100+ datasets found
  1. Data from: Urban-rural continuum

    • figshare.com
    tiff
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrea Cattaneo; Andy Nelson; Theresa McMenomy (2023). Urban-rural continuum [Dataset]. http://doi.org/10.6084/m9.figshare.12579572.v4
    Explore at:
    tiffAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Andrea Cattaneo; Andy Nelson; Theresa McMenomy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The urban–rural continuum classifies the global population, allocating rural populations around differently-sized cities. The classification is based on four dimensions: population distribution, population density, urban center location, and travel time to urban centers, all of which can be mapped globally and consistently and then aggregated as administrative unit statistics.Using spatial data, we matched all rural locations to their urban center of reference based on the time needed to reach these urban centers. A hierarchy of urban centers by population size (largest to smallest) is used to determine which center is the point of “reference” for a given rural location: proximity to a larger center “dominates” over a smaller one in the same travel time category. This was done for 7 urban categories and then aggregated, for presentation purposes, into “large cities” (over 1 million people), “intermediate cities” (250,000 –1 million), and “small cities and towns” (20,000–250,000).Finally, to reflect the diversity of population density across the urban–rural continuum, we distinguished between high-density rural areas with over 1,500 inhabitants per km2 and lower density areas. Unlike traditional functional area approaches, our approach does not define urban catchment areas by using thresholds, such as proportion of people commuting; instead, these emerge endogenously from our urban hierarchy and by calculating the shortest travel time.Urban-Rural Catchment Areas (URCA).tif is a raster dataset of the 30 urban–rural continuum categories for the urban–rural continuum showing the catchment areas around cities and towns of different sizes. Each rural pixel is assigned to one defined travel time category: less than one hour, one to two hours, and two to three hours travel time to one of seven urban agglomeration sizes. The agglomerations range from large cities with i) populations greater than 5 million and ii) between 1 to 5 million; intermediate cities with iii) 500,000 to 1 million and iv) 250,000 to 500,000 inhabitants; small cities with populations v) between 100,000 and 250,000 and vi) between 50,000 and 100,000; and vii) towns of between 20,000 and 50,000 people. The remaining pixels that are more than 3 hours away from any urban agglomeration of at least 20,000 people are considered as either hinterland or dispersed towns being that they are not gravitating around any urban agglomeration. The raster also allows for visualizing a simplified continuum created by grouping the seven urban agglomerations into 4 categories.Urban-Rural Catchment Areas (URCA).tif is in GeoTIFF format, band interleaved with LZW compression, suitable for use in Geographic Information Systems and statistical packages. The data type is byte, with pixel values ranging from 1 to 30. The no data value is 128. It has a spatial resolution of 30 arc seconds, which is approximately 1km at the equator. The spatial reference system (projection) is EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long). The geographic extent is 83.6N - 60S / 180E - 180W. The same tif file is also available as an ESRI ArcMap MapPackage Urban-Rural Catchment Areas.mpkFurther details are in the ReadMe_data_description.docx

  2. Urbanization in the United States 1790 to 2050

    • statista.com
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Urbanization in the United States 1790 to 2050 [Dataset]. https://www.statista.com/statistics/269967/urbanization-in-the-united-states/
    Explore at:
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2020, about 82.66 percent of the total population in the United States lived in cities and urban areas. As the United States was one of the earliest nations to industrialize, it has had a comparatively high rate of urbanization over the past two centuries. The urban population became larger than the rural population during the 1910s, and by the middle of the century it is expected that almost 90 percent of the population will live in an urban setting. Regional development of urbanization in the U.S. The United States began to urbanize on a larger scale in the 1830s, as technological advancements reduced the labor demand in agriculture, and as European migration began to rise. One major difference between early urbanization in the U.S. and other industrializing economies, such as the UK or Germany, was population distribution. Throughout the 1800s, the Northeastern U.S. became the most industrious and urban region of the country, as this was the main point of arrival for migrants. Disparities in industrialization and urbanization was a key contributor to the Union's victory in the Civil War, not only due to population sizes, but also through production capabilities and transport infrastructure. The Northeast's population reached an urban majority in the 1870s, whereas this did not occur in the South until the 1950s. As more people moved westward in the late 1800s, not only did their population growth increase, but the share of the urban population also rose, with an urban majority established in both the West and Midwest regions in the 1910s. The West would eventually become the most urbanized region in the 1960s, and over 90 percent of the West's population is urbanized today. Urbanization today New York City is the most populous city in the United States, with a population of 8.3 million, while California has the largest urban population of any state. California also has the highest urbanization rate, although the District of Columbia is considered 100 percent urban. Only four U.S. states still have a rural majority, these are Maine, Mississippi, Montana, and West Virginia.

