Facebook
TwitterAs of 2024, Chugach State Park in Anchorage, Alaska, was the largest city park in the United States by a long shot, spanning 464,318 acres. Second in the ranking was the Great Dismal Swamp in the Coastal Plain Region of southeastern Virginia and northeastern North Carolina, at 113,000 acres. A wide variety of park authorities Most parks in the U.S. are owned by the municipality, state, county, regional agency, or the federal government. Both McDowell Sonoran Preserve and South Mountain Preserve are part of the state park system along with most of the parks in the ranking. One of the more well-known park authorities is the National Park Service (NPS) – an agency of the federal government. The Golden Gate National Recreation Area was the most visited NPS park in 2024 alongside many other well-known U.S. parks. What defines a park? Parks in the U.S. are often called a variety of names, just a few of which are: forest, reserve, preserve and wildlife management area. Sometimes the differences between parks in the U.S. can vary massively from monuments to expansive woodland. In 2024, Central Park in New York, topped the ranking of the most visited city parks in the U.S.
Facebook
TwitterThis graph depicts the size of county-owned city parks in the U.S. in 2010. The Bear Creek Pioneers Park in Houston has an area of 2,168 acres.
Facebook
TwitterThe city park with the highest annual visitation in 2023 was Central Park in New York, accounting for a total of ********** visitors. The second most visited city park in that year was Golden Gate Park in San Francisco, with nearly half the visitation of Central Park, at **********.
Facebook
TwitterIn 2024, the city in the United States with the highest share of parkland was Anchorage, Alaska, where approximately 84 percent of the city was parkland. In second place, with almost half the percentage of parkland was Fremont, California, where 43 percent of the city was parkland.
Facebook
TwitterReason for Selection Protected natural areas in urban environments provide urban residents a nearby place to connect with nature and offer refugia for some species. They help foster a conservation ethic by providing opportunities for people to connect with nature, and also support ecosystem services like offsetting heat island effects (Greene and Millward 2017, Simpson 1998), water filtration, stormwater retention, and more (Hoover and Hopton 2019). In addition, parks, greenspace, and greenways can help improve physical and psychological health in communities (Gies 2006). Urban park size complements the equitable access to potential parks indicator by capturing the value of existing parks.Input DataSoutheast Blueprint 2024 extentFWS National Realty Tracts, accessed 12-13-2023Protected Areas Database of the United States(PAD-US):PAD-US 3.0 national geodatabase -Combined Proclamation Marine Fee Designation Easement, accessed 12-6-20232020 Census Urban Areas from the Census Bureau’s urban-rural classification; download the data, read more about how urban areas were redefined following the 2020 censusOpenStreetMap data “multipolygons” layer, accessed 12-5-2023A polygon from this dataset is considered a beach if the value in the “natural” tag attribute is “beach”. Data for coastal states (VA, NC, SC, GA, FL, AL, MS, LA, TX) were downloaded in .pbf format and translated to an ESRI shapefile using R code. OpenStreetMap® is open data, licensed under theOpen Data Commons Open Database License (ODbL) by theOpenStreetMap Foundation (OSMF). Additional credit to OSM contributors. Read more onthe OSM copyright page.2021 National Land Cover Database (NLCD): Percentdevelopedimperviousness2023NOAA coastal relief model: volumes 2 (Southeast Atlantic), 3 (Florida and East Gulf of America), 4 (Central Gulf of America), and 5 (Western Gulf of America), accessed 3-27-2024Mapping StepsCreate a seamless vector layer to constrain the extent of the urban park size indicator to inland and nearshore marine areas <10 m in depth. The deep offshore areas of marine parks do not meet the intent of this indicator to capture nearby opportunities for urban residents to connect with nature. Shallow areas are more accessible for recreational activities like snorkeling, which typically has a maximum recommended depth of 12-15 meters. This step mirrors the approach taken in the Caribbean version of this indicator.Merge all coastal relief model rasters (.nc format) together using QGIS “create virtual raster”.Save merged raster to .tif and import into ArcPro.Reclassify the NOAA coastal relief model data to assign areas with an elevation of land to -10 m a value of 1. Assign all other areas (deep marine) a value of 0.Convert the raster produced above to vector using the “RasterToPolygon” tool.Clip to 2024 subregions using “Pairwise Clip” tool.Break apart multipart polygons using “Multipart to single parts” tool.Hand-edit to remove deep marine polygon.Dissolve the resulting data layer.This produces a seamless polygon defining land and shallow marine areas.Clip the Census urban area layer to the bounding box of NoData surrounding the extent of Southeast Blueprint 2024.Clip PAD-US 3.0 to the bounding box of NoData surrounding