65 datasets found
  1. Deaths by cancer in the U.S. 1950-2023

    • statista.com
    Updated Jun 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Deaths by cancer in the U.S. 1950-2023 [Dataset]. https://www.statista.com/statistics/184566/deaths-by-cancer-in-the-us-since-1950/
    Explore at:
    Dataset updated
    Jun 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Cancer was responsible for around *** deaths per 100,000 population in the United States in 2023. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated ****** deaths among men alone in 2025. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as ** percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around ** percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. Other modifiable risk factors for cancer include being obese, drinking alcohol, and sun exposure.

  2. Major causes of death in the U.S.: 1900 and 2023

    • statista.com
    • ai-chatbox.pro
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Major causes of death in the U.S.: 1900 and 2023 [Dataset]. https://www.statista.com/statistics/235703/major-causes-of-death-in-the-us/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The leading causes of death in the United States have changed significantly from the year 1900 to the present. Leading causes of death in 1900, such as tuberculosis, gastrointestinal infections, and diphtheria have seen huge decreases in death rates and are no longer among the leading causes of death in the United States. However, other diseases such as heart disease and cancer have seen increased death rates. Vaccinations One major factor contributing to the decrease in death rates for many diseases since the year 1900 is the introduction of vaccinations. The decrease seen in the rates of death due to pneumonia and influenza is a prime example of this. In 1900, pneumonia and influenza were the leading causes of death, with around *** deaths per 100,000 population. However, in 2023 pneumonia and influenza were not even among the ten leading causes of death. Cancer One disease that has seen a large increase in death rates since 1900 is cancer. Cancer currently accounts for almost ** percent of all deaths in the United States, with death rates among men higher than those for women. The deadliest form of cancer for both men and women is cancer of the lung and bronchus. Some of the most common avoidable risk factors for cancer include smoking, drinking alcohol, sun exposure, and obesity.

  3. l

    Lung Cancer Mortality

    • data.lacounty.gov
    Updated Dec 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). Lung Cancer Mortality [Dataset]. https://data.lacounty.gov/datasets/lung-cancer-mortality/about
    Explore at:
    Dataset updated
    Dec 20, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Death rate has been age-adjusted by the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Lung cancer is a leading cause of cancer-related death in the US. People who smoke have the greatest risk of lung cancer, though lung cancer can also occur in people who have never smoked. Most cases are due to long-term tobacco smoking or exposure to secondhand tobacco smoke. Cities and communities can take an active role in curbing tobacco use and reducing lung cancer by adopting policies to regulate tobacco retail; reducing exposure to secondhand smoke in outdoor public spaces, such as parks, restaurants, or in multi-unit housing; and improving access to tobacco cessation programs and other preventive services.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.

  4. S

    Breast Cancer Statistics By Types, Stage And Occurrence (2025)

    • sci-tech-today.com
    Updated Jun 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sci-Tech Today (2025). Breast Cancer Statistics By Types, Stage And Occurrence (2025) [Dataset]. https://www.sci-tech-today.com/stats/breast-cancer-statistics-updated/
    Explore at:
    Dataset updated
    Jun 26, 2025
    Dataset authored and provided by
    Sci-Tech Today
    License

    https://www.sci-tech-today.com/privacy-policyhttps://www.sci-tech-today.com/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    Introduction

    Breast Cancer Statistics: Breast cancer remains one of the most prevalent and concerning health challenges, mostly among women. It is the most common cancer diagnosed in women worldwide and the second leading cause of cancer-related deaths among women in the United States. The impact of breast cancer is significant, with millions of new cases diagnosed each year and hundreds of thousands of deaths attributed to the disease.

    This article will provide critical insights into the incidence, survival rates, mortality, and disparities across different demographics, including age, race, and ethnicity. Understanding the latest statistics on breast cancer is crucial for driving progress in reducing the incidence and mortality rates, improving survival outcomes, and ultimately, finding a cure.