  3. Degree of urbanization 2025, by continent

    • statista.com
    • ai-chatbox.pro
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Degree of urbanization 2025, by continent [Dataset]. https://www.statista.com/statistics/270860/urbanization-by-continent/
    Explore at:
    Dataset updated
    May 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2025
    Area covered
    World
    Description

    In 2025, the degree of urbanization worldwide was at 58 percent. North America, Latin America, and the Caribbean were the regions with the highest level of urbanization, with over four-fifths of the population residing in urban areas. The degree of urbanization defines the share of the population living in areas defined as "cities". On the other hand, less than half of Africa's population lives in urban settlements. Globally, China accounts for over one-quarter of the built-up areas of more than 500,000 inhabitants. The definition of a city differs across various world regions - some countries count settlements with 100 houses or more as urban, while others only include the capital of a country or provincial capitals in their count. Largest agglomerations worldwideThough North America is the most urbanized continent, no U.S. city was among the top ten urban agglomerations worldwide in 2023. Tokyo-Yokohama in Japan was the largest urban area in the world that year, with 37.7 million inhabitants. New York ranked 13th, with 21.4 million inhabitants. Eight of the 10 most populous cities are located in Asia. ConnectivityIt may be hard to imagine how the reality will look in 2050, with 70 percent of the global population living in cities, but some statistics illustrate the ways urban living differs from suburban and rural living. American urbanites may lead more “connected” (i.e., internet-connected) lives than their rural and/or suburban counterparts. As of 2021, around 89 percent of people living in urban areas owned a smartphone. Internet usage was also higher in cities than in rural areas. On the other hand, rural areas always have, and always will, attract those who want to escape the rush of the city.

  4. w

    Top capital cities by country's rural population in San Marino

    • workwithdata.com
    Updated Apr 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Top capital cities by country's rural population in San Marino [Dataset]. https://www.workwithdata.com/charts/countries-yearly?agg=sum&chart=hbar&f=1&fcol0=country&fop0=%3D&fval0=San+Marino&x=capital_city&y=rural_population
    Explore at:
    Dataset updated
    Apr 9, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    San Marino
    Description

    This horizontal bar chart displays rural population (people) by capital city using the aggregation sum in San Marino. The data is about countries per year.

  5. a

    2012 04: Most Densely Populated Urban Areas in 2010

    • hub.arcgis.com
    • opendata.mtc.ca.gov
    Updated Apr 25, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MTC/ABAG (2012). 2012 04: Most Densely Populated Urban Areas in 2010 [Dataset]. https://hub.arcgis.com/documents/ac10898351ca4848b14024eac431590b
    Explore at:
    Dataset updated
    Apr 25, 2012
    Dataset authored and provided by
    MTC/ABAG
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    This map shows four of these densely populated areas are in California. The San Francisco-Oakland and San Jose Urban Areas rank second and third, respectively. That the New York Metropolitan area ranks fifth on this list shows that this density ranking is greatly affected by the nature of the land area designated as urban. Census Urban Areas comprise an urban core and associated suburbs. California's urban and suburban areas are more uniform in density when compared to New York's urban core and suburban periphery which have vastly different densities. Delano ranks fourth because it has a very small land area and its population is augmented by two large California State Prisons housing 10,000 inmates.

