21 datasets found
  1. Labour Market Dynamics in South Africa 2020 - South Africa

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Jun 22, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2022). Labour Market Dynamics in South Africa 2020 - South Africa [Dataset]. https://datacatalog.ihsn.org/catalog/10328
    Explore at:
    Dataset updated
    Jun 22, 2022
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2020
    Area covered
    South Africa
    Description

    Abstract

    The Quarterly Labour Force Survey (QLFS) is a household-based sample survey conducted by Statistics South Africa (StatsSA). It collects data on the labour market activities of individuals aged 15 years or older who live in South Africa. Since 2008, StatsSA have produced an annual dataset based on the QLFS data, "Labour Market Dynamics in South Africa". The dataset is constructed using data from all all four QLFS datasets in the year. The dataset also includes a number of variables (including income) that are not available in any of the QLFS datasets from 2010.

    Geographic coverage

    National coverage

    Analysis unit

    Individuals

    Universe

    The QLFS sample covers the non-institutional population except for those in workers' hostels. However, persons living in private dwelling units within institutions are enumerated. For example, within a school compound, one would enumerate the schoolmaster's house and teachers' accommodation because these are private dwellings. Students living in a dormitory on the school compound would, however, be excluded.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Each year the LMDSA is created by combining the QLFS waves for that year and then including some additional variables. The QLFS master frame for this LMDSA was based on the 2011 population census by Stas SA. The sampling is stratified by province, district, and geographic type (urban, traditional, farm). There are 3324 PSUs drawn each year, using probability proportional to size (PPS) sampling. In the second stage Dwelling Units (DUs) are systematically selected from PSUs. The 3324 PSU are split into four groups for the year, and at each quarter the DUs from the given group are replaced by substitute DUs from the same PSU or the next PSU on the list (in the same group). It should be noted that the sampling unit is the dwelling, and the unit of observation is the household. Therefore, if a household moves out of a dwelling after being in the sample for, two quarters and a new household moves in, the new household will be enumerated for two more quarters until the DU is rotated out. If no household moves into the sampled dwelling, the dwelling will be classified as vacant (or unoccupied).

    Mode of data collection

    Computer Assisted Telephone Interview [cati]

    Research instrument

    The survey questionnaire consists of the following sections: - Particulars of each person in the household - Economic activities in the last week for persons aged 15 years - Unemployment and economic inactivity for persons aged 15 years - Main work activity in the last week for persons aged 15 years - Earnings in the main job for employees, employers and own-account workers aged 15 years - Migration for all persons aged 15 years

    Data appraisal

    The statistical release notes that missing values were "generally imputed" for item non-response but provides no detail on how Statistics SA did so.

  2. Labour Market Dynamics in South Africa 2018 - South Africa

    • datafirst.uct.ac.za
    Updated Jan 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2021). Labour Market Dynamics in South Africa 2018 - South Africa [Dataset]. https://www.datafirst.uct.ac.za/dataportal/index.php/catalog/818
    Explore at:
    Dataset updated
    Jan 19, 2021
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2018
    Area covered
    South Africa
    Description

    Abstract

    The Quarterly Labour Force Survey (QLFS) is a household-based sample survey conducted by Statistics South Africa (StatsSA). It collects data on the labour market activities of individuals aged 15 years or older who live in South Africa. Since 2008, StatsSA have produced an annual dataset based on the QLFS data, "Labour Market Dynamics in South Africa". The dataset is constructed using data from all all four QLFS datasets in the year. The dataset also includes a number of variables (including income) that are not available in any of the QLFS datasets from 2010.

    Geographic coverage

    The survey had national coverage.

    Analysis unit

    Individuals

    Universe

    The QLFS sample covers the non-institutional population except for those in workers' hostels. However, persons living in private dwelling units within institutions are enumerated. For example, within a school compound, one would enumerate the schoolmaster's house and teachers' accommodation because these are private dwellings. Students living in a dormitory on the school compound would, however, be excluded.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Each year the LMDSA is created by combining the QLFS waves for that year and then including some additional variables. The QLFS master frame for this LMDSA was based on the 2011 population census by Stas SA. The sampling is stratified by province, district, and geographic type (urban, traditional, farm).

    There are 3324 PSUs drawn each year, using probability proportional to size (PPS) sampling. In the second stage Dwelling Units (DUs) are systematically selected from PSUs. The 3324 PSU are split into four groups for the year, and at each quarter the DUs from the given group are replaced by substitute DUs from the same PSU or the next PSU on the list (in the same group). It should be noted that the sampling unit is the dwelling, and the unit of observation is the household. Therefore, if a household moves out of a dwelling after being in the sample for, two quarters and a new household moves in, the new household will be enumerated for two more quarters until the DU is rotated out. If no household moves into the sampled dwelling, the dwelling will be classified as vacant (or unoccupied).

    For more information see the statistical release that accompanies the data.

    Mode of data collection

    Face-to-face [f2f]

  3. Quarterly Labour Force Survey 2025 - South Africa

    • microdata.worldbank.org
    Updated Jul 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2025). Quarterly Labour Force Survey 2025 - South Africa [Dataset]. https://microdata.worldbank.org/index.php/catalog/6791
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2025
    Area covered
    South Africa
    Description

    Abstract

    The Quarterly Labour Force Survey (QLFS) is a household-based sample survey conducted by Statistics South Africa (Stats SA). It collects data on the labour market activities of individuals aged 15 years or older who live in South Africa.

    Geographic coverage

    National coverage

    Analysis unit

    Individuals

    Universe

    The QLFS sample covers the non-institutional population of South Africa with one exception. The only institutional subpopulation included in the QLFS sample are individuals in worker's hostels. Persons living in private dwelling units within institutions are also enumerated. For example, within a school compound, one would enumerate the schoolmaster's house and teachers' accommodation because these are private dwellings. Students living in a dormitory on the school compound would, however, be excluded.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The QLFS uses a master sampling frame that is used by several household surveys conducted by Statistics South Africa. This wave of the QLFS is based on the 2013 master frame, which was created based on the 2011 census. There are 3324 PSUs in the master frame and roughly 33 000 dwelling units.