  5. M

    Breast Cancer Statistics 2025 By Types, Risks, Ratio

    • media.market.us
    Updated Jan 13, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market.us Media (2025). Breast Cancer Statistics 2025 By Types, Risks, Ratio [Dataset]. https://media.market.us/breast-cancer-statistics/
    Explore at:
    Dataset updated
    Jan 13, 2025
    Dataset authored and provided by
    Market.us Media
    License

    https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy

    Time period covered
    2022 - 2032
    Description

    Editor’s Choice

    • Global Breast Cancer Market size is expected to be worth around USD 49.2 Bn by 2032 from USD 19.8 Bn in 2022, growing at a CAGR of 9.8% during the forecast period from 2022 to 2032.
    • Breast cancer is the most common cancer among women worldwide. In 2020, there were about 2.3 million new cases of breast cancer diagnosed globally.
    • Breast cancer is the leading cause of cancer-related deaths in women. In 2020, it was responsible for approximately 685,000 deaths worldwide.
    • The survival rate of breast cancer has improved over the years. In the United States, the overall five-year survival rate of breast cancer is around 90%.
    • The American Cancer Society recommends annual mammograms starting at age 40 for women at average risk.
    • Although rare, breast cancer also occurs in men. Less than 1% of breast cancer cases are diagnosed in males.

    (Source: WHO, American Cancer Society)

    https://market.us/wp-content/uploads/2023/04/Breast-Cancer-Market-Value.jpg" alt="">

  6. Cancer death rate for females worldwide by type of cancer in 2022

    • statista.com
    Updated Apr 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Cancer death rate for females worldwide by type of cancer in 2022 [Dataset]. https://www.statista.com/statistics/1031301/cancer-death-rate-females-worldwide-by-type/
    Explore at:
    Dataset updated
    Apr 29, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Worldwide
    Description

    Breast cancer was the cancer type with the highest rate of death among females worldwide in 2022. That year, there were around 13 deaths from breast cancer among females per 100,000 population. The death rate for all cancers among females was 76.4 per 100,000 population. This statistic displays the rate of cancer deaths among females worldwide in 2022, by type of cancer.

  7. The main causes of cancer death in Taipei City

    • data.gov.tw
    csv
    Updated Jul 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Budget, Accounting and Statistics,Taipei City Government (2025). The main causes of cancer death in Taipei City [Dataset]. https://data.gov.tw/en/datasets/131076
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jul 9, 2025
    Dataset provided by
    Department of Budget, Accounting and Statistics
    Authors
    Department of Budget, Accounting and Statistics,Taipei City Government
    License

    https://data.gov.tw/licensehttps://data.gov.tw/license

    Area covered
    Taipei City, Taipei
    Description

    The statistical data on the leading causes of cancer-related deaths in Taipei City.

  8. Death rates for all causes in the U.S. 1950-2023

    • statista.com
    Updated Mar 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Death rates for all causes in the U.S. 1950-2023 [Dataset]. https://www.statista.com/statistics/189670/death-rates-for-all-causes-in-the-us-since-1950/
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    In 2023, there were approximately 750.5 deaths by all causes per 100,000 inhabitants in the United States. This statistic shows the death rate for all causes in the United States between 1950 and 2023. Causes of death in the U.S. Over the past decades, chronic conditions and non-communicable diseases have come to the forefront of health concerns and have contributed to major causes of death all over the globe. In 2022, the leading cause of death in the U.S. was heart disease, followed by cancer. However, the death rates for both heart disease and cancer have decreased in the U.S. over the past two decades. On the other hand, the number of deaths due to Alzheimer’s disease – which is strongly linked to cardiovascular disease- has increased by almost 141 percent between 2000 and 2021. Risk and lifestyle factors Lifestyle factors play a major role in cardiovascular health and the development of various diseases and conditions. Modifiable lifestyle factors that are known to reduce risk of both cancer and cardiovascular disease among people of all ages include smoking cessation, maintaining a healthy diet, and exercising regularly. An estimated two million new cases of cancer in the U.S. are expected in 2025.