  6. w

    Top capital cities by country's rural population

    • workwithdata.com
    Updated May 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Top capital cities by country's rural population [Dataset]. https://www.workwithdata.com/charts/countries?agg=sum&chart=hbar&x=capital_city&y=rural_population
    Explore at:
    Dataset updated
    May 8, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This horizontal bar chart displays rural population (people) by capital city using the aggregation sum. The data is about countries.

  7. Population counts, for census metropolitan areas, census agglomerations,...

    • www150.statcan.gc.ca
    • open.canada.ca
    • +1more
    Updated Feb 9, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2022). Population counts, for census metropolitan areas, census agglomerations, population centres and rural areas [Dataset]. http://doi.org/10.25318/9810000601-eng
    Explore at:
    Dataset updated
    Feb 9, 2022
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    This table presents the 2021 population counts for census metropolitan areas and census agglomerations, and their population centres and rural areas.

  8. Locales 2020

    • catalog.data.gov
    • hub.arcgis.com
    • +1more
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2024). Locales 2020 [Dataset]. https://catalog.data.gov/dataset/locales-2020-7e330
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    This data layer produced by the National Center for Education Statistics’ (NCES) Education Demographic and Geographic Estimates (EDGE) program provides a geographic locale framework that classifies all U.S. territory into twelve categories ranging from Large Cities to Remote Rural areas. NCES uses this framework to describe the type of geographic area where schools and school districts are located. The criteria for these classifications are defined by NCES, but they rely on standard geographic areas developed and maintained by the U.S. Census Bureau. The 2020 NCES Locale boundaries are based on geographic areas represented in Census TIGER/Line 2020. The NCES Education Demographic and Geographic Estimate (EDGE) program collaborates with the U.S. Census Bureau’s Education Demographic, Geographic, and Economic Statistics (EDGE) Branch to annually update the locale boundaries. For more information about the NCES locale framework, see: https://nces.ed.gov/programs/edge/Geographic/LocaleBoundaries. The classifications include: City - Large (11): Territory inside an Urbanized Area and inside a Principal City with population of 250,000 or more. City - Midsize (12): Territory inside an Urbanized Area and inside a Principal City with population less than 250,000 and greater than or equal to 100,000. City - Small (13): Territory inside an Urbanized Area and inside a Principal City with population less than 100,000. Suburb – Large (21): Territory outside a Principal City and inside an Urbanized Area with population of 250,000 or more. Suburb - Midsize (22): Territory outside a Principal City and inside an Urbanized Area with population less than 250,000 and greater than or equal to 100,000. Suburb - Small (23): Territory outside a Principal City and inside an Urbanized Area with population less than 100,000. Town - Fringe (31): Territory inside an Urban Cluster that is less than or equal to 10 miles from an Urbanized Area. Town - Distant (32): Territory inside an Urban Cluster that is more than 10 miles and less than or equal to 35 miles from an Urbanized Area. Town - Remote (33): Territory inside an Urban Cluster that is more than 35 miles of an Urbanized Area. Rural - Fringe (41): Census-defined rural territory that is less than or equal to 5 miles from an Urbanized Area, as well as rural territory that is less than or equal to 2.5 miles from an Urban Cluster. Rural - Distant (42): Census-defined rural territory that is more than 5 miles but less than or equal to 25 miles from an Urbanized Area, as well as rural territory that is more than 2.5 miles but less than or equal to 10 miles from an Urban Cluster. Rural - Remote (43): Census-defined rural territory that is more than 25 miles from an Urbanized Area and is also more than 10 miles from an Urban Cluster.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.

  9. Data from: Spatial-temporal change of climate in relation to urban fringe...

    • search.dataone.org
    • portal.edirepository.org
    Updated Oct 4, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Brazel; Brent Hedquist (2013). Spatial-temporal change of climate in relation to urban fringe development in central Arizona-Phoenix [Dataset]. https://search.dataone.org/view/knb-lter-cap.34.9
    Explore at:
    Dataset updated
    Oct 4, 2013
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Anthony Brazel; Brent Hedquist
    Time period covered
    Aug 18, 2001 - May 1, 2002
    Area covered
    Variables measured
    RH, id, MAX, MIN, STD, SUM, AREA, Date, MEAN, time, and 8 more
    Description