the extent of Southeast Blueprint 2024.Remove the following areas from PAD-US 3.0, which are outside the scope of this indicator to represent parks:All School Trust Lands in Oklahoma and Mississippi (Loc Des = “School Lands” or “School Trust Lands”). These extensive lands are leased out and are not open to the public.All tribal and military lands (“Des_Tp” = "TRIBL" or “Des_Tp” = "MIL"). Generally, these lands are not intended for public recreational use.All BOEM marine lease blocks (“Own_Name” = "BOEM"). These Outer Continental Shelf lease blocks do not represent actively protected marine parks, but serve as the “legal definition for BOEM offshore boundary coordinates...for leasing and administrative purposes” (BOEM).All lands designated as “proclamation” (“Des_Tp” = "PROC"). These typically represent the approved boundary of public lands, within which land protection is authorized to occur, but not all lands within the proclamation boundary are necessarily currently in a conserved status.Retain only selected attribute fields from PAD-US to get rid of irrelevant attributes.Merged the filtered PAD-US layer produced above with the OSM beaches and FWS National Realty Tracts to produce a combined protected areas dataset.The resulting merged data layer contains overlapping polygons. To remove overlapping polygons, use the Dissolve function.Clip the resulting data layer to the inland and nearshore extent.Process all multipart polygons (e.g., separate parcels within a National Wildlife Refuge) to single parts (referred to in Arc software as an “explode”).Select all polygons that intersect the Census urban extent within 0.5 miles. We chose 0.5 miles to represent a reasonable walking distance based on input and feedback from park access experts. Assuming a moderate intensity walking pace of 3 miles per hour, as defined by the U.S. Department of Health and Human Service’s physical activity guidelines, the 0.5 mi distance also corresponds to the 10-minute walk threshold used in the equitable access to potential parks indicator.Dissolve all the park polygons that were selected in the previous step.Process all multipart polygons to single parts (“explode”) again.Add a unique ID to the selected parks. This value will be used in a later step to join the parks to their buffers.Create a 0.5 mi (805 m) buffer ring around each park using the multiring plugin in QGIS. Ensure that “dissolve buffers” is disabled so that a single 0.5 mi buffer is created for each park.Assess the amount of overlap between the buffered park and the Census urban area using “overlap analysis”. This step is necessary to identify parks that do not intersect the urban area, but which lie within an urban matrix (e.g., Umstead Park in Raleigh, NC and Davidson-Arabia Mountain Nature Preserve in Atlanta, GA). This step creates a table that is joined back to the park polygons using the UniqueID.Remove parks that had ≤10% overlap with the urban areas when buffered. This excludes mostly non-urban parks that do not meet the intent of this indicator to capture parks that provide nearby access for urban residents. Note: The 10% threshold is a judgement call based on testing which known urban parks and urban National Wildlife Refuges are captured at different overlap cutoffs and is intended to be as inclusive as possible.Calculate the GIS acres of each remaining park unit using the Add Geometry Attributes function.Buffer the selected parks by 15 m. Buffering prevents very small and narrow parks from being left out of the indicator when the polygons are converted to raster.Reclassify the parks based on their area into the 7 classes seen in the final indicator values below. These thresholds were informed by park classification guidelines from the National Recreation and Park Association, which classify neighborhood parks as 5-10 acres, community parks as 30-50 acres, and large urban parks as optimally 75+ acres (Mertes and Hall 1995).Assess the impervious surface composition of each park using the NLCD 2021 impervious layer and the Zonal Statistics “MEAN” function. Retain only the mean percent impervious value for each park.Extract only parks with a mean impervious pixel value <80%. This step excludes parks that do not meet the intent of the indicator to capture opportunities to connect with nature and offer refugia for species (e.g., the Superdome in New Orleans, LA, the Astrodome in Houston, TX, and City Plaza in Raleigh, NC).Extract again to the inland and nearshore extent.Export the final vector file to a shapefile and import to ArcGIS Pro.Convert the resulting polygons to raster using the ArcPy Feature to Raster function and the area class field.Assign a value of 0 to all other pixels in the Southeast Blueprint 2024 extent not already identified as an urban park in the mapping steps above. Zero values are intended to help users better understand the extent of this indicator and make it perform better in online tools.Use the land and shallow marine layer and “extract by mask” tool to save the final version of this indicator.Add color and legend to raster attribute table.As a final step, clip to the spatial extent of Southeast Blueprint 2024.Note: For more details on the