25 datasets found
  1. T

    United States - Population In Largest City

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Jun 9, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). United States - Population In Largest City [Dataset]. https://tradingeconomics.com/united-states/population-in-largest-city-wb-data.html
    Explore at:
    excel, xml, csv, jsonAvailable download formats
    Dataset updated
    Jun 9, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    United States
    Description

    Population in largest city in United States was reported at 19034018 in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Population in largest city - actual values, historical data, forecasts and projections were sourced from the World Bank on November of 2025.

  2. T

    United States Population In The Largest City Percent Of Urban Population

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 29, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). United States Population In The Largest City Percent Of Urban Population [Dataset]. https://tradingeconomics.com/united-states/population-in-the-largest-city-percent-of-urban-population-wb-data.html
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    May 29, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    United States
    Description

    Actual value and historical data chart for United States Population In The Largest City Percent Of Urban Population

  3. c

    Historical changes of annual temperature and precipitation indices at...

    • kilthub.cmu.edu
    txt
    Updated Aug 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yuchuan Lai; David Dzombak (2024). Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities [Dataset]. http://doi.org/10.1184/R1/7961012.v6
    Explore at:
    txtAvailable download formats
    Dataset updated
    Aug 22, 2024
    Dataset provided by
    Carnegie Mellon University
    Authors
    Yuchuan Lai; David Dzombak
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Historical changes of annual temperature and precipitation indices at selected 210 U.S. cities

    This dataset provide:

    Annual average temperature, total precipitation, and temperature and precipitation extremes calculations for 210 U.S. cities.

    Historical rates of changes in annual temperature, precipitation, and the selected temperature and precipitation extreme indices in the 210 U.S. cities.

    Estimated thresholds (reference levels) for the calculations of annual extreme indices including warm and cold days, warm and cold nights, and precipitation amount from very wet days in the 210 cities.

    Annual average of daily mean temperature, Tmax, and Tmin are included for annual average temperature calculations. Calculations were based on the compiled daily temperature and precipitation records at individual cities.

    Temperature and precipitation extreme indices include: warmest daily Tmax and Tmin, coldest daily Tmax and Tmin , warm days and nights, cold days and nights, maximum 1-day precipitation, maximum consecutive 5-day precipitation, precipitation amounts from very wet days.

    Number of missing daily Tmax, Tmin, and precipitation values are included for each city.

    Rates of change were calculated using linear regression, with some climate indices applied with the Box-Cox transformation prior to the linear regression.

    The historical observations from ACIS belong to Global Historical Climatological Network - daily (GHCN-D) datasets. The included stations were based on NRCC’s “ThreadEx” project, which combined daily temperature and precipitation extremes at 255 NOAA Local Climatological Locations, representing all large and medium size cities in U.S. (See Owen et al. (2006) Accessing NOAA Daily Temperature and Precipitation Extremes Based on Combined/Threaded Station Records).

    Resources:

    See included README file for more information.

    Additional technical details and analyses can be found in: Lai, Y., & Dzombak, D. A. (2019). Use of historical data to assess regional climate change. Journal of climate, 32(14), 4299-4320. https://doi.org/10.1175/JCLI-D-18-0630.1

    Other datasets from the same project can be accessed at: https://kilthub.cmu.edu/projects/Use_of_historical_data_to_assess_regional_climate_change/61538

    ACIS database for historical observations: http://scacis.rcc-acis.org/

    GHCN-D datasets can also be accessed at: https://www.ncei.noaa.gov/data/global-historical-climatology-network-daily/

    Station information for each city can be accessed at: http://threadex.rcc-acis.org/

    • 2024 August updated -

      Annual calculations for 2022 and 2023 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2022 and 2023 data.

      Note that future updates may be infrequent.

    • 2022 January updated -

      Annual calculations for 2021 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2021 data.

    • 2021 January updated -

      Annual calculations for 2020 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2020 data.

    • 2020 January updated -

      Annual calculations for 2019 were added.

      Linear regression results and thresholds for extremes were updated because of the addition of 2019 data.

      Thresholds for all 210 cities were combined into one single file – Thresholds.csv.

    • 2019 June updated -

      Baltimore was updated with the 2018 data (previously version shows NA for 2018) and new ID to reflect the GCHN ID of Baltimore-Washington International AP. city_info file was updated accordingly.