    Not many studies have documented climate and air quality changes of settlements at early stages of development. This is because high quality climate and air quality records are deficient for the periods of the early 18th century to mid 20th century when many U.S. cities were formed and grew. Dramatic landscape change induces substantial local climate change during the incipient stage of development. Rapid growth along the urban fringe in Phoenix, coupled with a fine-grained climate monitoring system, provide a unique opportunity to study the climate impacts of urban development as it unfolds. Generally, heat islands form, particularly at night, in proportion to city population size and morphological characteristics. Drier air is produced by replacement of the countryside's moist landscapes with dry, hot urbanized surfaces. Wind is increased due to turbulence induced by the built-up urban fabric and its morphology; although, depending on spatial densities of buildings on the land, wind may also decrease. Air quality conditions are worsened due to increased city emissions and surface disturbances. Depending on the diversity of microclimates in pre-existing rural landscapes and the land-use mosaic in cities, the introduction of settlements over time and space can increase or decrease the variety of microclimates within and near urban regions. These differences in microclimatic conditions can influence variations in health, ecological, architectural, economic, energy and water resources, and quality-of-life conditions in the city. Therefore, studying microclimatic conditions which change in the urban fringe over time and space is at the core of urban ecological goals as part of LTER aims. In analyzing Phoenix and Baltimore long-term rural/urban weather and climate stations, Brazel et al. (In progress) have discovered that long-term (i.e., 100 years) temperature changes do not correlate with populations changes in a linear manner, but rather in a third-order nonlinear response fashion. This nonlinear temporal change is consistent with the theories in boundary layer climatology that describe and explain the leading edge transition and energy balance theory. This pattern of urban vs. rural temperature response has been demonstrated in relation to spatial range of city sizes (using population data) for 305 rural vs. urban climate stations in the U.S. Our recent work on the two urban LTER sites has shown that a similar climate response pattern also occurs over time for climate stations that were initially located in rural locations have been overrun bu the urban fringe and subsequent urbanization (e.g., stations in Baltimore, Mesa, Phoenix, and Tempe). Lack of substantial numbers of weather and climate stations in cities has previously precluded small-scale analyses of geographic variations of urban climate, and the links to land-use change processes. With the advent of automated weather and climate station networks, remote-sensing technology, land-use history, and the focus on urban ecology, researchers can now analyze local climate responses as a function of the details of land-use change. Therefore, the basic research question of this study is: How does urban climate change over time and space at the place of maximum disturbance on the urban fringe? Hypotheses 1. Based on the leading edge theory of boundary layer climate change, largest changes should occur during the period of peak development of the land when land is being rapidly transformed from open desert and agriculture to residential, commercial, and industrial uses. 2. One would expect to observe, on average and on a temporal basis (several years), nonlinear temperature and humidity alterations across the station network at varying levels of urban development. 3. Based on past research on urban climate, one would expect to see in areas of the urban fringe, rapid changes in temperature (increases at night particularly), humidity (decreases in areas from agriculture to urban; increases from desert to urban), and wind speed (increases due to urban heating). 4. Changes of the surface climate on the urban fringe are expected to be altered as a function of various energy, moisture, and momentum control parameters, such as albedo, surface moisture, aerodynamic surface roughness, and thermal admittance. These parameters relate directly to population and land-use change (Lougeay et al. 1996).

  10. o

    Urban and Regional Migration Estimates

    • openicpsr.org
    Updated Apr 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stephan Whitaker (2024). Urban and Regional Migration Estimates [Dataset]. http://doi.org/10.3886/E201260V3
    Explore at:
    Dataset updated
    Apr 23, 2024
    Dataset provided by
    Federal Reserve Bank of Cleveland
    Authors
    Stephan Whitaker
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 2010 - Sep 30, 2024
    Area covered
    Combined Statistical Areas, United States, Metro areas, Metropolitan areas
    Description