    The sample for the QLFS is based on a stratified two-stage design with probability proportional to size (PPS) sampling of PSUs in the first stage, and sampling of dwelling units (DUs) with systematic sampling in the second stage.

    For each quarter of the QLFS, a quarter of the sampled dwellings are rotated out of the sample. These dwellings are replaced by new dwellings from the same PSU or the next PSU on the list. For more information see the statistical release.

    Mode of data collection

    Face-to-Face and Computer Assisted Personal and Telephone Interview

  4. Male labor force participation rate in South Africa 2014-2024

    • statista.com
    Updated Aug 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2024). Male labor force participation rate in South Africa 2014-2024 [Dataset]. https://www.statista.com/topics/9296/employment-in-south-africa/
    Explore at:
    Dataset updated
    Aug 12, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    South Africa
    Description

    The labor force participation rate for males in South Africa saw no significant changes in 2024 in comparison to the previous year 2023 and remained at around 64.5 percent. In comparison to 2023, the rate decreased not significantly by 0.1 percentage points (-0.15 percent). Male labor force participation is the share of men over 15 years who are economically active. For example, all men providing labor in a specific period for the production of goods and services.Find more statistics on other topics about South Africa with key insights such as youth unemployment rate, labor participation rate among the total population aged between 15 and 64, and female labor force participation rate.

  5. w

    South Africa - Labour Force Survey 2007 - Dataset - waterdata

    • wbwaterdata.org
    Updated Mar 16, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). South Africa - Labour Force Survey 2007 - Dataset - waterdata [Dataset]. https://wbwaterdata.org/dataset/south-africa-labour-force-survey-2007-0
    Explore at:
    Dataset updated
    Mar 16, 2020
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Africa
    Description

    The LFS is a twice-yearly rotating panel household survey, specifically designed to measure the dynamics of employment and unemployment in South Africa. It measures a variety of issues related to the labour market,including unemployment rates (official and expanded), according to standard definitions of the International Labour Organisation (ILO). All editions of the LFS have been updated (some more than once) since their release. These version changes are detailed in a document available from DataFirst (in the "external documents" section titled "LFS 2000-2008 Collated Version Notes on the South African LFS").

  6. Labour Force Survey 2005 - South Africa

    • datacatalog.ihsn.org
    • datafirst.uct.ac.za
    • +3more
    Updated Mar 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2019). Labour Force Survey 2005 - South Africa [Dataset]. https://datacatalog.ihsn.org/catalog/2278
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2005
    Area covered
    South Africa
    Description

    Abstract

    The LFS is a twice-yearly rotating panel household survey, specifically designed to measure the dynamics of employment and unemployment in South Africa. It measures a variety of issues related to the labour market,including unemployment rates (official and expanded), according to standard definitions of the International Labour Organisation (ILO).

    All editions of the LFS have been updated (some more than once) since their release. These version changes are detailed in a document available from DataFirst (in the "external documents" section titled "LFS 2000-2008 Collated Version Notes on the South African LFS").

    Geographic coverage

    National Coverage

    Analysis unit

    Households (dwellings) and individuals

    Universe

    The LFS sample covers the non-institutional population except for workers' hostels. However, persons living in private dwelling units within institutions are also enumerated. For example, within a school compound, one would enumerate the schoolmaster's house and teachers' accommodation because these are private dwellings. Students living in a dormitory on the school compound would, however, be excluded.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Statistics South Africa uses a rotating panel methodology for the labour force survey. The rotating panel methodology involves visiting the same dwelling units on a number of occasions (in this instance, five at most). After the panel is established, a proportion of the dwelling units is replaced each round (in this instance, 20%). New dwelling units are added to the sample to replace those that are taken out.

    Enumeration Areas (EAs) that had a household count of less than twenty-five were omitted from the census 2001 frame that was used to draw the sample of Primary Sampling Units (PSUs) for the new Master Sample. Other omissions from the Master Sample frame included all institution EAs except workers, hostels, convents and monasteries. EAs from census 2001 were pooled in two stages, before and after sampling. Before sampling the criterion that was used to pool EAs was that they should contain a minimum of one hundred households. However, during listing it was discovered that there were discrepancies between the information on the database and what was on the ground.

    Therefore, in the second stage of pooling, EAs that were found to have less than sixty dwelling units during listing were pooled. The Master Sample is a multi-stage stratified sample. The overall sample size of PSUs was 3000. The explicit strata were the 53 district councils/metros (DCs). The 3000 PSUs were allocated to these DCs using the power allocation method. The PSUs were then sampled using probability proportional to size principles. The measure of size used was the number of households in a PSU as calculated in the census. The sampled PSUs were listed with the dwelling unit as the listing unit. From these listings systematic samples of dwelling units per PSU were drawn. These samples of dwelling units form clusters. The size of the clusters differs depending on the specific survey requirements. The LFS uses one of the clusters that contain ten dwelling units.

    Mode of data collection

    Face-to-face [f2f]

  7. Labour Force Survey 2002, February - South Africa

    • datafirst.uct.ac.za
    • dev.ihsn.org
    • +3more
    Updated May 6, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2020). Labour Force Survey 2002, February - South Africa [Dataset]. http://www.datafirst.uct.ac.za/Dataportal/index.php/catalog/150
    Explore at:
    Dataset updated
    May 6, 2020
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2002
    Area covered
    South Africa
    Description

    Abstract

    The LFS is a twice-yearly rotating panel household survey, specifically designed to measure the dynamics of employment and unemployment in South Africa. It measures a variety of issues related to the labour market,including unemployment rates (official and expanded), according to standard definitions of the International Labour Organisation (ILO).

    All editions of the LFS have been updated (some more than once) since their release. These version changes are detailed in a document available from DataFirst (in the "external documents" section titled "LFS 2000-2008 Collated Version Notes on the South African LFS").

