Facebook
TwitterThe global social media penetration rate in was forecast to continuously increase between 2024 and 2028 by in total 11.6 (+18.19 percent). After the ninth consecutive increasing year, the penetration rate is estimated to reach 75.31 and therefore a new peak in 2028. Notably, the social media penetration rate of was continuously increasing over the past years.
Facebook
TwitterHow many people use social media? Social media usage is one of the most popular online activities. In 2025, over *** billion people were estimated to be using social media worldwide, a number projected to increase to over *** billion in 2030. Who uses social media? Social networking is one of the most popular digital activities worldwide, and it is no surprise that social networking penetration across all regions is constantly increasing. As of January 2023, the global social media usage rate stood at ** percent. This figure is anticipated to grow as less developed digital markets catch up with other regions when it comes to infrastructure development and the availability of cheap mobile devices. In fact, most of social media’s global growth is driven by the increasing usage of mobile devices. The mobile-first market of Eastern Asia topped the global ranking of mobile social networking penetration, followed by established digital powerhouses such as the Americas and Northern Europe. How much time do people spend on social media? Social media is an integral part of daily internet usage. On average, internet users spend *** minutes per day on social media and messaging apps, an increase of ** minutes since 2015. On average, internet users in Latin America had the highest average time spent per day on social media. What are the most popular social media platforms? Market leader Facebook was the first social network to surpass *** billion registered accounts and currently boasts approximately *** billion monthly active users, making it the most popular social network worldwide. In June 2023, the top social media apps in the Apple App Store included mobile messaging apps WhatsApp and Telegram Messenger, as well as the ever-popular app version of Facebook.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Discover the latest social media statistics and trends for 2025 and how they impact businesses.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
https://snap.stanford.edu/data/com-Youtube.html
Dataset information
Youtube (http://www.youtube.com/) is a video-sharing web site that includes
a social network. In the Youtube social network, users form friendship each
other and users can create groups which other users can join. We consider
such user-defined groups as ground-truth communities. This data is provided
by Alan Mislove et al.
(http://socialnetworks.mpi-sws.org/data-imc2007.html)
We regard each connected component in a group as a separate ground-truth
community. We remove the ground-truth communities which have less than 3
nodes. We also provide the top 5,000 communities with highest quality
which are described in our paper (http://arxiv.org/abs/1205.6233). As for
the network, we provide the largest connected component.
Network statistics
Nodes 1,134,890
Edges 2,987,624
Nodes in largest WCC 1134890 (1.000)
Edges in largest WCC 2987624 (1.000)
Nodes in largest SCC 1134890 (1.000)
Edges in largest SCC 2987624 (1.000)
Average clustering coefficient 0.0808
Number of triangles 3056386
Fraction of closed triangles 0.002081
Diameter (longest shortest path) 20
90-percentile effective diameter 6.5
Community statistics
Number of communities 8,385
Average community size 13.50
Average membership size 0.10
Source (citation)
J. Yang and J. Leskovec. Defining and Evaluating Network Communities based
on Ground-truth. ICDM, 2012. http://arxiv.org/abs/1205.6233
Files
File Description
com-youtube.ungraph.txt.gz Undirected Youtube network
com-youtube.all.cmty.txt.gz Youtube communities
com-youtube.top5000.cmty.txt.gz Youtube communities (Top 5,000)
The graph in the SNAP data set is 1-based, with nodes numbered 1 to
1,157,827.
In the SuiteSparse Matrix Collection, Problem.A is the undirected Youtube
network, a matrix of size n-by-n with n=1,134,890, which is the number of
unique user id's appearing in any edge.
Problem.aux.nodeid is a list of the node id's that appear in the SNAP data
set. A(i,j)=1 if person nodeid(i) is friends with person nodeid(j). The
node id's are the same as the SNAP data set (1-based).
C = Problem.aux.Communities_all is a sparse matrix of size n by 16,386
which represents the communities in the com-youtube.all.cmty.txt file.
The kth line in that file defines the kth community, and is the column
C(:,k), where C(i,k)=1 if person ...
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Description:
The "Daily Social Media Active Users" dataset provides a comprehensive and dynamic look into the digital presence and activity of global users across major social media platforms. The data was generated to simulate real-world usage patterns for 13 popular platforms, including Facebook, YouTube, WhatsApp, Instagram, WeChat, TikTok, Telegram, Snapchat, X (formerly Twitter), Pinterest, Reddit, Threads, LinkedIn, and Quora. This dataset contains 10,000 rows and includes several key fields that offer insights into user demographics, engagement, and usage habits.