  9. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  10. Data from: Associations between environmental quality and mortality in the...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Associations between environmental quality and mortality in the contiguous United States 2000-2005 [Dataset]. https://catalog.data.gov/dataset/associations-between-environmental-quality-and-mortality-in-the-contiguous-united-sta-2000
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Area covered
    Contiguous United States, United States
    Description

    Age-adjusted mortality rates for the contiguous United States in 2000–2005 were obtained from the Wide-ranging Online Data for Epidemiologic Research system of the U.S. Centers for Disease Control and Prevention (CDC) (2015). Age-adjusted mortality rates were weighted averages of the age-specific death rates, and they were used to account for different age structures among populations (Curtin and Klein 1995). The mortality rates for counties with < 10 deaths were suppressed by the CDC to protect privacy and to ensure data reliability; only counties with ≥ 10 deaths were included in the analyses. The underlying cause of mortality was specified using the World Health Organization’s International Statistical Classification of Diseases and Related Health Problems (10th revision; ICD-10). In this study, we focused on the all-cause mortality rate (A00-R99) and on mortality rates from the three leading causes: heart disease (I00-I09, I11, I13, and I20-I51), cancer (C00-C97), and stroke (I60- I69) (Heron 2013). We excluded mortality due to external causes for all-cause mortality, as has been done in many previous studies (e.g., Pearce et al. 2010, 2011; Zanobetti and Schwartz 2009), because external causes of mortality are less likely to be related to environmental quality. We also focused on the contiguous United States because the numbers of counties with available cause-specific mortality rates were small in Hawaii and Alaska. County-level rates were available for 3,101 of the 3,109 counties in the contiguous United States (99.7%) for all-cause mortality; for 3,067 (98.6%) counties for heart disease mortality; for 3,057 (98.3%) counties for cancer mortality; and for 2,847 (91.6%) counties for stroke mortality. The EQI includes variables representing five environmental domains: air, water, land, built, and sociodemographic (2). The domain-specific indices include both beneficial and detrimental environmental factors. The air domain includes 87 variables representing criteria and hazardous air pollutants. The water domain includes 80 variables representing overall water quality, general water contamination, recreational water quality, drinking water quality, atmospheric deposition, drought, and chemical contamination. The land domain includes 26 variables representing agriculture, pesticides, contaminants, facilities, and radon. The built domain includes 14 variables representing roads, highway/road safety, public transit behavior, business environment, and subsidized housing environment. The sociodemographic environment includes 12 variables representing socioeconomics and crime. This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Human health data are not available publicly. EQI data are available at: https://edg.epa.gov/data/Public/ORD/NHEERL/EQI. Format: Data are stored as csv files. This dataset is associated with the following publication: Jian, Y., L. Messer, J. Jagai, K. Rappazzo, C. Gray, S. Grabich, and D. Lobdell. Associations between environmental quality and mortality in the contiguous United States 2000-2005. ENVIRONMENTAL HEALTH PERSPECTIVES. National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC, USA, 125(3): 355-362, (2017).

  11. Cancer deaths worldwide by major type 2022

    • statista.com
    Updated Jun 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Cancer deaths worldwide by major type 2022 [Dataset]. https://www.statista.com/statistics/288580/number-of-cancer-deaths-worldwide-by-type/
    Explore at:
    Dataset updated
    Jun 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Worldwide
    Description

    Lung cancer is the deadliest cancer worldwide, accounting for 1.82 million deaths in 2022. The second most deadly form of cancer is colorectum cancer, followed by liver cancer. However, lung cancer is only the sixth leading cause of death worldwide, with heart disease and stroke accounting for the highest share of deaths. Male vs. female cases Given that lung cancer causes the highest number of cancer deaths worldwide, it may be unsurprising to learn that lung cancer is the most common form of new cancer cases among males. However, among females, breast cancer is by far the most common form of new cancer cases. In fact, breast cancer is the most prevalent cancer worldwide, followed by prostate cancer. Prostate cancer is a very close second to lung cancer among the cancers with the highest rates of new cases among men. Male vs. female deaths Lung cancer is by far the deadliest form of cancer among males but is the second deadliest form of cancer among females. Breast cancer, the most prevalent form of cancer among females worldwide, is also the deadliest form of cancer among females. Although prostate cancer is the second most prevalent cancer among men, it is the fifth deadliest cancer. Lung, liver, stomach, colorectum, and oesophagus cancers all have higher deaths rates among males.