    Analysis unit

    Individuals and households

    Universe

    The LFS sample covers the non-institutional population except for workers' hostels. However, persons living in private dwelling units within institutions are also enumerated. For example, within a school compound, one would enumerate the schoolmaster's house and teachers' accommodation because these are private dwellings. Students living in a dormitory on the school compound would, however, be excluded.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The LFS is a twice-yearly rotating panel household survey. A rotating panel sample involves visiting the same dwelling units on a number of occasions (in this instance, five at most), and replacing a proportion of these dwelling units each round. New dwelling units are added to the sample to replace those that are taken out. The pilot round of LFS fieldwork took place in February 2000, based on a probability sample of 10 000 dwelling units. This survey took place six months later, using a larger probability sample of 30,000 dwelling units. Among the 10,000 households visited in February, approximately 40% were re-visited in September 2000. The fieldworkers had some difficulty in identifying certain dwelling units in the sample, particularly in those areas where there are no addresses.

    The Master Sample is based on the 1996 Population Census of enumeration areas (EA) and the estimated number of dwelling units from the 1996 Population Census. All 3000 PSUs included in the Master Sample were used in the Labour Force Survey. A PSU is either one EA or several EAs when the number of dwelling units in the base or originally selected EA was found to have less than 100 dwelling units. Each EA had to have approximately 150 dwelling units but it was discovered that many contained less. Thus, in some cases, it has been found necessary to add EAs to the original (census) EA to ensure that the minimum requirement of 100 dwellings, in the first stage of forming the PSUs, was met. The size of the PSUs in the Master Sample varied from 100 to 2445 dwelling units. Special dwellings such as prisons, hospitals, boarding houses, hotels, guest houses (whether catering or self-catering), schools and churches were excluded from the sample.

    Explicit stratification of the PSUs was done by province and area type (urban/rural). Within each explicit stratum, the PSUs were implicitly stratified by District Council, Magisterial District and, within the magisterial district, by average household income (for formal urban areas and hostels) or EA. The allocated number of EAs was systematically selected with "probability proportional to size" in each stratum. Once the PSUs included in the sample were known, their boundaries had to be identified on the ground. After boundary identification, the next stage was to list accurately all the dwelling units in the PSUs.

    The second stage of the sample selection was to draw from the dwelling units listing whereby a systematic sample of 10 dwelling units was drawn from each PSU. As a result, approximately 30,000 households (units) were interviewed. However, if there was growth of more than 20% in a PSU, then the sample size was increased systematically according to the proportion of growth in the PSU.

    Mode of data collection

    Face-to-face [f2f]

  8. H

    Labour Force Survey [South Africa] Panel, 2001-2004 [EARLY RELEASE]...

    • dataverse.harvard.edu
    Updated Mar 3, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2017). Labour Force Survey [South Africa] Panel, 2001-2004 [EARLY RELEASE] (M1160V1) [Dataset]. http://doi.org/10.7910/DVN/7UHS9H
    Explore at:
    application/x-spss-por(2976436), text/x-spss-syntax; charset=us-ascii(6472), pdf(6061583), application/x-spss-sav(1695686), text/plain; charset=us-ascii(2384668)Available download formats
    Dataset updated
    Mar 3, 2017
    Dataset provided by
    Harvard Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2001 - 2004
    Area covered
    South Africa, South Africa
    Description

    The main objective of the LFS Panel is to broaden the understanding of social and economic changes at the individual level in South Africa as well as identify, model and forecast such changes, their causes and consequences in relation to a range of socioeconomic variables. There are 12 files, in ASCII format, that represent six waves. Each wave has two files, a Person and Employment file. Data from different files/waves can be linked by a record identifier.

  9. Youth unemployment rate in South Africa in 2024

    • statista.com
    Updated Aug 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron O'Neill (2024). Youth unemployment rate in South Africa in 2024 [Dataset]. https://www.statista.com/topics/9296/employment-in-south-africa/
    Explore at:
    Dataset updated
    Aug 12, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Aaron O'Neill
    Area covered
    South Africa
    Description

    In 2024, the youth unemployment rate in South Africa increased by 1.2 percentage points (+2.01 percent) compared to 2023. In total, the youth unemployment rate amounted to 60.89 percent in 2024. This increase was preceded by a declining youth unemployment rate.The youth unemployment rate of a country or region refers to the share of the total workforce aged 15 to 24 that is currently without work, but actively searching for employment. It does not include economically inactive persons such as full-time students or the long-term unemployed.Find more statistics on other topics about South Africa with key insights such as labor participation rate among the total population aged between 15 and 64, labor force participation rate for males, and female labor force participation rate.

  10. Number of people employed in South Africa 2024, by industry

    • statista.com
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of people employed in South Africa 2024, by industry [Dataset]. https://www.statista.com/statistics/1129815/number-of-people-employed-in-south-africa-by-industry/
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    South Africa
    Description

    As of the second quarter of 2024, nearly 3.83 million people in South Africa worked within the community and social services industry. The sector concentrated the highest number of employees, followed by the trade industry, which employed about 3.36 million people. A struggling labor market The South African labor market faces severe challenges and obstacles. In 2023, the country had the highest unemployment rate in Africa, with almost 30 percent of the labor force being jobless. In addition, only 40 percent of the population was employed in 2021. Indeed, South Africans were the most concerned globally about finding jobs and being unemployed. According to a survey, 64 percent of South African respondents reported being worried about unemployment as of September 2023. A highly unequal country South Africa is the most income-unequal country in the world, as it registered a Gini score of 63 in 2021. The major reasons for this inequality originate from the country’s infamous Apartheid regime and the failure of the job market to provide enough opportunities for its people. For example, the unemployment rate among Black South Africans was close to 37 percent, compared to eight percent for white South Africans. Furthermore, unemployment in the country was more widespread among individuals with a lower level of education. Specifically, in 2023, over 50 percent of the jobless South Africans had an education level lower than matric (grade 12).