      README file was updated to reflect the use of "wet days" index in this study. The 95% thresholds for calculation of wet days utilized all daily precipitation data from the reference period and can be different from the same index from some other studies, where only days with at least 1 mm of precipitation were utilized to calculate the thresholds. Thus the thresholds in this study can be lower than the ones that would've be calculated from the 95% percentiles from wet days (i.e., with at least 1 mm of precipitation).

  4. w

    Washington Cities by Population

    • washington-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). Washington Cities by Population [Dataset]. https://www.washington-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.washington-demographics.com/terms_and_conditionshttps://www.washington-demographics.com/terms_and_conditions

    Area covered
    Washington
    Description

    A dataset listing Washington cities by population for 2024.

  5. Population of USA (2050-1955)

    • kaggle.com
    zip
    Updated Apr 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anandhu H (2022). Population of USA (2050-1955) [Dataset]. https://www.kaggle.com/datasets/anandhuh/population-data-usa
    Explore at:
    zip(2660 bytes)Available download formats
    Dataset updated
    Apr 26, 2022
    Authors
    Anandhu H
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Area covered
    United States
    Description

    Content

    The current population of the United States of America is 334,464,117 as of Saturday, April 16, 2022, based on Worldometer elaboration of the latest United Nations data. This three datasets contain population data of USA (2020 and histIndiaorical), population forecast and population in major cities.

    Attribute Information

    • Year - Years from 2020-1955
    • Population - Population in the respective year
    • Yearly % Change - Percentage Yearly Change in Population
    • Yearly Change - Yearly Change in Population
    • Migrants (net) - Total number of migrants
    • Median Age - Median age of the population
    • Fertility Rate - Fertility rate
    • Density (P/Km²)- Population density (population per square km)
    • Urban Pop %- Percentage of urban population
    • Urban Population- Urban population
    • Country's Share of World Pop - Population share
    • World Population - World Population in the respective year
    • India Global Rank - Global Rank in Population

    Source

    Link : https://www.worldometers.info/world-population/us-population/

    Updated Covid 19 and Other Datasets

    Link : https://www.kaggle.com/anandhuh/datasets

    If you find it useful, please support by upvoting ❤️

    Thank You

  6. T

    North America - Population In The Largest City

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Sep 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). North America - Population In The Largest City [Dataset]. https://tradingeconomics.com/north-america/population-in-the-largest-city-percent-of-urban-population-wb-data.html
    Explore at:
    csv, json, xml, excelAvailable download formats
    Dataset updated
    Sep 21, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    North America
    Description

    Population in the largest city (% of urban population) in North America was reported at 8.1557 % in 2022, according to the World Bank collection of development indicators, compiled from officially recognized sources. North America - Population in the largest city - actual values, historical data, forecasts and projections were sourced from the World Bank on November of 2025.

  7. s

    South Carolina Cities by Population

    • southcarolina-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). South Carolina Cities by Population [Dataset]. https://www.southcarolina-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.southcarolina-demographics.com/terms_and_conditionshttps://www.southcarolina-demographics.com/terms_and_conditions

    Area covered
    South Carolina
    Description

    A dataset listing South Carolina cities by population for 2024.

  8. Data from: Spatial-temporal change of climate in relation to urban fringe...

    • search.dataone.org
    • portal.edirepository.org
    Updated Oct 4, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anthony Brazel; Brent Hedquist (2013). Spatial-temporal change of climate in relation to urban fringe development in central Arizona-Phoenix [Dataset]. https://search.dataone.org/view/knb-lter-cap.34.9
    Explore at:
    Dataset updated
    Oct 4, 2013
    Dataset provided by
    Long Term Ecological Research Networkhttp://www.lternet.edu/
    Authors
    Anthony Brazel; Brent Hedquist
    Time period covered
    Aug 18, 2001 - May 1, 2002
    Area covered
    Variables measured
    RH, id, MAX, MIN, STD, SUM, AREA, Date, MEAN, time, and 8 more
    Description

