A Digital Elevation Model (DEM) and Digital Surface Model (DSM) were derived from airborne Light Detection and Ranging (LiDAR) data collected from Los Alamos National Laboratory's (LANL) heavy-lift unoccupied aerial system (UAS) quadcopter and hexacopter platforms operated by Next-Generation Ecosystem Experiments: Arctic (NGEE Arctic) scientists from the EES-14 group at LANL. These data were collected in August 2017 and July 2018 at the NGEE Arctic field site near mile marker 27 of the Bob Blodgett Nome-Teller Memorial Highway between Nome, Alaska and Teller, Alaska. A Vulcan Raven X8 Airframe (Mitcheldean, Gloucestershire, UK), DJI Matrice 600 Pro Airframe (Shenzhen, China), and Routescene UAV LiDARSystem (Edinburgh, Scotland, UK) were used to collect LiDAR data. Following pre-processing in Routescene LidarViewer Pro software, the LiDAR point clouds were cleaned and processed using CloudCompare software to separate ground and off-ground points. A high resolution DEM and DSM were then created using ArcGIS Pro software. This data package contains fully cleaned point clouds of ground and off-ground points (.las), a 25 cm DEM (.tif), and a 25 cm DSM (.tif) for the Teller 27 field site. Ancillary aircraft data, flight mission parameters, weather conditions, and raw lidar data and imagery can be found in the L0 datasets for these campaigns: NGA299 (2017) and NGA297 (2018). Minimally processed point clouds and auxiliary files can be found in the L1 dataset: NGA304 (2017 and 2018). The Next-Generation Ecosystem Experiments: Arctic (NGEE Arctic), was a 15-year research effort (2012-2027) to reduce uncertainty in Earth System Models by developing a predictive understanding of carbon-rich Arctic ecosystems and feedbacks to climate. NGEE Arctic was supported by the Department of Energy's Office of Biological and Environmental Research. The NGEE Arctic project had two field research sites: 1) located within the Arctic polygonal tundra coastal region on the Barrow Environmental Observatory (BEO) and the North Slope near Utqiagvik (Barrow), Alaska and 2) multiple areas on the discontinuous permafrost region of the Seward Peninsula north of Nome, Alaska. Through observations, experiments, and synthesis with existing datasets, NGEE Arctic provided an enhanced knowledge base for multi-scale modeling and contributed to improved process representation at global pan-Arctic scales within the Department of Energy's Earth system Model (the Energy Exascale Earth System Model, or E3SM), and specifically within the E3SM Land Model component (ELM).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This point cloud scene data was generated from a flight made on january 25th, using the Phantom 4 Pro aircraft. All the processing was made using ArcGIS Site Scan on the cloud.If you need the original LAS file, orthophoto or DSM of this flight, please, contact the administrator.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This point cloud data was generated from a flight made on january 25th, using the Phantom 4 Pro aircraft. All the processing was made using ArcGIS Site Scan on the cloud.If you need the original LAS file, orthophoto or DSM of this flight, please, contact the administrator.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
A Digital Elevation Model (DEM) and Digital Surface Model (DSM) were derived from airborne Light Detection and Ranging (LiDAR) data collected from Los Alamos National Laboratory's (LANL) heavy-lift unoccupied aerial system (UAS) quadcopter and hexacopter platforms operated by Next-Generation Ecosystem Experiments: Arctic (NGEE Arctic) scientists from the EES-14 group at LANL. These data were collected in August 2017 and July 2018 at the NGEE Arctic field site near mile marker 27 of the Bob Blodgett Nome-Teller Memorial Highway between Nome, Alaska and Teller, Alaska. A Vulcan Raven X8 Airframe (Mitcheldean, Gloucestershire, UK), DJI Matrice 600 Pro Airframe (Shenzhen, China), and Routescene UAV LiDARSystem (Edinburgh, Scotland, UK) were used to collect LiDAR data. Following pre-processing in Routescene LidarViewer Pro software, the LiDAR point clouds were cleaned and processed using CloudCompare software to separate ground and off-ground points. A high resolution DEM and DSM were then created using ArcGIS Pro software. This data package contains fully cleaned point clouds of ground and off-ground points (.las), a 25 cm DEM (.tif), and a 25 cm DSM (.tif) for the Teller 27 field site. Ancillary aircraft data, flight mission parameters, weather conditions, and raw lidar data and imagery can be found in the L0 datasets for these campaigns: NGA299 (2017) and NGA297 (2018). Minimally processed point clouds and auxiliary files can be found in the L1 dataset: NGA304 (2017 and 2018). The Next-Generation Ecosystem Experiments: Arctic (NGEE Arctic), was a 15-year research effort (2012-2027) to reduce uncertainty in Earth System Models by developing a predictive understanding of carbon-rich Arctic ecosystems and feedbacks to climate. NGEE Arctic was supported by the Department of Energy's Office of Biological and Environmental Research. The NGEE Arctic project had two field research sites: 1) located within the Arctic polygonal tundra coastal region on the Barrow Environmental Observatory (BEO) and the North Slope near Utqiagvik (Barrow), Alaska and 2) multiple areas on the discontinuous permafrost region of the Seward Peninsula north of Nome, Alaska. Through observations, experiments, and synthesis with existing datasets, NGEE Arctic provided an enhanced knowledge base for multi-scale modeling and contributed to improved process representation at global pan-Arctic scales within the Department of Energy's Earth system Model (the Energy Exascale Earth System Model, or E3SM), and specifically within the E3SM Land Model component (ELM).