mapping steps, code used to create this layer is available in theSoutheast Blueprint Data Downloadunder > 6_Code. Final indicator valuesIndicator values are assigned as follows:6= 75+ acre urban park5= 50 to <75 acre urban park4= 30 to <50 acre urban park3= 10 to <30 acre urban park2=5 to <10acreurbanpark1 = <5 acre urban park0 = Not identified as an urban parkKnown IssuesThis indicator does not include park amenities that influence how well the park serves people and should not be the only tool used for parks and recreation planning. Park standards should be determined at a local level to account for various community issues, values, needs, and available resources.This indicator includes some protected areas that are not open to the public and not typically thought of as “parks”, like mitigation lands, private easements, and private golf courses. While we experimented with excluding them using the public access attribute in PAD, due to numerous inaccuracies, this inadvertently removed protected lands that are known to be publicly accessible. As a result, we erred on the side of including the non-publicly accessible lands.The NLCD percent impervious layer contains classification inaccuracies. As a result, this indicator may exclude parks that are mostly natural because they are misclassified as mostly impervious. Conversely, this indicator may include parks that are mostly impervious because they are misclassified as mostly
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
‘Total tweets’ enumerates all public tweets posted from a GPS latitude/longitude inside that city. ‘Park tweets’ is the total number of tweets posted from inside parks. The ‘% tweets in park’ column calculates Park tweets / total Tweets. ‘Park visitors’ is the number of unique users who tweeted inside one of that city’s municipal park locations as defined by Trust for Public Land’s ParkServe. ‘Parks visited’ is the number of unique facilities from which a tweet was posted within that city. ‘Tweets per capita’ is number of total messages for the entire period divided by the city’s population in 2012.
Facebook
TwitterIn 2024, New York City had the highest public park and recreation spending of any city in the United States at approximately *** billion U.S. dollars. Second in the ranking was Chicago, Illinois, which spent around *** million U.S. dollars on parks and rec.
Facebook
TwitterThe Austin Parks and Recreation System's ranking on the Trust for Public Land ParkScore Index. This index ranks the park systems of the 100 largest cities in the U.S. based on park acreage, park size, park funding, park access, and a variety of other factors. The three factors that make up ParkScore all reflect quality: good park systems need adequate acreage, services and investment, and access. For this metric and visual, lower scores are better.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Hundreds of millions of visitors travel to U.S. national parks every year to visit America’s iconic landscapes. Concerns about air quality in these areas have led to strict, yet controversial pollution control policies. We document pollution trends in U.S. national parks and estimate the relationship between pollution and park visitation. From 1990-2014, average ozone concentrations in national parks were statistically indistinguishable from the 20 largest U.S. metropolitan areas. Further, relative to U.S. cities, national parks have seen only modest reductions in days with ozone concentrations exceeding levels deemed unhealthy by the U.S. Environmental Protection Agency. We find a robust, negative relationship between in-park ozone concentrations and park visitation. Still, 35% of all national park visits occur when ozone levels are elevated.
Facebook
Twitterhttps://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
When prioritizing regions for conservation protection, decisions are often based on the principle that a single large (SL) reserve should support more species than several small (SS) reserves of the same total area (SLOSS). This principle remains a central paradigm in conservation planning despite conflicting empirical evidence and methodological concerns. In urban areas where small parks tend to dominate and policies to promote biodiversity are becoming increasingly popular, determining the most appropriate prioritization method is critical. Here, we document the role of SLOSS in defining the seasonal diversity of birds in 475 parks in 21 US cities. Collections of small parks were consistently associated with higher species richness, spatial turnover, and rarity. Collections of both small and large parks were associated with higher phylogenetic and functional diversity whose patterns varied across seasons and cities. Thus, collections of small parks are a reliable source of species richness driven by higher spatial turnover and rarity, whereas collections of both small and large parks contain the potential to support higher phylogenetic and functional diversity. The presence of strong intra-annual and geographic variation emphasizes the need for regional prioritization strategies where multiple diversity metrics are examined across parks and seasons.