  12. f

    table_1_Liver Cancer Disparities in New York City: A Neighborhood View of...

    • frontiersin.figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Geetanjali R. Kamath; Emanuela Taioli; Natalia N. Egorova; Josep M. Llovet; Ponni V. Perumalswami; Jeffrey J. Weiss; Myron Schwartz; Stanley Ewala; Nina A. Bickell (2023). table_1_Liver Cancer Disparities in New York City: A Neighborhood View of Risk and Harm Reduction Factors.docx [Dataset]. http://doi.org/10.3389/fonc.2018.00220.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    Frontiers
    Authors
    Geetanjali R. Kamath; Emanuela Taioli; Natalia N. Egorova; Josep M. Llovet; Ponni V. Perumalswami; Jeffrey J. Weiss; Myron Schwartz; Stanley Ewala; Nina A. Bickell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    IntroductionLiver cancer is the fastest increasing cancer in the United States and is one of the leading causes of cancer-related death in New York City (NYC), with wide disparities among neighborhoods. The purpose of this cross-sectional study was to describe liver cancer incidence by neighborhood and examine its association with risk factors. This information can inform preventive and treatment interventions.Materials and methodsPublicly available data were collected on adult NYC residents (n = 6,407,022). Age-adjusted data on liver and intrahepatic bile duct cancer came from the New York State Cancer Registry (1) (2007–2011 average annual incidence); and the NYC Vital Statistics Bureau (2015, mortality). Data on liver cancer risk factors (2012–2015) were sourced from the New York City Department of Health and Mental Hygiene: (1) Community Health Survey, (2) A1C registry, and (3) NYC Health Department Hepatitis surveillance data. They included prevalence of obesity, diabetes, diabetic control, alcohol-related hospitalizations or emergency department visits, hepatitis B and C rates, hepatitis B vaccine coverage, and injecting drug use.ResultsLiver cancer incidence in NYC was strongly associated with neighborhood poverty after adjusting for race/ethnicity (β = 0.0217, p = 0.013); and with infection risk scores (β = 0.0389, 95% CI = 0.0088–0.069, p = 0.011), particularly in the poorest neighborhoods (β = 0.1207, 95% CI = 0.0147–0.2267, p = 0.026). Some neighborhoods with high hepatitis rates do not have a proportionate number of hepatitis prevention services.ConclusionHigh liver cancer incidence is strongly associated with infection risk factors in NYC. There are gaps in hepatitis prevention services like syringe exchange and vaccination that should be addressed. The role of alcohol and metabolic risk factors on liver cancer in NYC warrants further study.

  13. f

    DataSheet_2_Cause-Specific Mortality Among Survivors From T1N0M0 Renal Cell...