  11. Population growth in South Africa 2023

    • statista.com
    Updated Aug 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron O'Neill (2024). Population growth in South Africa 2023 [Dataset]. https://www.statista.com/topics/9296/employment-in-south-africa/
    Explore at:
    Dataset updated
    Aug 12, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Aaron O'Neill
    Area covered
    South Africa
    Description

    The annual population growth in South Africa declined to 1.33 percent in 2023. Nevertheless, the last two years recorded a significantly higher population growth than the preceding years.Population growth refers to the annual change in population, and is based on the balance between birth and death rates, as well as migration.Find more key insights for the annual population growth in countries like Botswana and Swaziland.

  12. T

    South Africa Unemployment Rate

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated May 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). South Africa Unemployment Rate [Dataset]. https://tradingeconomics.com/south-africa/unemployment-rate
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    May 13, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 30, 2000 - Mar 31, 2025
    Area covered
    South Africa
    Description

    Unemployment Rate in South Africa increased to 32.90 percent in the first quarter of 2025 from 31.90 percent in the fourth quarter of 2024. This dataset provides - South Africa Unemployment Rate - actual values, historical data, forecast, chart, statistics, economic calendar and news.

  13. Number of employees worldwide 1991-2025

    • statista.com
    • ai-chatbox.pro
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Number of employees worldwide 1991-2025 [Dataset]. https://www.statista.com/statistics/1258612/global-employment-figures/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    In 2025, there were estimated to be approximately *** billion people employed worldwide, compared to **** billion people in 1991 - an increase of around *** billion people. There was a noticeable fall in global employment between 2019 and 2020, when the number of employed people fell from due to the sudden economic shock caused by the COVID-19 pandemic. Formal vs. Informal employment globally Worldwide, there is a large gap between the informally and formally employed. Most informally employed workers reside in the Global South, especially Africa and Southeast Asia. Moreover, men are slightly more likely to be informally employed than women. The majority of informal work, nearly ** percent, is within the agricultural sector, with domestic work and construction following behind. Women’s employment As the number of employees has risen globally, so has the number of employed women. Overall, care roles such as nursing and midwifery have the highest shares of female employees globally. Moreover, while the gender pay gap has shrunk over time, it still exists. As of 2024, the uncontrolled gender pay gap was ****, meaning women made, on average, ** cents per every dollar earned by men.

  14. Labour Force Survey 2007 - South Africa

    • catalog.ihsn.org
    • datafirst.uct.ac.za
    • +3more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2019). Labour Force Survey 2007 - South Africa [Dataset]. https://catalog.ihsn.org/catalog/2282
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2007
    Area covered
    South Africa
    Description

    Abstract

    The LFS is a twice-yearly rotating panel household survey, specifically designed to measure the dynamics of employment and unemployment in South Africa. It measures a variety of issues related to the labour market,including unemployment rates (official and expanded), according to standard definitions of the International Labour Organisation (ILO).

    All editions of the LFS have been updated (some more than once) since their release. These version changes are detailed in a document available from DataFirst (in the "external documents" section titled "LFS 2000-2008 Collated Version Notes on the South African LFS").

    Geographic coverage

    National coverage

    Analysis unit

    Individuals

    Universe

    The LFS sample covers the non-institutional population except for workers' hostels. However, persons living in private dwelling units within institutions are also enumerated. For example, within a school compound, one would enumerate the schoolmaster's house and teachers' accommodation because these are private dwellings. Students living in a dormitory on the school compound would, however, be excluded.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    Statistics South Africa uses a rotating panel methodology for the labour force survey. The rotating panel methodology involves visiting the same dwelling units on a number of occasions (in this instance, five at most). After the panel is established, a proportion of the dwelling units is replaced each round (in this instance, 20%). New dwelling units are added to the sample to replace those that are taken out.

    Enumeration Areas (EAs) that had a household count of less than twenty-five were omitted from the census 2001 frame that was used to draw the sample of Primary Sampling Units (PSUs) for the new Master Sample. Other omissions from the Master Sample frame included all institution EAs except workers, hostels, convents and monasteries. EAs from census 2001 were pooled in two stages, before and after sampling. Before sampling the criterion that was used to pool EAs was that they should contain a minimum of one hundred households. However, during listing it was discovered that there were discrepancies between the information on the database and what was on the ground.

    Therefore, in the second stage of pooling, EAs that were found to have less than sixty dwelling units during listing were pooled. The Master Sample is a multi-stage stratified sample. The overall sample size of PSUs was 3000. The explicit strata were the 53 district councils/metros (DCs). The 3000 PSUs were allocated to these DCs using the power allocation method. The PSUs were then sampled using probability proportional to size principles. The measure of size used was the number of households in a PSU as calculated in the census. The sampled PSUs were listed with the dwelling unit as the listing unit. From these listings systematic samples of dwelling units per PSU were drawn. These samples of dwelling units form clusters. The size of the clusters differs depending on the specific survey requirements. The LFS uses one of the clusters that contain ten dwelling units.

    Mode of data collection

    Face-to-face [f2f]

  15. Quarterly Labour Force Survey 2017, Quarter 3 - South Africa

    • datafirst.uct.ac.za
    • microdata.worldbank.org
    Updated Jul 2, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2020). Quarterly Labour Force Survey 2017, Quarter 3 - South Africa [Dataset]. http://www.datafirst.uct.ac.za/Dataportal/index.php/catalog/683
    Explore at:
    Dataset updated
    Jul 2, 2020
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2017
    Area covered
    South Africa
    Description

    Abstract

    The Quarterly Labour Force Survey (QLFS) is a household-based sample survey conducted by Statistics South Africa (Stats SA). It collects data on the labour market activities of individuals aged 15 years or older who live in South Africa.