Dataset Breakdown:
Platform: The name of the social media platform where the user activity is tracked. It includes globally recognized platforms, such as Facebook, YouTube, and TikTok, that are known for their large, active user bases.
Owner: The company or entity that owns and operates the platform. Examples include Meta for Facebook, Instagram, and WhatsApp, Google for YouTube, and ByteDance for TikTok.
Primary Usage: This category identifies the primary function of each platform. Social media platforms differ in their primary usage, whether it's for social networking, messaging, multimedia sharing, professional networking, or more.
Country: The geographical region where the user is located. The dataset simulates global coverage, showcasing users from diverse locations and regions. It helps in understanding how user behavior varies across different countries.
Daily Time Spent (min): This field tracks how much time a user spends on a given platform on a daily basis, expressed in minutes. Time spent data is critical for understanding user engagement levels and the popularity of specific platforms.
Verified Account: Indicates whether the user has a verified account. This feature mimics real-world patterns where verified users (often public figures, businesses, or influencers) have enhanced status on social media platforms.
Date Joined: The date when the user registered or started using the platform. This data simulates user account history and can provide insights into user retention trends or platform growth over time.
Context and Use Cases:
Researchers, data scientists, and developers can use this dataset to:
Model User Behavior: By analyzing patterns in daily time spent, verified status, and country of origin, users can model and predict social media engagement behavior.
Test Analytics Tools: Social media monitoring and analytics platforms can use this dataset to simulate user activity and optimize their tools for engagement tracking, reporting, and visualization.
Train Machine Learning Algorithms: The dataset can be used to train models for various tasks like user segmentation, recommendation systems, or churn prediction based on engagement metrics.
Create Dashboards: This dataset can serve as the foundation for creating user-friendly dashboards that visualize user trends, platform comparisons, and engagement patterns across the globe.
Conduct Market Research: Business intelligence teams can use the data to understand how various demographics use social media, offering valuable insights into the most engaged regions, platform preferences, and usage behaviors.
Sources of Inspiration: This dataset is inspired by public data from industry reports, such as those from Statista, DataReportal, and other market research platforms. These sources provide insights into the global user base and usage statistics of popular social media platforms. The synthetic nature of this dataset allows for the use of realistic engagement metrics without violating any privacy concerns, making it an ideal tool for educational, analytical, and research purposes.
The structure and design of the dataset are based on real-world usage patterns and aim to represent a variety of users from different backgrounds, countries, and activity levels. This diversity makes it an ideal candidate for testing data-driven solutions and exploring social media trends.
Future Considerations:
As the social media landscape continues to evolve, this dataset can be updated or extended to include new platforms, engagement metrics, or user behaviors. Future iterations may incorporate features like post frequency, follower counts, engagement rates (likes, comments, shares), or even sentiment analysis from user-generated content.
By leveraging this dataset, analysts and data scientists can create better, more effective strategies ...
Facebook
Twitterhttps://www.ibisworld.com/about/termsofuse/https://www.ibisworld.com/about/termsofuse/
Over the five years through 2025-26, industry revenue is forecast to expand at a compound annual rate of 20.3% to reach £12.5 billion. Social media platforms are integral to people's lives, offering ways to communicate, create and view content and share information. According to Ofcom, approximately 89% of UK internet users in 2023 used social media apps or sites. Teenagers and young adults are the biggest users. Advertising is the primary revenue source for social media platforms, although subscription-based services are gaining momentum as platforms seek to diversify their incomes. TikTok is the success story of the past five years, becoming the most downloaded app between 2020 and 2022, according to Apptopia. The short-form video platform has over 30 million monthly users in the UK in 2025. After Musk's takeover, X, formerly known as Twitter, adjusted its content moderation and allowed previously banned accounts to return. As a result, over 600 advertisers pulled their ads from the site because of fears their brand may be associated with malcontent. In response to falling ad revenue, X has introduced a subscription-based service which enables users to verify themselves and boosts the number of people who view their tweets. Meta-owned Facebook and Instagram have responded by introducing a similar service. In 2025, more social media platforms are using AI to boost user engagement. This improves click-through rates and drives higher advertising revenue. Industry revenue is expected to grow by 6.3% in 2025-26. Over the five years through 2030-31, social media platforms' revenue is projected to climb at an estimated 9.2% to reach £19.4 billion. Regulations relating to how data is collected, stored, and shared will force advertisers and platforms to rethink how they can target their desired demographics. The tightening of regulations will raise industry compliance costs, weighing on profit margin. Older age groups present a new revenue opportunity for social media platforms if they can bridge the gap between passive TV consumption and interactive digital engagement. Augmented Reality (AR) technology will move beyond filters to become standard for immersive product trials, interactive ads, and virtual meetups
Facebook
TwitterIn 2025, Facebook remained the most popular social media network for news worldwide, with ** percent of respondents to a survey held in February that year saying that they had used the platform for news in the last week. On the other hand, TikTok news consumption is on the rise—in 2025, it was *** times higher than in 2020, when it stood at just *** percent.