Facebook
TwitterThe city in the United States with the largest number of off-leash dog parks per 100,000 residents was Boise, Idaho, with nine off-leash dog parks per 100,000 residents in 2024. This is followed by Portland, Oregon which accounted for 5.7 dog parks per 100,000 residents.
Facebook
Twitter"This dataset includes abundance of breeding bird species recorded in residential yards and nearby natural and interstitial areas (i.e.unmanaged vegetation areas in the residential/wildland interface) in six cities across the U.S. Baltimore, MD, Boston, MA, Los Angeles, CA, Miami, FL, Minneapolis-St. Paul, MN, and Phoenix, AZ. Yards were grouped in 4 categories based on fertilizer input frequency, landscaping style and their impact on hydrology: high-input lawns, low-input lawns, wildlife-certified yards and yards with low impact on hydrology (or rain gardens). Bird data was collected via standardized 10-min point counts during the breeding season in 2017 or 2018. "
Facebook
Twitter"In six major U.S. metropolitan cities (Boston, Baltimore, Los Angeles, Miami, Minneapolis St. Paul, and Phoenix), 1 meter soil cores were collected to evaluate soil microbial carbon and nitrogen cycle processes that are sensitive to land management. Laboratory methods followed those used by Raciti et al. (2011a,b) to measure microbial biomass carbon and nitrogen content, microbial respiration, potential net nitrogen mineralization, potential net nitrifcation, potential denitrifcation, and pools of extractable ammonium and nitrate. "
Facebook
TwitterIn 2024, the city with the highest spending per capita on parks and recreation in the United States was Irvine, California. The city spent around 643 U.S. dollars per resident on parks and recreation that year.
Facebook
TwitterThis web map created by the Colorado Governor's Office of Information Technology GIS team, serves as a basemap specific to the state of Colorado. The basemap includes general layers such as counties, municipalities, roads, waterbodies, state parks, national forests, national wilderness areas, and trails.Layers:Layer descriptions and sources can be found below. Layers have been modified to only represent features within Colorado and are not up to date. Layers last updated February 23, 2023. Colorado State Extent: Description: “This layer provides generalized boundaries for the 50 States and the District of Columbia.” Notes: This layer was filtered to only include the State of ColoradoSource: Esri Living Atlas USA States Generalized Boundaries Feature LayerState Wildlife Areas:Description: “This data was created by the CPW GIS Unit. Property boundaries are created by dissolving CDOWParcels by the property name, and property type and appending State Park boundaries designated as having public access. All parcel data correspond to legal transactions made by the CPW Real Estate Unit. The boundaries of the CDOW Parcels were digitized using metes and bounds, BLM's GCDB dataset, the PLSS dataset (where the GCDB dataset was unavailable) and using existing digital data on the boundaries.” Notes: The state wildlife areas layer in this basemap is filtered from the CPW Managed Properties (public access only) layer from this feature layer hosted in ArcGIS Online Source: Colorado Parks and Wildlife CPW Admin Data Feature LayerMunicipal Boundaries:Description: "Boundaries data from the State Demography Office of Colorado Municipalities provided by the Department of Local Affairs (DOLA)"Source: Colorado Information Marketplace Municipal Boundaries in ColoradoCounties:Description: “This layer presents the USA 2020 Census County (or County Equivalent) boundaries of the United States in the 50 states and the District of Columbia. It is updated annually as County (or County Equivalent) boundaries change. The geography is sources from US Census Bureau 2020 TIGER FGDB (National Sub-State) and edited using TIGER Hydrology to add a detailed coastline for cartographic purposes. Geography last updated May 2022.” Notes: This layer was filtered to only include counties in the State of ColoradoSource: Esri USA Census Counties Feature LayerInterstates:Description: Authoritative data from the Colorado Department of Transportation representing Highways Notes: Interstates are filtered by route sign from this CDOT Highways layer Source: Colorado Department of Transportation Highways REST EndpointU.S. Highways:Description: Authoritative data from the Colorado Department of Transportation representing Highways Notes: U.S. Highways are filtered by route sign from this CDOT Highways layer Source: Colorado Department of Transportation Highways REST EndpointState Highways:Description: Authoritative data from the Colorado Department of Transportation representing Highways Notes: State Highways are filtered by route sign from this CDOT Highways layer Source: Colorado Department of Transportation Highways REST EndpointMajor Roads:Description: Authoritative data from the Colorado Department of Transportation representing major roads Source: Colorado Department of Transportation Major Roads REST EndpointLocal Roads:Description: Authoritative data from the Colorado Department of Transportation representing local