    Geographic coverage

    National coverage

    Analysis unit

    Individuals

    Universe

    The QLFS sample covers the non-institutional population of South Africa with one exception. The only institutional subpopulation included in the QLFS sample are individuals in worker's hostels. Persons living in private dwelling units within institutions are also enumerated. For example, within a school compound, one would enumerate the schoolmaster's house and teachers' accommodation because these are private dwellings. Students living in a dormitory on the school compound would, however, be excluded.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Quarterly Labour Force Survey (QLFS) uses a master sample frame which has been developed as a general-purpose household survey frame that can be used by all other Stats SA household surveys that have reasonably compatible design requirement as the QLFS. The 2013 master sample is based on information collected during the 2011 population Census conducted by Stats SA. In preparation for Census 2011, the country was divided into 103 576 enumeration areas (EAs). The census EAs, together with the auxiliary information for the EAs were used as the frame units or building blocks for the formation of primary sampling units (PSUs) for the master sample since they covered the entire country and had other information that is crucial for stratification and creation of PSUs. There are 3 324 primary sampling units (PSUs) in the master sample with an expected sample of approximately 33 000 dwelling units (DUs). The number of PSUs in the current master sample (3 324) reflects an 8,0% increase in the size of the master sample compared to the previous (2007) master sample (which had 3 080 PSUs). The larger master sample of PSUs was selected to improve the precision (smaller CVs) of the QLFS estimates.

    The master sample is designed to be representative at provincial level and within provinces at metro/non-metro levels. Within the metros, the sample is further distributed by geographical type. The three geography types are:urban, tribal and farms. This implies, for example, that within a metropolitan area, the sample is representative of the different geography types that may exist within that metro. It is divided equally into four sub-groups or panels called rotation groups. The rotation groups are designed in such a way that each of these groups has the same distribution pattern as that which is observed in the whole sample. They are numbered from one (1) to four (4) and these numbers also correspond to the quarters of the year in which the sample will be rotated for the particular group.

    There are a number of aspects in which the 2013 version of the master sample differs from the 2007 version. In particular, the number of primary sample units increased. Mining strata were also introduced which serves to improve the efficiency of estimates relating to employment in mining. The number of geo-types was reduced from 4 to 3 while the new master sample allows for the publication of estimates of the labour market at metro level. The master sample was also adjusted Given the change in the provincial distribution of the South African population between 2001 and 2011. There was also an 8% increase in the sample size of the master sample of PSUs to improve the precision of the QLFS estimates. The sample size increased most notable in Gauteng, the Eastern Cape and KwaZulu-Natal. For more details on the differences between the two master samples please consult the section 8 (technical notes) of the QLFS 2015 Q3 release document (P0211).

    From the master sample frame, the QLFS takes draws exmploying a stratified two-stage design with probability proportional to size (PPS) sampling of PSUs in the first stage, and sampling of dwelling units (DUs) with systematic sampling in the second stage. The primary stratification occurred at provincial, metro/non-metro, mining and geography type while the secondary strata were created within the primary strata based on the demographic and socio-economic characteristics of the population.

    For each quarter of the QLFS, a ¼ of the sampled dwellings is rotated out of the sample. These dwellings are replaced by new dwellings from the same PSU or the next PSU on the list. Thus, sampled dwellings are expected to remain in the sample for four consecutive quarters. It should be noted that the sampling unit is the dwelling, and the unit of observation is the household. Therefore, if a household moves out of a dwelling after being in the sample for, two quarters and a new household moves in, the new household will be enumerated for the next two quarters. If no household moves into the sampled dwelling, the dwelling will be classified as vacant (or unoccupied).

    Mode of data collection

    Face-to-face [f2f]

  16. Total population of South Africa 2024, by age group

    • statista.com
    Updated Jun 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Total population of South Africa 2024, by age group [Dataset]. https://www.statista.com/statistics/1116077/total-population-of-south-africa-by-age-group/
    Explore at:
    Dataset updated
    Jun 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    South Africa
    Description

    As of 2024, South Africa's population increased, counting approximately 63 million inhabitants. Of these, roughly 27.5 million were aged 0-24, while 654,000 people were 80 years or older. Gauteng and Cape Town are the most populated South Africa’s yearly population growth has been fluctuating since 2013, with the growth rate dropping below the world average in 2024. The majority of people lived in the borders of Gauteng, the smallest of the nine provinces in terms of land area. The number of people residing there amounted to 16.6 million in 2023. Although the Western Cape was the third-largest province, the city of Cape Town had the highest number of inhabitants in the country, at 3.4 million. An underemployed younger population South Africa has a large population under 14, who will be looking for job opportunities in the future. However, the country's labor market has had difficulty integrating these youngsters. Specifically, as of the fourth quarter of 2024, the unemployment rate reached close to 60 percent and 384 percent among people aged 15-24 and 25–34 years, respectively. In the same period, some 27 percent of the individuals between 15 and 24 years were economically active, while the labor force participation rate was higher among people aged 25 to 34, at 74.3 percent.

  17. Quarterly Labour Force Survey 2019, Quarter 2 - South Africa

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Jan 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2021). Quarterly Labour Force Survey 2019, Quarter 2 - South Africa [Dataset]. https://catalog.ihsn.org/catalog/9262
    Explore at:
    Dataset updated
    Jan 16, 2021
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2019
    Area covered
    South Africa
    Description

    Abstract

    The Quarterly Labour Force Survey (QLFS) is a household-based sample survey conducted by Statistics South Africa (Stats SA). It collects data on the labour market activities of individuals aged 15 years or older who live in South Africa.