    Not many studies have documented climate and air quality changes of settlements at early stages of development. This is because high quality climate and air quality records are deficient for the periods of the early 18th century to mid 20th century when many U.S. cities were formed and grew. Dramatic landscape change induces substantial local climate change during the incipient stage of development. Rapid growth along the urban fringe in Phoenix, coupled with a fine-grained climate monitoring system, provide a unique opportunity to study the climate impacts of urban development as it unfolds. Generally, heat islands form, particularly at night, in proportion to city population size and morphological characteristics. Drier air is produced by replacement of the countryside's moist landscapes with dry, hot urbanized surfaces. Wind is increased due to turbulence induced by the built-up urban fabric and its morphology; although, depending on spatial densities of buildings on the land, wind may also decrease. Air quality conditions are worsened due to increased city emissions and surface disturbances. Depending on the diversity of microclimates in pre-existing rural landscapes and the land-use mosaic in cities, the introduction of settlements over time and space can increase or decrease the variety of microclimates within and near urban regions. These differences in microclimatic conditions can influence variations in health, ecological, architectural, economic, energy and water resources, and quality-of-life conditions in the city. Therefore, studying microclimatic conditions which change in the urban fringe over time and space is at the core of urban ecological goals as part of LTER aims. In analyzing Phoenix and Baltimore long-term rural/urban weather and climate stations, Brazel et al. (In progress) have discovered that long-term (i.e., 100 years) temperature changes do not correlate with populations changes in a linear manner, but rather in a third-order nonlinear response fashion. This nonlinear temporal change is consistent with the theories in boundary layer climatology that describe and explain the leading edge transition and energy balance theory. This pattern of urban vs. rural temperature response has been demonstrated in relation to spatial range of city sizes (using population data) for 305 rural vs. urban climate stations in the U.S. Our recent work on the two urban LTER sites has shown that a similar climate response pattern also occurs over time for climate stations that were initially located in rural locations have been overrun bu the urban fringe and subsequent urbanization (e.g., stations in Baltimore, Mesa, Phoenix, and Tempe). Lack of substantial numbers of weather and climate stations in cities has previously precluded small-scale analyses of geographic variations of urban climate, and the links to land-use change processes. With the advent of automated weather and climate station networks, remote-sensing technology, land-use history, and the focus on urban ecology, researchers can now analyze local climate responses as a function of the details of land-use change. Therefore, the basic research question of this study is: How does urban climate change over time and space at the place of maximum disturbance on the urban fringe? Hypotheses 1. Based on the leading edge theory of boundary layer climate change, largest changes should occur during the period of peak development of the land when land is being rapidly transformed from open desert and agriculture to residential, commercial, and industrial uses. 2. One would expect to observe, on average and on a temporal basis (several years), nonlinear temperature and humidity alterations across the station network at varying levels of urban development. 3. Based on past research on urban climate, one would expect to see in areas of the urban fringe, rapid changes in temperature (increases at night particularly), humidity (decreases in areas from agriculture to urban; increases from desert to urban), and wind speed (increases due to urban heating). 4. Changes of the surface climate on the urban fringe are expected to be altered as a function of various energy, moisture, and momentum control parameters, such as albedo, surface moisture, aerodynamic surface roughness, and thermal admittance. These parameters relate directly to population and land-use change (Lougeay et al. 1996).

  9. w

    West Virginia Cities by Population

    • westvirginia-demographics.com
    Updated Jun 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kristen Carney (2024). West Virginia Cities by Population [Dataset]. https://www.westvirginia-demographics.com/cities_by_population
    Explore at:
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Cubit Planning, Inc.
    Authors
    Kristen Carney
    License

    https://www.westvirginia-demographics.com/terms_and_conditionshttps://www.westvirginia-demographics.com/terms_and_conditions

    Area covered
    West Virginia, Charleston
    Description

    A dataset listing West Virginia cities by population for 2024.

  10. u

    Mapping History - What Historical Maps Can Tell Us About Urban Development:...

    • datacatalogue.ukdataservice.ac.uk
    Updated May 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zylberberg, Y, University of Bristol; Valat, E, University of Bristol; Gorin, C, University of Bristol (2025). Mapping History - What Historical Maps Can Tell Us About Urban Development: Digitisation Codes, 1800-1960 [Dataset]. http://doi.org/10.5255/UKDA-SN-857853
    Explore at:
    Dataset updated
    May 29, 2025
    Authors
    Zylberberg, Y, University of Bristol; Valat, E, University of Bristol; Gorin, C, University of Bristol
    Time period covered
    Jan 1, 1800 - Jan 1, 1960
    Area covered
    France, United Kingdom
    Description

    This project systematically processed high-resolution and manuscript historical maps to unlock a dormant body of information about the historical development of cities and regions during periods of structural economic transformation.

