataset]. https://www.statista.com/statistics/1199593/population-of-kenya-by-largest-cities/
Organization logo

Largest cities in Kenya 2024

Explore at:
Dataset updated
Feb 13, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2024
Area covered
Kenya
Description

As of 2043, Nairobi was the most populated city in Kenya, with more than 2.7 million people living in the capital. The city is also the only one in the country with a population exceeding one million. For instance, Mombasa, the second most populated, has nearly 800 thousand inhabitants. As of 2020, Kenya's population was estimated at over 53.7 million people.

Search
Clear search
Close search
Google apps
Main menu