Follow the Esri instructions to Import Symbology From Another Layer: https://pro.arcgis.com/en/pro-app/2.7/help/mapping/layer-properties/import-symbology-from-another-layer.htm1) Download this file.2) Add the Shieldsv24 layer to a map in ArcPro.3) Use the Import Symbology tool in the Esri instructions above.4) Import the V24 Shields Layer File symbology.
2023 Updates to the National Incident Feature Service and Event Geodatabase For 2023, there are no schema updates and no major changes to GeoOps or the GISS Workflow! This is a conscious choice and is intended to provide a needed break for both users and administrators. Over the last 5 years, nearly every aspect of the GISS position has seen a major overhaul and while the advancements have been overwhelmingly positive, many of us are experiencing change fatigue. This is not to say there is no room for improvement. Many great suggestions were received throughout the season and in the GISS Survey, and they will be considered for inclusion in 2024. That there are no critical updates necessary also indicates that we have reached a level of maturity with the current state, and that is good news for everyone. Please continue to submit your ideas; they are appreciated and valuable insight, even if the change is not implemented. For information on 2023 AGOL updates please see the Create and Share Web Maps | NWCG page. There are three smaller changes worth noting this year: Standard Symbology is now the default on the NIFS For most workflows, the update will be seamless. All the Event Standard symbols are now supported in Field Maps and Map Viewer. Most users will now see the same symbols in all print and digital products. However, in AGOL some web apps do not support the complex line symbols. The simplified lines will still be present in the official Editing Apps (Operations, SITL, and GISS), and any custom apps built with the Web App Builder (WAB) interface. Experience Builder can be used for any new app creation. If you must use WAB or another app that cannot display the complex line symbology in the NIFS, please contact wildfireresponse@firenet.gov for guidance. Event Line now has Preconfigured Labels Labels on Event Line have historically been uncommon, but to speed their implementation when necessary, color-coded labels classes have been added to the NIFS and the lyrx files provided in the GIS Folder Structure. They can be disabled or modified as needed, should they interfere with any of your workflows. “Restricted” Folder added to GeoOps Folder Structure At the base level within the 2023_Template, a ‘restricted’ folder is now included. This folder should be used for all data and products that contain sensitive, restricted, or controlled-unclassified information. This will aid the DOCL and any future FOIA liaisons in protecting this information. When using OneDrive, this folder can optionally be password protected. Reminder: Sensitive Data is not allowed to be hosted within the NIFC Org.
Download the V25 Shields layer file and geodatabaseAdd the V25 Shields layer file to a map in ArcGIS ProIf the layer file appears with a red exclamation mark, the file needs to be sourced to the geodatabase where the layer file was savedClick on the exclamation mark which should pull up the Properties/Source menuClick the "Set Data Source" option in the top-right cornerLocate the storage location where the layer file was saved, open the geodatabase and the select the feature class datasetClick ApplyFor detailed instructions, please visit this ESRI help document
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For complete collection of data and models, see https://doi.org/10.21942/uva.c.5290546.Supplemental material for: Hierarchical geomorphological mapping in mountainous areas, Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps in 2020, revisions made in 2021.These layer files will produce the complete geomorphological legend, even when all geomorphological units are not present in the dataset. When visualizing results, we recommend the following optimal scale ranges: 1:2,500 - 1:10,000 for Tier 3, 1:10,001 to 1:30,000 for Tier 2 and ≥ 1:30,001 for Tier 1.The complete set of layer files ("Geomorphological Map Vorarlberg - Tier 1", "Geomorphological Map Vorarlberg - Tier 2" and "Geomorphological Map Vorarlberg - Tier 3") are intended to visualize output of a model that creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail.
ArcGIS layer file for symbolizing Land Element gridded layer. User may need to reconnect symbolization to "value" attribute of grid.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Symbology layer files developed in ArcMap and ArcGIS Pro for the purpose of visualizing geomorphological codes using predefined color palettes.