    The work was organised across six interlinked work packages, combining empirical and theoretical analysis in the UK, France, and Canada. Outputs included peer-reviewed publications and robust algorithms for extracting spatial data from historical sources, contributing valuable tools and insights to the fields of urban economics and economic history.

    This data package contains three segmentation codes designed to extract features and segment historical maps.

    Little is known about the patterns of city development during the structural transformation of economies. This project will systematically process high-resolution and manuscript historical maps to make a dormant body of information about our cities' and regions' past accessible.

    The proposed research will advance our understanding of long-run urban growth through the development of three innovative methodologies, which will overcome practical limitations of historical data sources: 1) A technique to extract land use patterns from historical colour maps applied to France (1750-1950); 2) A recognition algorithm to detect, tag and geo-locate points of interest in historical high-quality maps of the 70 largest urban centre in England and Wales; 3) An algorithm to geo-locate address information from Micro-censuses and trade registers.

    We have identified four main research questions that will be developed in the following separate research projects. In Project 1, the main question is: what are the long-term empirical patterns of urban development, most notably the persistence of the spatial organisation of economic activity and the role of building infrastructure in shaping such persistence? In Project 2, the main question is: How do environmental disamenities and their unequal distribution within cities affect the spatial organisation of consumption amenities and production? In Project 3, the main question is: Do cities grow towards their bad parts, their neighbourhoods with the lowest environmental amenities? In Project 4, the main question is: How does vertical growth and advances in building technologies affect the spatial organisation of cities?

    To address these research questions, we will organise our workflow in six inter-connected work packages (WP):

    WP1--Classification of land use in France (1750-2015): The objective of WP1 will be to recover land use information at a fine scale from digitised maps using state-of-the-art machine learning techniques;

    WP2--Digitisation of micro-features embedded in Ordnance Survey (OS) city maps of England and Wales (1870-1960);

    WP3--Geo-localization of residents and production units in England and Wales (1851-1911);

    WP4--Dynamic model of city growth with persistent building stock: WP4 builds a general equilibrium model of spatial economic activity that embeds the durability of housing and infrastructure and exploits the three hundred years of population settlement data produced in WP1;

    WP5--Pollution and the long-run development of cities: WP5 builds on WP2,3 and proposes to study the joint dynamics of residential sorting and the location of production within cities to understand how a major environmental disamenity-industrial pollution-affects the spatial organisation of cities in the longer-run;

    WP6--Horizontal and vertical urban growth in Montreal and Toronto: WP6 will bridge between the previous working packages WP1, WP2, WP4 and WP5, and study--empirically and theoretically--horizontal and vertical urban growth.

    The project will be jointly led by three teams. The French team will be composed of Gobillon (PI), Combes (CoI) and Duranton (TM) who have contributed to the development of major theoretical approaches in urban economics. The Canadian team will be led by Heblich (PI), who is a lead researcher in urban economics/economic history, and Fortin (Co-I), a lead in GIS analysis. The UK team will be led by Zylberberg (PI), who is an economist specialist in data extraction form historical sources and remote sensing. Shaw-Taylor and Schürer, advisory board, will help design the analysis of the population micro-censuses between 1851 and 1911 (WP3). The collaboration partner, Redding (TM), involved in the design of WP3 and the implementation of WP6, is one of the World lead researchers in urban economics.

    Outputs will include articles in top economic journals, and detailed algorithms to extract relevant spatial information from manuscript maps.

  11. California City Boundaries and Identifiers

    • data.ca.gov
    Updated Feb 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Technology (2025). California City Boundaries and Identifiers [Dataset]. https://data.ca.gov/dataset/california-city-boundaries-and-identifiers
    Explore at:
    zip, csv, html, gpkg, txt, kml, xlsx, geojson, gdb, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Feb 26, 2025
    Dataset authored and provided by
    California Department of Technologyhttp://cdt.ca.gov/
    Area covered
    California City
    Description

    Note: The schema changed in February 2025 - please see below. We will post a roadmap of upcoming changes, but service URLs and schema are now stable. For deployment status of new services beginning in February 2025, see https://gis.data.ca.gov/pages/city-and-county-boundary-data-status. Additional roadmap and status links at the bottom of this metadata.