Facebook
Twitterhttps://www.futuremarketinsights.com/privacy-policyhttps://www.futuremarketinsights.com/privacy-policy
The Enterprise Social Networks Market is estimated to be valued at USD 6101.1 million in 2025 and is projected to reach USD 23220.5 million by 2035, registering a compound annual growth rate (CAGR) of 14.3% over the forecast period.
| Metric | Value |
|---|---|
| Enterprise Social Networks Market Estimated Value in (2025 E) | USD 6101.1 million |
| Enterprise Social Networks Market Forecast Value in (2035 F) | USD 23220.5 million |
| Forecast CAGR (2025 to 2035) | 14.3% |
Facebook
TwitterThis dataset consists of 734 entries representing social media activity and performance from a local SME (Micro, Small, and Medium Enterprise) across TikTok, Instagram, and Twitter platforms. It captures key metrics related to audience interaction and content strategy effectiveness, and is valuable for evaluating and optimizing digital marketing efforts for small businesses.
Area : Target location or customer region where the UMKM's content is directed. Category : The business content category (e.g., product promotion, education, seasonal campaign). Day : The day of the week the content was published. Month : The month the post went live. Platform : The social media platform used by the UMKM (TikTok, Instagram, or Twitter). Post Type : The format of the content posted: image, video, carousel, or text. Timestamp : The exact date and time when the content was posted. User : The username or business account that posted the content. Week : Week number within the year for time-based analysis. Year : The year the content was posted. Comments : Total number of comments received on the post. Engagement Rate : A calculated metric showing how engaging the content is (based on likes, comments, shares vs. reach/impressions). Hour : Hour of the day the post was published. Impressions : Number of times the content appeared on users' feeds. Likes : Number of likes the post received. Reach : Number of unique users who saw the content. Shares : Number of times users shared the content.
Facebook
TwitterDescription
An extensive social network of GitHub developers was collected from the public API in June 2019. Nodes are developers who have starred at most minuscule 10 repositories, and edges are mutual follower relationships between them. The vertex features are extracted based on the location; repositories starred, employer and e-mail address. The task related to the graph is binary node classification - one has to predict whether the GitHub user is a web or a machine learning developer. This targeting feature was derived from the job title of each user.
Properties
Possible Tasks
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides detailed rankings and key metrics for 100+ social media platforms and sites in 2025. It includes information such as user base, popularity trends, and global reach. Ideal for analyzing social media growth, user engagement, and market trends. Whether you're a data scientist, marketer, or researcher, this dataset offers valuable insights into the evolving digital landscape.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
A growing number of international relations scholars argue that intergovernmental organizations (IGOs) promote peace. Existing approaches emphasize IGO membership as an important causal attribute of individual states, much like economic development and regime type. The authors draw up on social network analysis, arguing that conflicts between states are also shaped by relative positions of social power created by IGO memberships and characterized by significant disparity. Membership partitions states into structurally equivalent clusters and establishes hierarchies of prestige in the international system. These relative positions promote common beliefs and alter the distribution of social power, making certain policy strategies more practical or rational. The authors introduce new IGO relational data and explore the empirical merits of their approach during the period from 1885 to 1992. They demonstrate that conflict is increased by the presence of many other states in structurally equivalent clusters, while large prestige disparities and in-group favoritism decrease it.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains a range of directed signed networks (signed digraphs) from social domain. The data come from 9 different sources and in total there are 29 network files. There are two temporal networks and one multilayer network in this dataset. Each network is provided in two formats: edgelist (.csv) and .gml format.This dataset is provided under a CC BY-NC-SA Creative Commons v 4.0 license (Attribution-NonCommercial-ShareAlike). This means that other individuals may remix, tweak, and build upon these data non-commercially, as long as they provide citations to this data repository (https://doi.org/10.6084/m9.figshare.12152628) and the reference article listed below (https://doi.org/10.1038/s41598-020-71838-6), and license the new creations under the identical terms.For more information about the data, one may refer to the article below:Samin Aref, Ly Dinh, Rezvaneh Rezapour, and Jana Diesner. "Multilevel Structural Evaluation of Signed Directed Social Networks based on Balance Theory" Scientific Reports (2020) https://doi.org/10.1038/s41598-020-71838-6
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset was created by Soheil Tehranipour
Released under CC0: Public Domain
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In a world where complex networks are an increasingly important part of science, it is interesting to question how the new reading of social realities they provide applies to our cultural background and in particular, popular culture. Are authors of successful novels able to reproduce social networks faithful to the ones found in reality? Is there any common trend connecting an author's oeuvre, or a genre of fiction? Such an analysis could provide new insight on how we, as a culture, perceive human interactions and consume media. The purpose of the work presented in this paper is to define the signature of a novel's story based on the topological analysis of its social network of characters. For this purpose, an automated tool was built that analyses the dialogs in novels, identifies characters and computes their relationships in a time-dependent manner in order to assess the network's evolution over the course of the story.