    Disclaimer: These data are updated by the author and are not an official product of the Federal Reserve Bank of Cleveland.This project provides two sets of migration estimates for the major US metro areas. The first series measures net migration of people to and from the urban neighborhoods of the metro areas. The second series covers all neighborhoods but breaks down net migration to other regions by four region types: (1) high-cost metros, (2) affordable, large metros, (3) midsized metros, and (4) small metros and rural areas. These series were introduced in a Cleveland Fed District Data Brief entitled “Urban and Regional Migration Estimates: Will Your City Recover from the Pandemic?"The migration estimates in this project are created with data from the Federal Reserve Bank of New York/Equifax Consumer Credit Panel (CCP). The CCP is a 5 percent random sample of the credit histories maintained by Equifax. The CCP reports the census block of residence for over 10 million individuals each quarter. Each month, Equifax receives individuals’ addresses, along with reports of debt balances and payments, from creditors (mortgage lenders, credit card issuers, student loan servicers, etc.). An algorithm maintained by Equifax considers all of the addresses reported for an individual and identifies the individual’s most likely current address. Equifax anonymizes the data before they are added to the CCP, removing names, addresses, and Social Security numbers (SSNs). In lieu of mailing addresses, the census block of the address is added to the CCP. Equifax creates a unique, anonymous identifier to enable researchers to build individuals’ panels. The panel nature of the data allows us to observe when someone has migrated and is living in a census block different from the one they lived in at the end of the preceding quarter. For more details about the CCP and its use in measuring migration, see Lee and Van der Klaauw (2010) and DeWaard, Johnson and Whitaker (2019). DefinitionsMetropolitan areaThe metropolitan areas in these data are combined statistical areas. This is the most aggregate definition of metro areas, and it combines Washington DC with Baltimore, San Jose with San Francisco, Akron with Cleveland, etc. Metro areas are combinations of counties that are tightly linked by worker commutes and other economic activity. All counties outside of metropolitan areas are tracked as parts of a rural commuting zone (CZ). CZs are also groups of counties linked by commuting, but CZ definitions cover all counties, both metropolitan and non-metropolitan. High-cost metropolitan areasHigh-cost metro areas are those where the median list price for a house was more than $200 per square foot on average between April 2017 and April 2022. These areas include San Francisco-San Jose, New York, San Diego, Los Angeles, Seattle, Boston, Miami, Sacramento, Denver, Salt Lake City, Portland, and Washington-Baltimore. Other Types of RegionsMetro areas with populations above 2 million and house price averages below $200 per square foot are categorized as affordable, large metros. Metro areas with populations between 500,000 and 2 million are categorized as mid-sized metros, regardless of house prices. All remaining counties are in the small metro and rural category.To obtain a metro area's total net migration, sum the four net migration values for the the four types of regions.Urban neighborhoodCensus tracts are designated as urban if they have a population density above 7,000 people per square mile. High density neighborhoods can support walkable retail districts and high-frequency public transportation. They are more likely to have the “street life” that people associate with living in an urban rather than a suburban area. The threshold of 7,000 people per square mile was selected because it was the average density in the largest US cities in the 1930 census. Before World War II, workplaces, shopping, schools and parks had to be accessible on foot. Tracts are also designated as urban if more than half of their housing units were built before WWII and they have a population density above 2,000 people per square mile. The lower population density threshold for the pre-war neighborhoods recognizes that many urban tracts have lost population since the 1960s. While the street grids usually remain, the area also needs su

  11. Suburb Locality - Population

    • data.linz.govt.nz
    csv, dbf (dbase iii) +4
    Updated Jun 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Land Information New Zealand (2023). Suburb Locality - Population [Dataset]. https://data.linz.govt.nz/table/113761-suburb-locality-population/
    Explore at:
    mapinfo mif, mapinfo tab, geopackage / sqlite, geodatabase, csv, dbf (dbase iii)Available download formats
    Dataset updated
    Jun 16, 2023
    Dataset authored and provided by
    Land Information New Zealandhttps://www.linz.govt.nz/
    License

    https://data.linz.govt.nz/license/attribution-4-0-international/https://data.linz.govt.nz/license/attribution-4-0-international/

    Description

    The Population data table is part of NZ Suburbs and Localities Dataset. This table contains the population estimate for each suburb and locality, provided by StatsNZ.