    Geographic coverage

    National coverage

    Analysis unit

    Individuals

    Universe

    The QLFS sample covers the non-institutional population of South Africa with one exception. The only institutional subpopulation included in the QLFS sample are individuals in worker's hostels. Persons living in private dwelling units within institutions are also enumerated. For example, within a school compound, one would enumerate the schoolmaster's house and teachers' accommodation because these are private dwellings. Students living in a dormitory on the school compound would, however, be excluded.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The Quarterly Labour Force Survey (QLFS) uses a master sample frame which has been developed as a general-purpose household survey frame that can be used by all other Stats SA household surveys that have reasonably compatible design requirement as the QLFS. The 2013 master sample is based on information collected during the 2011 population Census conducted by Stats SA. In preparation for Census 2011, the country was divided into 103 576 enumeration areas (EAs). The census EAs, together with the auxiliary information for the EAs were used as the frame units or building blocks for the formation of primary sampling units (PSUs) for the master sample since they covered the entire country and had other information that is crucial for stratification and creation of PSUs. There are 3 324 primary sampling units (PSUs) in the master sample with an expected sample of approximately 33 000 dwelling units (DUs). The number of PSUs in the current master sample (3 324) reflects an 8,0% increase in the size of the master sample compared to the previous (2007) master sample (which had 3 080 PSUs). The larger master sample of PSUs was selected to improve the precision (smaller CVs) of the QLFS estimates.

    The master sample is designed to be representative at provincial level and within provinces at metro/non-metro levels. Within the metros, the sample is further distributed by geographical type. The three geography types are:urban, tribal and farms. This implies, for example, that within a metropolitan area, the sample is representative of the different geography types that may exist within that metro. It is divided equally into four sub-groups or panels called rotation groups. The rotation groups are designed in such a way that each of these groups has the same distribution pattern as that which is observed in the whole sample. They are numbered from one (1) to four (4) and these numbers also correspond to the quarters of the year in which the sample will be rotated for the particular group.

    There are a number of aspects in which the 2013 version of the master sample differs from the 2007 version. In particular, the number of primary sample units increased. Mining strata were also introduced which serves to improve the efficiency of estimates relating to employment in mining. The number of geo-types was reduced from 4 to 3 while the new master sample allows for the publication of estimates of the labour market at metro level. The master sample was also adjusted Given the change in the provincial distribution of the South African population between 2001 and 2011. There was also an 8% increase in the sample size of the master sample of PSUs to improve the precision of the QLFS estimates. The sample size increased most notable in Gauteng, the Eastern Cape and KwaZulu-Natal. For more details on the differences between the two master samples please consult the section 8 (technical notes) of the QLFS 2015 Q3 release document (P0211).

    From the master sample frame, the QLFS takes draws exmploying a stratified two-stage design with probability proportional to size (PPS) sampling of PSUs in the first stage, and sampling of dwelling units (DUs) with systematic sampling in the second stage. The primary stratification occurred at provincial, metro/non-metro, mining and geography type while the secondary strata were created within the primary strata based on the demographic and socio-economic characteristics of the population.

    For each quarter of the QLFS, a ¼ of the sampled dwellings is rotated out of the sample. These dwellings are replaced by new dwellings from the same PSU or the next PSU on the list. Thus, sampled dwellings are expected to remain in the sample for four consecutive quarters. It should be noted that the sampling unit is the dwelling, and the unit of observation is the household. Therefore, if a household moves out of a dwelling after being in the sample for, two quarters and a new household moves in, the new household will be enumerated for the next two quarters. If no household moves into the sampled dwelling, the dwelling will be classified as vacant (or unoccupied).

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The survey questionnaire consists of five section: Section 1: Biographical information (marital status, language, migration, education, training, literacy, etc.) Section 2: Economic activities for persons aged 15 years and older Section 3: Unemployment and economic inactivity for persons aged 15 years and older Section 4: Main work activities in the last week for persons aged 15 years and older Section 5: Earnings in the main job for employees, employers and own-account workers aged 15 years and older

  18. Labour Force Survey 2003, March - South Africa

    • datafirst.uct.ac.za
    • dev.ihsn.org
    • +2more
    Updated May 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2020). Labour Force Survey 2003, March - South Africa [Dataset]. http://www.datafirst.uct.ac.za/Dataportal/index.php/catalog/151
    Explore at:
    Dataset updated
    May 6, 2020
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2003
    Area covered
    South Africa
    Description

    Abstract

    The LFS is a twice-yearly rotating panel household survey, specifically designed to measure the dynamics of employment and unemployment in South Africa. It measures a variety of issues related to the labour market,including unemployment rates (official and expanded), according to standard definitions of the International Labour Organisation (ILO).

    All editions of the LFS have been updated (some more than once) since their release. These version changes are detailed in a document available from DataFirst (in the "external documents" section titled "LFS 2000-2008 Collated Version Notes on the South African LFS").

    Geographic coverage

    National Coverage

    Analysis unit

    Households and individuals

    Universe

    The LFS sample covers the non-institutional population except for workers' hostels. However, persons living in private dwelling units within institutions are also enumerated. For example, within a school compound, one would enumerate the schoolmaster's house and teachers' accommodation because these are private dwellings. Students living in a dormitory on the school compound would, however, be excluded.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The LFS is a twice-yearly rotating panel household survey. A rotating panel sample involves visiting the same dwelling units on a number of occasions (in this instance, five at most), and replacing a proportion of these dwelling units each round. New dwelling units are added to the sample to replace those that are taken out. The pilot round of LFS fieldwork took place in February 2000, based on a probability sample of 10 000 dwelling units. This survey took place six months later, using a larger probability sample of 30,000 dwelling units. Among the 10,000 households visited in February, approximately 40% were re-visited in September 2000. The fieldworkers had some difficulty in identifying certain dwelling units in the sample, particularly in those areas where there are no addresses.

    The Master Sample is based on the 1996 Population Census of enumeration areas (EA) and the estimated number of dwelling units from the 1996 Population Census. All 3000 PSUs included in the Master Sample were used in the Labour Force Survey. A PSU is either one EA or several EAs when the number of dwelling units in the base or originally selected EA was found to have less than 100 dwelling units. Each EA had to have approximately 150 dwelling units but it was discovered that many contained less. Thus, in some cases, it has been found necessary to add EAs to the original (census) EA to ensure that the minimum requirement of 100 dwellings, in the first stage of forming the PSUs, was met. The size of the PSUs in the Master Sample varied from 100 to 2445 dwelling units. Special dwellings such as prisons, hospitals, boarding houses, hotels, guest houses (whether catering or self-catering), schools and churches were excluded from the sample.