    This dataset is regularly updated as the source data from CDTFA is updated, as often as many times a month. If you require unchanging point-in-time data, export a copy for your own use rather than using the service directly in your applications.

    Purpose
    City boundaries along with third party identifiers used to join in external data. Boundaries are from the California Department of Tax and Fee Administration (CDTFA). These boundaries are the best available statewide data source in that CDTFA receives changes in incorporation and boundary lines from the Board of Equalization, who receives them from local jurisdictions for tax purposes. Boundary accuracy is not guaranteed, and though CDTFA works to align boundaries based on historical records and local changes, errors will exist. If you require a legal assessment of boundary location, contact a licensed surveyor.

    This dataset joins in multiple attributes and identifiers from the US Census Bureau and Board on Geographic Names to facilitate adding additional third party data sources. In addition, we attach attributes of our own to ease and reduce common processing needs and questions. Finally, coastal buffers are separated into separate polygons, leaving the land-based portions of jurisdictions and coastal buffers in adjacent polygons. This feature layer is for public use.

    Related Layers

    This dataset is part of a grouping of many datasets:

    1. Cities: Only the city boundaries and attributes, without any unincorporated areas
    2. Counties: Full county boundaries and attributes, including all cities within as a single polygon
    3. Cities and Full Counties: A merge of the other two layers, so polygons overlap within city boundaries. Some customers require this behavior, so we provide it as a separate service.
    4. City and County Abbreviations
    5. Unincorporated Areas (Coming Soon)
    6. Census Designated Places
    7. Cartographic Coastline
    Working with Coastal Buffers
    The dataset you are currently viewing excludes the coastal buffers for cities and counties that have them in the source data from CDTFA. In the versions where they are included, they remain as a second polygon on cities or counties that have them, with all the same identifiers, and a value in the COASTAL field indicating if it"s an ocean or a bay buffer. If you wish to have a single polygon per jurisdiction that includes the coastal buffers, you can run a Dissolve on the version that has the coastal buffers on all the fields except OFFSHORE and AREA_SQMI to get a version with the correct identifiers.

    Point of Contact

    California Department of Technology, Office of Digital Services, odsdataservices@state.ca.gov

    Field and Abbreviation Definitions

    • CDTFA_CITY: CDTFA incorporated city name
    • CDTFA_COUNTY: CDTFA county name. For counties, this will be the name of the polygon itself. For cities, it is the name of the county the city polygon is within.
    • CDTFA_COPRI: county number followed by the 3-digit city primary number used in the Board of Equalization"s 6-digit tax rate area numbering system. The boundary data originate with CDTFA's teams managing tax rate information, so this field is preserved and flows into this dataset.
    • CENSUS_GEOID: numeric geographic identifiers from the US Census Bureau
    • CENSUS_PLACE_TYPE: City, County, or Town, stripped off the census name for identification purpose.
    • GNIS_PLACE_NAME: Board on Geographic Names authorized nomenclature for area names published in the Geographic Name Information System
    • GNIS_ID: The numeric identifier from the Board on Geographic Names that can be used to join these boundaries to other datasets utilizing this identifier.
    • CDT_CITY_ABBR: Abbreviations of incorporated area names - originally derived from CalTrans Division of Local Assistance and now managed by CDT. Abbreviations are 4 characters. Not present in the county-specific layers.
    • CDT_COUNTY_ABBR: Abbreviations of county names - originally derived from CalTrans Division of Local Assistance and now managed by CDT. Abbreviations are 3 characters.
    • CDT_NAME_SHORT: The name of the jurisdiction (city or county) with the word "City" or "County" stripped off the end. Some changes may come to how we process this value to make it more consistent.
    • AREA_SQMI: The area of the administrative unit (city or county) in square miles, calculated in EPSG 3310 California Teale Albers.
    • OFFSHORE: Indicates if the polygon is a coastal buffer. Null for land polygons. Additional values include "ocean" and "bay".
    • PRIMARY_DOMAIN: Currently empty/null for all records. Placeholder field for official URL of the city or county
    • CENSUS_POPULATION: Currently null for all records. In the future, it will include the most recent US Census population estimate for the jurisdiction.
    • GlobalID: While all of the layers we provide in this dataset include a GlobalID field with unique values, we do not recommend you make any use of it. The GlobalID field exists to support offline sync, but is not persistent, so data keyed to it will be orphaned at our next update. Use one of the other persistent identifiers, such as GNIS_ID or GEOID instead.