    NZ Suburbs and Localities is an easy to use layer generated from the normalised NZ Suburbs and Localities Dataset. It describes the spatial extent and name of communities in urban areas (suburbs) and rural areas (localities) for navigation and location purposes.

    The suburb and locality boundaries cover New Zealand including North Island, South Island, Stewart Island/Rakiura, Chatham Islands, and nearby offshore islands.

    Each suburb and locality is assigned a name, major name, Territorial Authority and, if appropriate, additional in use names. A population estimate is provided for each suburb and locality by Stats NZ.

    For more information please refer to the NZ Suburbs and Localities Guidance documents:

    Data Dictionary Change Request Process Change Request Principles, Requirements and Rules Changes to NZ Suburbs and Localities can be requested by emailing addresses@linz.govt.nz

  12. 2021 American Community Survey: B03003 | HISPANIC OR LATINO ORIGIN (ACS...

    • data.census.gov
    Updated Oct 1, 1970
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS (1970). 2021 American Community Survey: B03003 | HISPANIC OR LATINO ORIGIN (ACS 5-Year Estimates Detailed Tables) [Dataset]. https://data.census.gov/table/ACSDT5Y2021.B03003?q=Hispanic+or+Latino&g=040XX00US16_050XX00US16021_1500000US160219701001
    Explore at:
    Dataset updated
    Oct 1, 1970
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2021
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, it is the Census Bureau's Population Estimates Program that produces and disseminates the official estimates of the population for the nation, states, counties, cities, and towns and estimates of housing units for states and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..The Hispanic origin and race codes were updated in 2020. For more information on the Hispanic origin and race code changes, please visit the American Community Survey Technical Documentation website..The 2017-2021 American Community Survey (ACS) data generally reflect the March 2020 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution. For a 5-year median estimate, the margin of error associated with a median was larger than the median itself.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  13. w

    Top capital cities by country's rural population in Iraq and in 2021

    • workwithdata.com
    Updated Apr 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Top capital cities by country's rural population in Iraq and in 2021 [Dataset]. https://www.workwithdata.com/charts/countries-yearly?agg=sum&chart=hbar&f=2&fcol0=country&fcol1=date&fop0=%3D&fop1=%3D&fval0=Iraq&fval1=2021&x=capital_city&y=rural_population
    Explore at:
    Dataset updated
    Apr 9, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iraq
    Description

    This horizontal bar chart displays rural population (people) by capital city using the aggregation sum in Iraq. The data is filtered where the date is 2021. The data is about countries per year.

  14. w

    Top capital cities by country's rural population in Eastern Asia

    • workwithdata.com
    Updated May 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Top capital cities by country's rural population in Eastern Asia [Dataset]. https://www.workwithdata.com/charts/countries?agg=sum&chart=hbar&f=1&fcol0=region&fop0=%3D&fval0=Eastern+Asia&x=capital_city&y=rural_population
    Explore at:
    Dataset updated
    May 8, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Asia, East Asia
    Description

    This horizontal bar chart displays rural population (people) by capital city using the aggregation sum in Eastern Asia. The data is about countries.

  15. U.S. population of metropolitan areas in 2023

    • statista.com
    Updated Jul 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. population of metropolitan areas in 2023 [Dataset]. https://www.statista.com/statistics/183600/population-of-metropolitan-areas-in-the-us/
    Explore at:
    Dataset updated
    Jul 26, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, the metropolitan area of New York-Newark-Jersey City had the biggest population in the United States. Based on annual estimates from the census, the metropolitan area had around 19.5 million inhabitants, which was a slight decrease from the previous year. The Los Angeles and Chicago metro areas rounded out the top three. What is a metropolitan statistical area? In general, a metropolitan statistical area (MSA) is a core urbanized area with a population of at least 50,000 inhabitants – the smallest MSA is Carson City, with an estimated population of nearly 56,000. The urban area is made bigger by adjacent communities that are socially and economically linked to the center. MSAs are particularly helpful in tracking demographic change over time in large communities and allow officials to see where the largest pockets of inhabitants are in the country. How many MSAs are in the United States? There were 421 metropolitan statistical areas across the U.S. as of July 2021. The largest city in each MSA is designated the principal city and will be the first name in the title. An additional two cities can be added to the title, and these will be listed in population order based on the most recent census. So, in the example of New York-Newark-Jersey City, New York has the highest population, while Jersey City has the lowest. The U.S. Census Bureau conducts an official population count every ten years, and the new count is expected to be announced by the end of 2030.