    Explicit stratification of the PSUs was done by province and area type (urban/rural). Within each explicit stratum, the PSUs were implicitly stratified by District Council, Magisterial District and, within the magisterial district, by average household income (for formal urban areas and hostels) or EA. The allocated number of EAs was systematically selected with "probability proportional to size" in each stratum. Once the PSUs included in the sample were known, their boundaries had to be identified on the ground. After boundary identification, the next stage was to list accurately all the dwelling units in the PSUs.

    The second stage of the sample selection was to draw from the dwelling units listing whereby a systematic sample of 10 dwelling units was drawn from each PSU. As a result, approximately 30,000 households (units) were interviewed. However, if there was growth of more than 20% in a PSU, then the sample size was increased systematically according to the proportion of growth in the PSU.

    Mode of data collection

    Face-to-face [f2f]

  19. u

    National Income Dynamics Study 2017, Wave 5 - South Africa

    • datafirst.uct.ac.za
    Updated Jun 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Southern Africa Labour and Development Research Unit (2023). National Income Dynamics Study 2017, Wave 5 - South Africa [Dataset]. http://www.datafirst.uct.ac.za/Dataportal/index.php/catalog/712
    Explore at:
    Dataset updated
    Jun 11, 2023
    Dataset provided by
    Southern Africa Labour and Development Research Unit
    Time period covered
    2017
    Area covered
    South Africa
    Description

    Abstract

    The National Income Dynamics Study (NIDS) is a face-to-face longitudinal survey of individuals living in South Africa as well as their households. The survey was designed to give effect to the dimensions of the well-being of South Africans, to be tracked over time. At the broadest level, these were: Wealth creation in terms of income and expenditure dynamics and asset endowments; Demographic dynamics as these relate to household composition and migration; Social heritage, including education and employment dynamics, the impact of life events (including positive and negative shocks), social capital and intergenerational developments;
    Access to cash transfers and social services.

    Dates: 2008 – ongoing. First 5 “waves” implemented by SALDRU.

    Funding: The Presidency (2008 – 2013); The Department of Planning, Monitoring and Evaluation (2014 – Present).

    SALDRU people: Murray Leibbrandt, Ingrid Woolard, Cecil Mlatsheni and Reza C. Daniels.

    Coverage: Nationally representative of the South African population.

    Initial Sample size (2008): Approximately 28 000 individuals.

    Data: The survey’s questionnaires, technical documents and reports for Wave 1, Wave 2, Wave 3, Wave 4 and Wave 5 are available for download from DataFirst’s Open Data Portal. NIDS produces public release data, which is also available for download from DataFirst’s Open Data Portal and secure data, which can only be accessed through DataFirst’s Secure Research Data Centre.

    Included sections: Household Living Standards; Household Composition and Structure; Mortality; Household Food and Non-food Spending and Consumption; Household Durable Goods, Household Net Assets; Agriculture; Demographics; Birth Histories and Children; Parents and Family Support; Labour Market Participation and Economic Activity; Income and Expenditure; Grants; Contributions Given and Received; Education; Health; Emotional Health; Household Decision-making; Wellbeing and Social Cohesion; Anthropometric Measurements; Personal Ownership and Debt.

    Geographic coverage

    The NIDS data is nationally representative. The survey began in 2008 with a nationally representative sample of over 28,000 individuals in 7,300 households across the country. The survey is repeated every two years with these same household members, who are called Continuing Sample Members (CSMs). The survey is designed to follow people who are CSMs, wherever they may be in SA at the time of interview. The NIDS data is therefore, by design, not representative provincially or at a lower level of geography (e.g. District Council).

    Analysis unit

    Households and individuals

    Universe

    The target population for NIDS was private households in all nine provinces of South Africa, and residents in workers' hostels, convents and monasteries. The frame excludes other collective living quarters, such as student hostels, old age homes, hospitals, prisons and military barracks.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    NIDS is a national panel (longitudinal) survey which began with a sample of 28 000 South Africans. NIDS' cycles of data collection, referred to as "waves" were undertaken. In Wave 1 (2008), 400 Enumerator Areas, comprising of 7296 households were selected for inclusion in the NIDS sample. 300 fieldworkers spread out across all nine provinces of the country in search of the 28 226 people that formed part of these selected households; successfully interviewing 26 776 of these individuals during Wave 1.

    In subsequent waves, the original sample members are tracked and re-interviewed. Anyone that they live with at the time is also interviewed. In Wave 2 (2010-2011) 28 537 individuals were interviewed; in Wave 3 (2012) 32 582 were interviewed; and in Wave 4 (2014-2015) 37 368 were interviewed. Data collection for Wave 5 took place in 2017 and included a sample "top-up" to increase the number of white, Indian and high income respondents who had experienced low baseline response rates in Wave 1 and higher attrition rates between Waves 1-4. During Wave 5, 39,434 individuals were successfully interviewed, of which, 2016 were from the "top-up" sample. The data for Wave 5 was released at the end of August 2018.