    Boundary Accuracy
    County boundaries were originally

  12. Monthly Mean Temperature Data for Major US Cities

    • kaggle.com
    zip
    Updated Mar 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Garrick Hague (2023). Monthly Mean Temperature Data for Major US Cities [Dataset]. https://www.kaggle.com/datasets/garrickhague/temp-data-of-prominent-us-cities-from-1948-to-2022
    Explore at:
    zip(93354 bytes)Available download formats
    Dataset updated
    Mar 12, 2023
    Authors
    Garrick Hague
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    United States
    Description

    The monthly mean temperature data presented in this dataset was obtained from the Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis, which was loaded into Python using xarray. The data was then filtered to include only the latitude and longitude coordinates corresponding to each city in the dataset. In order to select the nearest location to each city, the 'select' method with the nearest point was used, resulting in temperature data that may not be exactly at the city location. The data is presented on a 0.5x0.5 degree grid across the globe.

    The temperature data provides a valuable resource for time series analysis, and if you are interested in obtaining temperature data for additional cities, please let me know. I will also be sharing the source code on GitHub for anyone who would like to reproduce the data or analysis.

  13. Urbanization in the United States 1790 to 2050

    • statista.com
    • akomarchitects.com
    Updated Dec 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2021). Urbanization in the United States 1790 to 2050 [Dataset]. https://www.statista.com/statistics/269967/urbanization-in-the-united-states/
    Explore at:
    Dataset updated
    Dec 16, 2021
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2020, about 82.66 percent of the total population in the United States lived in cities and urban areas. As the United States was one of the earliest nations to industrialize, it has had a comparatively high rate of urbanization over the past two centuries. The urban population became larger than the rural population during the 1910s, and by the middle of the century it is expected that almost 90 percent of the population will live in an urban setting. Regional development of urbanization in the U.S. The United States began to urbanize on a larger scale in the 1830s, as technological advancements reduced the labor demand in agriculture, and as European migration began to rise. One major difference between early urbanization in the U.S. and other industrializing economies, such as the UK or Germany, was population distribution. Throughout the 1800s, the Northeastern U.S. became the most industrious and urban region of the country, as this was the main point of arrival for migrants. Disparities in industrialization and urbanization was a key contributor to the Union's victory in the Civil War, not only due to population sizes, but also through production capabilities and transport infrastructure. The Northeast's population reached an urban majority in the 1870s, whereas this did not occur in the South until the 1950s. As more people moved westward in the late 1800s, not only did their population growth increase, but the share of the urban population also rose, with an urban majority established in both the West and Midwest regions in the 1910s. The West would eventually become the most urbanized region in the 1960s, and over 90 percent of the West's population is urbanized today. Urbanization today New York City is the most populous city in the United States, with a population of 8.3 million, while California has the largest urban population of any state. California also has the highest urbanization rate, although the District of Columbia is considered 100 percent urban. Only four U.S. states still have a rural majority, these are Maine, Mississippi, Montana, and West Virginia.

  14. U.S. metro areas - ranked by Gross Metropolitan Product (GMP) 2021

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, U.S. metro areas - ranked by Gross Metropolitan Product (GMP) 2021 [Dataset]. https://www.statista.com/statistics/183808/gmp-of-the-20-biggest-metro-areas/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2020
    Area covered
    United States
    Description