Supplemental material for: Hierarchical geomorphological mapping in mountainous areas, Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps in 2020, revisions made in 2021.These layer files will produce the complete geomorphological legend, even when all geomorphological units are not present in the dataset. When visualizing results, we recommend the following optimal scale ranges: 1:2,500 - 1:10,000 for Tier 3, 1:10,001 to 1:30,000 for Tier 2 and ≥ 1:30,001 for Tier 1.The complete set of layer files ("Geomorphological Map Vorarlberg - Tier 1", "Geomorphological Map Vorarlberg - Tier 2" and "Geomorphological Map Vorarlberg - Tier 3") are intended to visualize output of a model that creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail.
Point this layer file to any downloaded Parcels to view Marietta's elementary school boundaries.
The Digital Geologic-GIS Map of Santa Rosa Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sris_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sris_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sris_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sris_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sris_geology_metadata.txt or sris_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Geospatial data about FSL Plant Readily Available Water - ArcGIS layer file. Export to CAD, GIS, PDF, CSV and access via API.
Point this layer file to any downloaded Parcels to view Marietta's future land use codes & descriptions
Geospatial data about NZ Soil Classification ArcGIS layer file. Export to CAD, GIS, PDF, CSV and access via API.
The Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (rhod_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (rhod_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (rhod_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (rhod_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (rhod_geology_metadata.txt or rhod_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Digital Geomorphic-GIS Map of Perdido Key and Santa Rosa Island (1-foot resolution 2006-2007 mapping), Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (pksr_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (pksr_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (pksr_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (pksr_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (pksr_geomorphology_metadata.txt or pksr_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:20,000 and United States National Map Accuracy Standards features are within (horizontally) 10.2 meters or 33.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
This data is associated with the Nevada Play Fairway project and includes excel files containing raw 2-meter temperature data and corrections. GIS shapefiles and layer files contain ing location and attribute information for the data are included. Well data includes both deep and shallow TG holes, GIS shapefiles and layer files. ArcGIS layer file with location and attribute information
ArcGIS layer file for symbolizing of soil temperature GRIDs. User may need to reconnect to "value" attribute in GRID to get correct display.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Residential Schools Locations Dataset in Geodatabase format (IRS_Locations.gbd) contains a feature layer "IRS_Locations" that contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Residential Schools Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. Access Instructions: there are 47 files in this data package. Please download the entire data package by selecting all the 47 files and click on download. Two files will be downloaded, IRS_Locations.gbd.zip and IRS_LocFields.csv. Uncompress the IRS_Locations.gbd.zip. Use QGIS, ArcGIS Pro, and ArcMap to open the feature layer IRS_Locations that is contained within the IRS_Locations.gbd data package. The feature layer is in WGS 1984 coordinate system. There is also detailed file level metadata included in this feature layer file. The IRS_locations.csv provides the full description of the fields and codes used in this dataset.
Please see the 2025 Updates README file in the \tools folder for a description of the changes.
The Digital Geologic-GIS Map of the Maumee Quadrangle, Arkansas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (maum_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (maum_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (maum_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (buff_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (buff_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (maum_geology_metadata_faq.pdf). Please read the buff_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (maum_geology_metadata.txt or maum_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Basic Layers from the MCM-LTER spatial data holdings have been exported and symbolized, and they are available for download here. Most of these layers date from Oct-2007 or earlier, please see the Polar GeoSpatial Center for more updated base and specialized layers. The spatial GIS layers contained in this ZIP file were exported from the 2006 MCM-LTER Spatial Database (now deprecated) in the ESRI Shape File format. For your convenience, Layer Files (.lyr),  which are already symbolized, are also included. The spatial layers contained in the MCM-LTER Spatial Database are accurate (depending on the date the shapefiles in this ZIP file were last exported, they may be out of date). List of layers:  Camp locations.lyr glacier stake locations.lyr glaciers.lyr lakes and ponds.lyr maximum extent.lyr met station locations.lyr ocean.lyr stream gauge locations.lyr streams - monitored.lyr streams - not monitored.lyr topo 50m.lyr Â