Facebook
Twitterhttps://networkrepository.com/policy.phphttps://networkrepository.com/policy.php
Tribes social network - Tribes is social network of tribes of the Gahuku–Gama alliance structure of the Eastern Central Highlands of New Guinea, from Kenneth Read (1954). The dataset contains a list of all of links, where a link represents signed friendships between tribes.
Facebook
Twitterhttps://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
Social Networking Market Report is Segmented by Device Type (Smartphone, Tablet and More), Revenue Stream (Advertising, In-App Purchases and More), Platform Type (Traditional Social Networks, Media-Sharing Networks and More), User Demographics (13–24 Years, 25–34 Years and More), and Geography. The Market Forecasts are Provided in Terms of Value (USD).
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Social Networking Market Size 2025-2029
The social networking market size is forecast to increase by USD 312.3 billion, at a CAGR of 21.6% between 2024 and 2029.
Major Market Trends & Insights
North America dominated the market and accounted for a 41% growth during the forecast period.
By the Type - Advertising segment was valued at USD 80.70 billion in 2023
By the Distribution Channel - Google segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 318.56 billion
Market Future Opportunities: USD 312.30 billion
CAGR : 21.6%
North America: Largest market in 2023
Market Summary
The market continues to expand its reach and influence across various industries, with businesses recognizing its potential for customer engagement and brand awareness. According to recent studies, there are approximately 4.66 billion active social media users worldwide, representing a 13% increase from 2020. This growth is driven by the increased internet penetration and the popularity of social media platforms for personal and professional use. Social media advertisements have become a significant revenue source, with businesses investing heavily in targeted campaigns to reach their audiences.
However, privacy concerns remain a challenge, with users increasingly cautious about sharing personal information online. Despite this, the market's continuous evolution and the emergence of new trends, such as live streaming and virtual events, ensure its ongoing relevance and importance for businesses.
What will be the Size of the Social Networking Market during the forecast period?
Explore market size, adoption trends, and growth potential for social networking market Request Free Sample
The market exhibits consistent growth, with current usage accounting for approximately 3.6 billion users worldwide, representing a significant 4.5% increase year-over-year. Looking ahead, industry experts anticipate a continued expansion, with projections indicating a 5.2% annual growth rate. Notably, mobile devices account for over 90% of social media usage, underscoring the importance of optimizing platforms for this medium. Furthermore, businesses increasingly leverage social networking for marketing purposes, with advertising revenue reaching an estimated USD 84.3 billion in 2021. In comparison, the time spent on social media platforms per day has risen by 45 minutes since 2019, highlighting the growing influence of these channels on consumer behavior.
This trend is further accentuated by the integration of advanced features, such as live streaming, video content, and AI-driven recommendations, which enhance user engagement and monetization opportunities.
How is this Social Networking Industry segmented?
The social networking industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Type
Advertising
In-app purchase
Paid apps
Distribution Channel
Google
Apple
App Store Distribution
Service
Communication
Entertainment
Socialization
Marketing
Customer service
Platform
Website-based
Mobile apps
Hybrid platforms
Geography
North America
US
Canada
Europe
France
Germany
Italy
Spain
UK
Middle East and Africa
UAE
APAC
China
India
Japan
South Korea
South America
Brazil
Rest of World (ROW)
By Type Insights
The advertising segment is estimated to witness significant growth during the forecast period.
In the dynamic and evolving landscape of digital communication, the market continues to expand, driven by innovative technologies and user engagement. According to recent data, social networking platforms accounted for approximately 30% of the total time spent online in 2021, reflecting a significant 15% increase from the previous year. Furthermore, industry experts anticipate that social media usage will continue to grow, with an estimated 25% of the global population expected to use social media by 2025. Content moderation systems play a crucial role in ensuring a safe and inclusive online environment. These systems employ advanced techniques, such as natural language processing, conversational AI, and machine learning models, to filter out inappropriate content and maintain platform governance.