  16. Urban and Rural Population Dot Density Patterns in the US (2020 Census)

    • data-bgky.hub.arcgis.com
    Updated Jun 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2023). Urban and Rural Population Dot Density Patterns in the US (2020 Census) [Dataset]. https://data-bgky.hub.arcgis.com/maps/6400927e585d473fa7894fda91a6c441
    Explore at:
    Dataset updated
    Jun 7, 2023
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This map uses dot density patterns to indicate which population is larger in each area: urban (green) or rural (blue). Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico.The U.S. Census designates each census block as part of an urban area or as rural. Larger geographies in this map such as block group, tract, county and state can therefore have a mix of urban and rural population. This map illustrates the 100% urban areas with all green dots, and 100% rural areas in dark blue dots. Areas with mixed urban/rural population have a proportional mix of green and blue dots to give a visual indication of where change may be happening. From the Census:"The Census Bureau’s urban-rural classification is a delineation of geographic areas, identifying both individual urban areas and the rural area of the nation. The Census Bureau’s urban areas represent densely developed territory, and encompass residential, commercial, and other non-residential urban land uses. The Census Bureau delineates urban areas after each decennial census by applying specified criteria to decennial census and other data. Rural encompasses all population, housing, and territory not included within an urban area.For the 2020 Census, an urban area will comprise a densely settled core of census blocks that meet minimum housing unit density and/or population density requirements. This includes adjacent territory containing non-residential urban land uses. To qualify as an urban area, the territory identified according to criteria must encompass at least 2,000 housing units or have a population of at least 5,000." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters).  The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.

  17. Share of rural population APAC 2023, by country

    • statista.com
    • ai-chatbox.pro
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Share of rural population APAC 2023, by country [Dataset]. https://www.statista.com/statistics/641144/asia-pacific-rural-population-ratio-by-country/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Asia–Pacific
    Description

    In 2023, approximately ** percent of the population in Papua New Guinea were living in rural areas. In comparison, approximately ***** percent of the population in Japan were living in rural areas that year. Urbanization and development Despite the desirable outcomes that urbanization entails, these rapid demographic shifts have also brought about unintended changes. For instance, in countries like India, rapid urbanization has led to unsustainable and crowded cities, with **** of the urban population in India estimated to live in slums. In China, population shifts from rural to urban areas have aggravated regional economic disparities. For example, the migration of workers into coastal cities has made possible the creation of urban clusters of immense economic magnitude, with the Yangtze River Delta city cluster accounting for about a ******of the country’s gross domestic product. Megacities and their future Home to roughly 60 percent of the world’s population, the Asia-Pacific region also shelters most of the globe’s largest urban agglomerations. Megacities, a term used for cities or urban areas with a population of over ten million people, are characterized by high cultural diversity and advanced infrastructure. As a result, they create better economic opportunities, and they are often hubs of innovation. For instance, many megacities in the Asia-Pacific region offer high local purchasing power to their residents. Despite challenges like pollution, income inequality, or the rising cost of living, megacities in the Asia-Pacific region have relatively high population growth rates and are expected to expand.

  18. w

    Top capital cities by country's rural population in St. Kitts and Nevis

    • workwithdata.com
    Updated Apr 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Work With Data (2025). Top capital cities by country's rural population in St. Kitts and Nevis [Dataset]. https://www.workwithdata.com/charts/countries-yearly?agg=sum&chart=hbar&f=1&fcol0=country&fop0=%3D&fval0=St.+Kitts+and+Nevis&x=capital_city&y=rural_population
    Explore at:
    Dataset updated
    Apr 9, 2025
    Dataset authored and provided by
    Work With Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Saint Kitts and Nevis
    Description

    This horizontal bar chart displays rural population (people) by capital city using the aggregation sum in St. Kitts and Nevis. The data is about countries per year.