    More information on NIDS sampling refer to NIDS Technical Paper Number 1 http://www.nids.uct.ac.za/publications/technical-papers/108-nids-technical-paper-no1/file

    Mode of data collection

    Face-to-face [f2f]

  20. General Household Survey 2003 - South Africa

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +2more
    Updated Mar 29, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics South Africa (2019). General Household Survey 2003 - South Africa [Dataset]. https://datacatalog.ihsn.org/catalog/1059
    Explore at:
    Dataset updated
    Mar 29, 2019
    Dataset authored and provided by
    Statistics South Africahttp://www.statssa.gov.za/
    Time period covered
    2003
    Area covered
    South Africa
    Description

    Abstract

    Stats SA conducted the October Household Survey (OHS) annually from 1994 to 1999, based on a probability sample of a large number of households ranging from 16 000 to 30 000 households each year (depending on availability of funding). This survey was discontinued in 1999 due to the reprioritisation of surveys in the face of financial constraints. February 2000 saw the birth of the Labour Force Survey (LFS), which is a biannual survey conducted by Stats SA in March and September of each year. The LFS covers some areas previously covered by the OHS, but not all, since it is a specialised survey principally designed to measure the dynamics in the labour market. The September LFS each year does include a section designed to measure social indicators such as access to infrastructure, but again this section does not go into as much depth as the OHS used to. A need was therefore identified by our users for a regular survey designed specifically to measure the level of development and the performance of government programmes and projects. The General Household Survey (GHS) was developed for this purpose. While the survey replaces the October Household Survey (OHS), the indicators measured in the 13 nodal areas identified for the Integrated Rural Development Strategy (IRSD) formed the basis for the subject matter of the survey. The first round of the GHS was conducted in July 2002 and the second round in July 2003.

    Geographic coverage

    The scope of the General Household Survey 2003 was national coverage.

    Analysis unit

    The units of anaylsis for the General Household Survey 2003 are individuals and households.

    Universe

    The survey covered all de jure household members (usual residents) of households in the nine provinces of South Africa and residents in workers' hostels. The survey does not cover collective living quarters such as students' hostels, old age homes, hospitals, prisons and military barracks.

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    For the GHS 2003 a multi-stage stratified sample was drawn using probability proportional to size principles.

    The sample was drawn from the master sample, which Statistics South Africa uses to draw samples for its regular household surveys. The master sample is drawn from the database of enumeration areas (EAs) established during the demarcation phase of Census 1996. As part of the master sample, small EAs consisting of fewer than 100 households are combined with adjacent EAs to form primary sampling units (PSUs) of at least 100 households, to allow for repeated sampling of dwelling units within each PSU. The sampling procedure for the master sample involves explicit stratification by province and within each province, by urban and non-urban areas. Within each stratum, the sample was allocated disproportionately. A PPS sample of PSUs was drawn in each stratum, with the measure of size being the number of households in the PSU. Altogether approximately 3 000 PSUs were selected. In each selected PSU a systematic sample of ten dwelling units was drawn, thus, resulting in approximately 30 000 dwelling units. All households in the sampled dwelling units were enumerated. The master sample is divided into five independent clusters. In order to avoid respondent fatigue (the LFS is a rotating panel survey which is conducted twice yearly), the GHS sample uses a different cluster from the LFS clusters.

    Mode of data collection

    Face-to-face [f2f]

    Research instrument

    The GHS 2003 questionnaire collected data on: Household characteristics: Dwelling type, home ownership, access to water and sanitation facilities, access to services, transport, household assets, land ownership, agricultural production Individuals' characteristics: demographic characteristics, relationship to household head, marital status, language, education, employment, income, health, disability, access to social services, mortality. Women's characteristics: fertility

    Response rate

    Response codes Number of responses % Completed 26 469 84.7 Non-contact 897 2.9 Refusal 645 2.1 Partly completed 18 0.1 Unusable information 1 0.0 Vacant 1 510 4.8 Listing error 246 0.8 Other 1 447 4.6 Total 31 233 100.0

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statistics South Africa (2022). Labour Market Dynamics in South Africa 2020 - South Africa [Dataset]. https://datacatalog.ihsn.org/catalog/10328
Organization logo

Labour Market Dynamics in South Africa 2020 - South Africa

Explore at:
Dataset updated
Jun 22, 2022
Dataset authored and provided by
Statistics South Africahttp://www.statssa.gov.za/
Time period covered
2020
Area covered
South Africa
Description

Abstract

The Quarterly Labour Force Survey (QLFS) is a household-based sample survey conducted by Statistics South Africa (StatsSA). It collects data on the labour market activities of individuals aged 15 years or older who live in South Africa. Since 2008, StatsSA have produced an annual dataset based on the QLFS data, "Labour Market Dynamics in South Africa". The dataset is constructed using data from all all four QLFS datasets in the year. The dataset also includes a number of variables (including income) that are not available in any of the QLFS datasets from 2010.

Geographic coverage

National coverage

Analysis unit

Individuals

Universe

The QLFS sample covers the non-institutional population except for those in workers' hostels. However, persons living in private dwelling units within institutions are enumerated. For example, within a school compound, one would enumerate the schoolmaster's house and teachers' accommodation because these are private dwellings. Students living in a dormitory on the school compound would, however, be excluded.

Kind of data

Sample survey data [ssd]

Sampling procedure

Each year the LMDSA is created by combining the QLFS waves for that year and then including some additional variables. The QLFS master frame for this LMDSA was based on the 2011 population census by Stas SA. The sampling is stratified by province, district, and geographic type (urban, traditional, farm). There are 3324 PSUs drawn each year, using probability proportional to size (PPS) sampling. In the second stage Dwelling Units (DUs) are systematically selected from PSUs. The 3324 PSU are split into four groups for the year, and at each quarter the DUs from the given group are replaced by substitute DUs from the same PSU or the next PSU on the list (in the same group). It should be noted that the sampling unit is the dwelling, and the unit of observation is the household. Therefore, if a household moves out of a dwelling after being in the sample for, two quarters and a new household moves in, the new household will be enumerated for two more quarters until the DU is rotated out. If no household moves into the sampled dwelling, the dwelling will be classified as vacant (or unoccupied).

Mode of data collection

Computer Assisted Telephone Interview [cati]

Research instrument

The survey questionnaire consists of the following sections: - Particulars of each person in the household - Economic activities in the last week for persons aged 15 years - Unemployment and economic inactivity for persons aged 15 years - Main work activity in the last week for persons aged 15 years - Earnings in the main job for employees, employers and own-account workers aged 15 years - Migration for all persons aged 15 years

Data appraisal

The statistical release notes that missing values were "generally imputed" for item non-response but provides no detail on how Statistics SA did so.

Search
Clear search
Close search
Google apps
Main menu