    This statistic provides projected figures for the Gross Metropolitan Product (GMP) of the United States in 2021, by metropolitan area. Only the 100 leading metropolitan areas are shown here. In 2022, the GMP of the New York-Newark-Jersey City metro area is projected to be around of about **** trillion U.S. dollars. Los Angeles metropolitan areaA metropolitan area in the U.S. is characterized by a relatively high population density and close economic ties through the area, albeit, without the legal incorporation that is found within cities. The Gross Metropolitan Product is measured by the Bureau of Economic Analysis under the U.S. Department of Commerce and includes only metropolitan areas. The GMP of the Los Angeles-Long Beach-Anaheim metropolitan area located in California is projected to be among the highest in the United States in 2021, amounting to *** trillion U.S. dollars. The Houston-The Woodlands-Sugar Land, Texas metro area is estimated to be approximately *** billion U.S. dollars in the same year. The Los Angeles metro area had one of the largest populations in the country, totaling ****** million people in 2021. The Greater Los Angeles region has one of the largest economies in the world and is the U.S. headquarters of many international car manufacturers including Honda, Mazda, and Hyundai. Its entertainment industry has generated plenty of tourism and includes world famous beaches, shopping, motion picture studios, and amusement parks. The Hollywood district is known as the “movie capital of the U.S.” and has its historical roots in the country’s film industry. Its port, the Port of Los Angeles and the Port of Long Beach are aggregately one of the world’s busiest ports. The Port of Los Angelesgenerated some ****** million U.S. dollars in revenue in 2019.

  15. Ranking of the top 100 cities in the U.S. with the most Bitcoin ATMs...

    • statista.com
    Updated Nov 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Ranking of the top 100 cities in the U.S. with the most Bitcoin ATMs November 2025 [Dataset]. https://www.statista.com/statistics/1208593/bitcoin-atms-city-usa/
    Explore at:
    Dataset updated
    Nov 29, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 6, 2025
    Area covered
    United States
    Description

    Houston had almost *** times more Bitcoin ATMs than Baltimore in November 2025, with nearly *** cryptocurrency installations found in the latter city. In general, Bitcoin ATMs were not necessarily found in the bigger cities of the United States: Philadelphia, for instance, counted fewer machines than Detroit or Orlando. These ATMs are different from traditional cash machines in that they do not connect to a bank account but connect users to a Bitcoin wallet or exchange. This way, they can convert physical money into digital currency. The United States housed the highest amount of these machines worldwide.

  16. Hispanic population U.S. 2023, by state

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Hispanic population U.S. 2023, by state [Dataset]. https://www.statista.com/statistics/259850/hispanic-population-of-the-us-by-state/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, California had the highest Hispanic population in the United States, with over 15.76 million people claiming Hispanic heritage. Texas, Florida, New York, and Illinois rounded out the top five states for Hispanic residents in that year. History of Hispanic people Hispanic people are those whose heritage stems from a former Spanish colony. The Spanish Empire colonized most of Central and Latin America in the 15th century, which began when Christopher Columbus arrived in the Americas in 1492. The Spanish Empire expanded its territory throughout Central America and South America, but the colonization of the United States did not include the Northeastern part of the United States. Despite the number of Hispanic people living in the United States having increased, the median income of Hispanic households has fluctuated slightly since 1990. Hispanic population in the United States Hispanic people are the second-largest ethnic group in the United States, making Spanish the second most common language spoken in the country. In 2021, about one-fifth of Hispanic households in the United States made between 50,000 to 74,999 U.S. dollars. The unemployment rate of Hispanic Americans has fluctuated significantly since 1990, but has been on the decline since 2010, with the exception of 2020 and 2021, due to the impact of the coronavirus (COVID-19) pandemic.

  17. Murder rate in U.S. metro areas with 250k or more residents in 2022

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Murder rate in U.S. metro areas with 250k or more residents in 2022 [Dataset]. https://www.statista.com/statistics/718903/murder-rate-in-us-cities-in-2015/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    United States
    Description

    In 2022, the New Orleans-Metairie, LA metro area recorded the highest homicide rate of U.S. cities with a population over 250,000, at **** homicides per 100,000 residents, followed by the Memphis, TN-MS-AR metro area. However, homicide data was not recorded in all U.S. metro areas, meaning that there may be some cities with a higher homicide rate. St. Louis St. Louis, which had a murder and nonnegligent manslaughter rate of **** in 2022, is the second-largest city by population in Missouri. It is home to many famous treasures, such as the St. Louis Cardinals baseball team, Washington University in St. Louis, the Saint Louis Zoo, and the renowned Gateway Arch. It is also home to many corporations, such as Monsanto, Arch Coal, and Emerson Electric. The economy of St. Louis is centered around business and healthcare, and boasts ten Fortune 500 companies. Crime in St. Louis Despite all of this, St. Louis suffers from high levels of crime and violence. As of 2023, it was listed as the seventh most dangerous city in the world as a result of their extremely high murder rate. Not only does St. Louis have one of the highest homicide rates in the United States, it also reports one of the highest numbers of violent crimes. Despite high crime levels, the GDP of the St. Louis metropolitan area has been increasing since 2001.