Important Note: This item is in mature support as of July 2024 and will retire in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.ArcticDEM is a National Geospatial-Intelligence Agency (NGA) and National Science Foundation (NSF) public-private initiative to automatically produce a high-resolution, high-quality Digital Surface Model (DSM) of the Arctic using sub-meter, stereoscopic satellite imagery collected by DigitalGlobe’s satellite constellation.The Arctic DEM layer is rendered here as Aspect Map. Using the server-side aspect function, this layer provides a colorized representation of aspect. The orientation of the downward sloping surface is indicated by different colors, rotating from green (North) to blue (East), to magenta (South) to orange (West).Geographic ExtentAll land area north of 60° north latitude, including all territory of Greenland, the entire state of Alaska, and the Kamchatka Peninsula of the Russian Federation.Map ProjectionThis layer is projected to WGS 1984 EPSG Alaska Polar Stereographic.The source data is projected to WGS 84 / NSIDC Sea Ice Polar Stereographic North.NOTE: By default, opening this layer in the Map Viewer will project the layer to Web Mercator. To display in the Alaska Polar projection, use Arctic DEM: Aspect Map Web MapSpatial Resolution2-meterAccuracyWithout ground control points absolute accuracy is approximately 4 meters in horizontal and vertical planes. Uniform ground control must be applied to achieve higher accuracy. Laser altimetry data from the NASA IceSAT spacecraft has been applied to the ArcticDEM mosaic files. Users may wish to use other sources for smaller areas, particularly on ArcticDEM strip files. Strip DEM files contain IceSAT altimetry offsets within the metadata, but have not had these values applied.The accuracy of these layers will vary as a function of location and data source. Please refer to the metadata available in the layers, and follow the links to the original sources for further details. An estimate of CE90 and LE90 are included as attributes.Pixel ValuesThis layer returns 8 bit color values representing a graphic visualization, not slope values.For access to numeric aspect values, use the Arctic DEM: Aspect Degree layer, which returns orientation values from 0 to 359 degrees.For elevation height values, please reference either Arctic DEM or Arctic DEM: Height Ellipsoidal.Data Dimensions and CompositionDEM Tiles are compiled from multiple strips that have been co-registered, blended, and feathered to reduce edge-matching artifacts. Tile sizes are standardized at 50 km x 50 km.Individual DEM strips are compiled from DigitalGlobe images. DEM strip dimensions will vary according to the sensor, off-nadir angle of collection, and the corresponding stereo-pair overlap. Most strips are between 16 km and 18 km in width, and 110 km and 120 km in length. Using this layerThis colorized aspect map is appropriate for visualizing the orientation of the surface at large map scales. This layer can be added to applications or maps to enhance contextual understanding.The 8 bit color values returned by this layer represent a graphic visualization, not slope values. For access to numeric aspect values, use the Arctic DEM: Aspect Degree layer, which returns orientation values from 0 to 359 degrees.This layer can be temporally filtered by acquisition date. This layer allows query, identify, and export image requests. The layer is restricted to a 4000 x 4000 pixel limit in a single request.For additional visual context and analysis, below is the full list of layers available as Raster Functions. These can be accessed from within the service or as individual AGOL items: Arctic DEM, Hillshade Gray, Aspect Degrees, Aspect Map, Contour 25, Hillshade Multidirectional, Slope Map, Slope Degrees, Contour Smoothed 25, Hillshade Elevation Tinted, Height Ellipsoidal Additional Data SpecificationsThe ArcticDEM product is a Digital Surface Model (DSM) which includes above ground features such as man-made structures and vegetation.The data has not been edited to remove processing anomalies. Pits, spikes, false landforms, and other DEM anomalies may exist in this dataset. Polygonal hydrographic features have not been flattened and the data has not been hydrologically enforced.Since the DEM’s are optically derived, clouds, fog, shadows, and other atmospheric obstructions can obscure the ground resulting in data gaps.Since the DEM strips have not been edge-matched, visible seams and deviations between adjacent strips may be observed.The data spans multiple years and seasons. A single season/year mosaic is not possible for large areas.Mosaic tiles are displayed by default. Strips can be selected and displayed via image filtering.For quick and easy access to this and additional elevation layers, see the Elevation Layers group in ArcGIS Online.For more information on the source data, see ArcticDEM.
Follow the Esri instructions to Import Symbology From Another Layer: https://pro.arcgis.com/en/pro-app/2.7/help/mapping/layer-properties/import-symbology-from-another-layer.htm1) Download this file.2) Add the Shieldsv24 layer to a map in ArcPro.3) Use the Import Symbology tool in the Esri instructions above.4) Import the V24 Shields Layer File symbology.