roads Source: Colorado Department of Transportation Local Roads REST EndpointRail Lines:Description: Authoritative data from the Colorado Department of Transportation representing rail lines Source: Colorado Department of Transportation Rail Lines REST EndpointCOTREX Trails:Description: “The Colorado Trail System, now titled the Colorado Trail Explorer (COTREX), endeavors to map every trail in the state of Colorado. Currently their are nearly 40,000 miles of trails mapped. Trails come from a variety of sources (USFS, BLM, local parks & recreation departments, local governments). Responsibility for accuracy of the data rests with the source.These data were last updated on 2/5/2019” Source: Colorado Parks and Wildlife CPW Admin Data Feature LayerNHD Waterbodies:Description: “The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.”Notes: This layer was filtered to only include waterbodies in the State of ColoradoSource: National Hydrography Dataset Plus Version 2.1 Feature LayerNHD Flowlines:Description: “The National Hydrography Dataset Plus (NHDplus) maps the lakes, ponds, streams, rivers and other surface waters of the United States. Created by the US EPA Office of Water and the US Geological Survey, the NHDPlus provides mean annual and monthly flow estimates for rivers and streams. Additional attributes provide connections between features facilitating complicated analyses.”Notes: This layer was filtered to only include flowline features in the State of ColoradoSource: National Hydrography Dataset Plus Version 2.1 Feature LayerState Parks:Description: “This data was created by the CPW GIS Unit. Property boundaries are created by dissolving CDOWParcels by the property name, and property type and appending State Park boundaries designated as having public access. All parcel data correspond to legal transactions made by the CPW Real Estate Unit. The boundaries of the CDOW Parcels were digitized using metes and bounds, BLM's GCDB dataset, the PLSS dataset (where the GCDB dataset was unavailable) and using existing digital data on the boundaries.” Notes: The state parks layer in this basemap is filtered from the CPW Managed Properties (public access only) layer from this feature layer Source: Colorado Parks and Wildlife CPW Admin Data Feature LayerDenver Parks:Description: "This dataset should be used as a reference to locate parks, golf courses, and recreation centers managed by the Department of Parks and Recreation in the City and County of Denver. Data is based on parcel ownership and does not include other areas maintained by the department such as medians and parkways. The data should be used for planning and design purposes and cartographic purposes only."Source: City and County of Denver Parks REST EndpointNational Wilderness Areas:Description: “A parcel of Forest Service land congressionally designated as wilderness such as National Wilderness Area.”Notes: This layer was filtered to only include National Wilderness Areas in the State of ColoradoSource: United States Department of Agriculture National Wilderness Areas REST EndpointNational Forests: Description: “A depiction of the boundaries encompassing the National Forest System (NFS) lands within the original proclaimed National Forests, along with subsequent Executive Orders, Proclamations, Public Laws, Public Land Orders, Secretary of Agriculture Orders, and Secretary of Interior Orders creating modifications thereto, along with lands added to the NFS which have taken on the status of 'reserved from the public domain' under the General Exchange Act. The following area types are included: National Forest, Experimental Area, Experimental Forest, Experimental Range, Land Utilization Project, National Grassland, Purchase Unit, and Special Management Area.”Notes: This layer was filtered to only include National Forests in the State of ColoradoSource: United States Department of Agriculture Original Proclaimed National Forests REST Endpoint
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterAs of 2024, Chugach State Park in Anchorage, Alaska, was the largest city park in the United States by a long shot, spanning 464,318 acres. Second in the ranking was the Great Dismal Swamp in the Coastal Plain Region of southeastern Virginia and northeastern North Carolina, at 113,000 acres. A wide variety of park authorities Most parks in the U.S. are owned by the municipality, state, county, regional agency, or the federal government. Both McDowell Sonoran Preserve and South Mountain Preserve are part of the state park system along with most of the parks in the ranking. One of the more well-known park authorities is the National Park Service (NPS) – an agency of the federal government. The Golden Gate National Recreation Area was the most visited NPS park in 2024 alongside many other well-known U.S. parks. What defines a park? Parks in the U.S. are often called a variety of names, just a few of which are: forest, reserve, preserve and wildlife management area. Sometimes the differences between parks in the U.S. can vary massively from monuments to expansive woodland. In 2024, Central Park in New York, topped the ranking of the most visited city parks in the U.S.