User engagement metrics, including time spent on platforms, user-generated content, and social interaction dynamics, are closely monitored to optimize user experience and foster community building strategies. Platform scalability and network security protocols are essential for accommodating the increasing user base and data privacy regulations. Spam filtering techniques and link pred
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is structured as a graph, where nodes represent users and edges capture their interactions, including tweets, retweets, replies, and mentions. Each node provides detailed user attributes, such as unique ID, follower and following counts, and verification status, offering insights into each user's identity, role, and influence in the mental health discourse. The edges illustrate user interactions, highlighting engagement patterns and types of content that drive responses, such as tweet impressions. This interconnected structure enables sentiment analysis and public reaction studies, allowing researchers to explore engagement trends and identify the mental health topics that resonate most with users.
The dataset consists of three files: 1. Edges Data: Contains graph data essential for social network analysis, including fields for UserID (Source), UserID (Destination), Post/Tweet ID, and Date of Relationship. This file enables analysis of user connections without including tweet content, maintaining compliance with Twitter/X’s data-sharing policies. 2. Nodes Data: Offers user-specific details relevant to network analysis, including UserID, Account Creation Date, Follower and Following counts, Verified Status, and Date Joined Twitter. This file allows researchers to examine user behavior (e.g., identifying influential users or spam-like accounts) without direct reference to tweet content. 3. Twitter/X Content Data: This file contains only the raw tweet text as a single-column dataset, without associated user identifiers or metadata. By isolating the text, we ensure alignment with anonymization standards observed in similar published datasets, safeguarding user privacy in compliance with Twitter/X's data guidelines. This content is crucial for addressing the research focus on mental health discourse in social media. (References to prior Data in Brief publications involving Twitter/X data informed the dataset's structure.)
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
*****Documentation Process***** 1. Data Preparation: - Upload the data into Power Query to assess quality and identify duplicate values, if any. - Verify data quality and types for each column, addressing any miswriting or inconsistencies. 2. Data Management: - Duplicate the original data sheet for future reference and label the new sheet as the "Working File" to preserve the integrity of the original dataset. 3. Understanding Metrics: - Clarify the meaning of column headers, particularly distinguishing between Impressions and Reach, and comprehend how Engagement Rate is calculated. - Engagement Rate formula: Total likes, comments, and shares divided by Reach. 4. Data Integrity Assurance: - Recognize that Impressions should outnumber Reach, reflecting total views versus unique audience size. - Investigate discrepancies between Reach and Impressions to ensure data integrity, identifying and resolving root causes for accurate reporting and analysis. 5. Data Correction: - Collaborate with the relevant team to rectify data inaccuracies, specifically addressing the discrepancy between Impressions and Reach. - Engage with the concerned team to understand the root cause of discrepancies between Impressions and Reach. - Identify instances where Impressions surpass Reach, potentially attributable to data transformation errors. - Following the rectification process, meticulously adjust the dataset to reflect the corrected Impressions and Reach values accurately. - Ensure diligent implementation of the corrections to maintain the integrity and reliability of the data. - Conduct a thorough recalculation of the Engagement Rate post-correction, adhering to rigorous data integrity standards to uphold the credibility of the analysis. 6. Data Enhancement: - Categorize Audience Age into three groups: "Senior Adults" (45+ years), "Mature Adults" (31-45 years), and "Adolescent Adults" (<30 years) within a new column named "Age Group." - Split date and time into separate columns using the text-to-columns option for improved analysis. 7. Temporal Analysis: - Introduce a new column for "Weekend and Weekday," renamed as "Weekday Type," to discern patterns and trends in engagement. - Define time periods by categorizing into "Morning," "Afternoon," "Evening," and "Night" based on time intervals. 8. Sentiment Analysis: - Populate blank cells in the Sentiment column with "Mixed Sentiment," denoting content containing both positive and negative sentiments or ambiguity. 9. Geographical Analysis: - Group countries and obtain additional continent data from an online source (e.g., https://statisticstimes.com/geography/countries-by-continents.php). - Add a new column for "Audience Continent" and utilize XLOOKUP function to retrieve corresponding continent data.
*****Drawing Conclusions and Providing a Summary*****
Facebook
TwitterThe global social media penetration rate in was forecast to continuously increase between 2024 and 2028 by in total 11.6 (+18.19 percent). After the ninth consecutive increasing year, the penetration rate is estimated to reach 75.31 and therefore a new peak in 2028. Notably, the social media penetration rate of was continuously increasing over the past years.