  19. c

    Colorado Cities by Population

    • colorado-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Colorado Cities by Population [Dataset]. https://www.colorado-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.colorado-demographics.com/terms_and_conditionshttps://www.colorado-demographics.com/terms_and_conditions

    Area covered
    Colorado
    Description

    A dataset listing Colorado cities by population for 2024.

  20. M

    World Rural Population

    • macrotrends.net
    csv
    Updated May 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). World Rural Population [Dataset]. https://www.macrotrends.net/global-metrics/countries/wld/world/rural-population
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1960 - Dec 31, 2023
    Area covered
    World, World
    Description

    Historical chart and dataset showing World rural population by year from 1960 to 2023.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Andrea Cattaneo; Andy Nelson; Theresa McMenomy (2023). Urban-rural continuum [Dataset]. http://doi.org/10.6084/m9.figshare.12579572.v4
Organization logo

Data from: Urban-rural continuum

Related Article
Explore at:
tiffAvailable download formats
Dataset updated
May 30, 2023
Dataset provided by
Figsharehttp://figshare.com/
Authors
Andrea Cattaneo; Andy Nelson; Theresa McMenomy
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The urban–rural continuum classifies the global population, allocating rural populations around differently-sized cities. The classification is based on four dimensions: population distribution, population density, urban center location, and travel time to urban centers, all of which can be mapped globally and consistently and then aggregated as administrative unit statistics.Using spatial data, we matched all rural locations to their urban center of reference based on the time needed to reach these urban centers. A hierarchy of urban centers by population size (largest to smallest) is used to determine which center is the point of “reference” for a given rural location: proximity to a larger center “dominates” over a smaller one in the same travel time category. This was done for 7 urban categories and then aggregated, for presentation purposes, into “large cities” (over 1 million people), “intermediate cities” (250,000 –1 million), and “small cities and towns” (20,000–250,000).Finally, to reflect the diversity of population density across the urban–rural continuum, we distinguished between high-density rural areas with over 1,500 inhabitants per km2 and lower density areas. Unlike traditional functional area approaches, our approach does not define urban catchment areas by using thresholds, such as proportion of people commuting; instead, these emerge endogenously from our urban hierarchy and by calculating the shortest travel time.Urban-Rural Catchment Areas (URCA).tif is a raster dataset of the 30 urban–rural continuum categories for the urban–rural continuum showing the catchment areas around cities and towns of different sizes. Each rural pixel is assigned to one defined travel time category: less than one hour, one to two hours, and two to three hours travel time to one of seven urban agglomeration sizes. The agglomerations range from large cities with i) populations greater than 5 million and ii) between 1 to 5 million; intermediate cities with iii) 500,000 to 1 million and iv) 250,000 to 500,000 inhabitants; small cities with populations v) between 100,000 and 250,000 and vi) between 50,000 and 100,000; and vii) towns of between 20,000 and 50,000 people. The remaining pixels that are more than 3 hours away from any urban agglomeration of at least 20,000 people are considered as either hinterland or dispersed towns being that they are not gravitating around any urban agglomeration. The raster also allows for visualizing a simplified continuum created by grouping the seven urban agglomerations into 4 categories.Urban-Rural Catchment Areas (URCA).tif is in GeoTIFF format, band interleaved with LZW compression, suitable for use in Geographic Information Systems and statistical packages. The data type is byte, with pixel values ranging from 1 to 30. The no data value is 128. It has a spatial resolution of 30 arc seconds, which is approximately 1km at the equator. The spatial reference system (projection) is EPSG:4326 - WGS84 - Geographic Coordinate System (lat/long). The geographic extent is 83.6N - 60S / 180E - 180W. The same tif file is also available as an ESRI ArcMap MapPackage Urban-Rural Catchment Areas.mpkFurther details are in the ReadMe_data_description.docx

Search
Clear search
Close search
Google apps
Main menu