  18. Most dangerous cities in the U.S. 2023, by violent crime rate

    • statista.com
    Updated Dec 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Most dangerous cities in the U.S. 2023, by violent crime rate [Dataset]. https://www.statista.com/statistics/217685/most-dangerous-cities-in-north-america-by-crime-rate/
    Explore at:
    Dataset updated
    Dec 12, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, around 3,640.56 violent crimes per 100,000 residents were reported in Oakland, California. This made Oakland the most dangerous city in the United States in that year. Four categories of violent crimes were used: murder and non-negligent manslaughter; forcible rape; robbery; and aggravated assault. Only cities with a population of at least 200,000 were considered.

  19. Population of Europe in 2024 by country

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Population of Europe in 2024 by country [Dataset]. https://www.statista.com/statistics/685846/population-of-selected-european-countries/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Europe
    Description

    In 2024, Russia had the largest population among European countries at ***** million people. The next largest countries in terms of their population size were Turkey at **** million, Germany at **** million, the United Kingdom at **** million, and France at **** million. Europe is also home to some of the world’s smallest countries, such as the microstates of Liechtenstein and San Marino, with populations of ****** and ****** respectively. Europe’s largest economies Germany was Europe’s largest economy in 2023, with a Gross Domestic Product of around *** trillion Euros, while the UK and France are the second and third largest economies, at *** trillion and *** trillion euros respectively. Prior to the mid-2000s, Europe’s fourth-largest economy, Italy, had an economy that was of a similar sized to France and the UK, before diverging growth patterns saw the UK and France become far larger economies than Italy. Moscow and Istanbul the megacities of Europe Two cities on the eastern borders of Europe were Europe’s largest in 2023. The Turkish city of Istanbul, with a population of 15.8 million, and the Russian capital, Moscow, with a population of 12.7 million. Istanbul is arguably the world’s most famous transcontinental city with territory in both Europe and Asia and has been an important center for commerce and culture for over 2,000 years. Paris was the third largest European city with a population of ** million, with London being the fourth largest at *** million.

  20. Population density of the United States 2019

    • statista.com
    Updated Dec 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2019). Population density of the United States 2019 [Dataset]. https://www.statista.com/statistics/183475/united-states-population-density/
    Explore at:
    Dataset updated
    Dec 15, 2019
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This graph shows the population density of the United States of America from 1790 to 2019. In 2019, the population density was approximately 92.9 residents per square mile of land area. Population density in the United States Population density has been tracked for over two hundred years in the United States. Over the last two centuries, the number of people living in the United States per square mile has grown from 4.5 in 1790 to 87.4 in 2010. After examining the data in detail, it becomes clear that a major population increase started around 1870. Population density was roughly 11 at the time and has doubled in the last century. Since then, population density grew by about 16 percent each decade. Population density doubled in 1900, and grew in total by around 800 percent until 2010.

    The population density of the United States varies from state to state. The most densely populated state is New Jersey, with 1,208 people per square mile living there. Rhode Island is the second most densely populated state, with slightly over 1,000 inhabitants per square mile. A number of New England states follow at the top of the ranking, making the northeastern region of the United States the most densely populated region of the country.

    The least populated U.S. state is the vast territory of Alaska. Only 1.3 inhabitants per square mile reside in the largest state of the U.S.

    Compared to other countries around the world, the United States does not rank within the top 50, in terms of population density. Most of the leading countries and territories are city states. However, the U.S. is one of the most populous countries in the world, with a total population of over 327 million inhabitants, as of 2018.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2017). United States - Population In Largest City [Dataset]. https://tradingeconomics.com/united-states/population-in-largest-city-wb-data.html

United States - Population In Largest City

Explore at:
excel, xml, csv, jsonAvailable download formats
Dataset updated
Jun 9, 2017
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 1, 1976 - Dec 31, 2025
Area covered
United States
Description

Population in largest city in United States was reported at 19034018 in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Population in largest city - actual values, historical data, forecasts and projections were sourced from the World Bank on November of 2025.

Search
Clear search
Close search
Google apps
Main menu