    • frontiersin.figshare.com
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhixian Wang; Jing Wang; Yunpeng Zhu; Chang Liu; Xing Li; Xiaoyong Zeng (2023). DataSheet_2_Cause-Specific Mortality Among Survivors From T1N0M0 Renal Cell Carcinoma: A Registry-Based Cohort Study.docx [Dataset]. http://doi.org/10.3389/fonc.2021.604724.s002
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    Frontiers
    Authors
    Zhixian Wang; Jing Wang; Yunpeng Zhu; Chang Liu; Xing Li; Xiaoyong Zeng
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ObjectiveMore T1N0M0 renal cell carcinoma (RCC) is detected and the prognosis has improved, but, the current focus on non-RCC-related mortality is superficial. We investigated cause-specific mortality and its temporal patterns after an RCC diagnosis.MethodsIn the Surveillance, Epidemiology, and End Results-18 database, patients with T1N0M0 RCC treated with partial nephrectomy (PN) or radical nephrectomy (RN) during 2000–15 were identified. Standardized mortality ratios (SMRs) for cause of death were calculated. Risk predictors for each cause-specific mortality were investigated using the Fine and Gray sub-distribution model.ResultsIn all, 68,612 eligible patients were pooled. A total of 14,047 (20.5%) patients had died (cardiovascular disease [CVD], 28.3%; other non-cancer-related diseases, 20.3%; RCC, 18.7%; other cancer types, 16.3%; non-disease events, 16.1%) during follow-up. Heart disease, diabetes mellitus, and cerebrovascular disease were the primary causes of non-RCC-related mortality within 1 year after the diagnosis. The greatest proportion of death (39.0%) occurred within 1–5 years after the diagnosis, mostly due to RCC itself, followed by heart disease. However, >5 years after the diagnosis, heart disease became the leading cause of death. Compared with the general US population, a 21% (SMR, 1.21; 95%CI 1.19–1.23) increased risk of all-mortality was observed; RCC patients had a higher risk of heart disease-related death within 5–10 years (SMR, 1.10; 95%CI 1.04–1.17) and >10 years (1.12; 1.02–1.22) after the diagnosis. Older age and RN increased the death risk of CVD and RCC-specific mortality. Although a larger tumor diameter increased the risk of RCC-specific death, this was not a significant predictor for CVD. Moreover, for T1N0M0 RCC tumors of diameter >4 cm, there was no significant difference in CVD incidence for RN vs. PN.ConclusionsRCC-specific mortality is a common challenge for the prognosis. Importantly, a large proportion and higher SMRs of other non-RCC-related diseases (especially CVD) should not be disregarded for the better holistic management of survivors of local RCC. Targeted prevention strategies for non-RCC-related death could lead to significant reductions in mortality for RCC survivors.

  14. G

    Pancreatic Cancer Treatment Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Pancreatic Cancer Treatment Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/pancreatic-cancer-treatment-market-global-industry-analysis
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Pancreatic Cancer Treatment Market Outlook



    As per our latest research, the global pancreatic cancer treatment market size reached USD 4.1 billion in 2024, reflecting a robust demand for innovative therapies and improved diagnostic approaches. The market is projected to expand at a CAGR of 7.9% from 2025 to 2033, with the total market size anticipated to reach USD 8.2 billion by 2033. This growth is primarily driven by the increasing incidence of pancreatic cancer worldwide, advancements in targeted and immunotherapeutic drugs, and a growing emphasis on early diagnosis and personalized medicine.




    One of the most significant growth factors in the pancreatic cancer treatment market is the alarming rise in the global burden of pancreatic cancer itself. According to the World Health Organization, pancreatic cancer ranks as the seventh leading cause of cancer-related deaths worldwide, largely due to late-stage diagnosis and aggressive disease progression. This high mortality rate has catalyzed research and development efforts, resulting in the introduction of novel treatment modalities such as targeted therapies and immunotherapies. These advances are not only improving patient survival rates but are also attracting substantial investments from both public and private sectors, further fueling market expansion.




    Another major driver for the market is the rapid evolution of drug development and approval processes. Regulatory bodies such as the US FDA and the European Medicines Agency have implemented accelerated approval pathways for breakthrough therapies in oncology, including those for pancreatic cancer. This has led to a surge in clinical trials and the introduction of next-generation therapeutics that offer better efficacy and fewer side effects compared to traditional chemotherapies. The integration of precision medicine, which involves tailoring treatments based on genetic and molecular profiling of tumors, is also propelling market growth by enabling more effective and individualized patient care.




    Technological advancements in diagnostic imaging and biomarker discovery are also contributing significantly to market growth. Enhanced imaging techniques such as endoscopic ultrasound and multi-detector CT scans are facilitating earlier and more accurate detection of pancreatic tumors. Additionally, the identification of specific biomarkers is enabling earlier diagnosis and monitoring of treatment response, which is crucial given the typically late presentation of pancreatic cancer. These innovations are leading to better patient outcomes and are expected to drive demand for advanced treatment options in the coming years.




    From a regional perspective, North America continues to dominate the pancreatic cancer treatment market, accounting for the largest share due to its well-established healthcare infrastructure, high awareness levels, and significant investments in cancer research. Europe follows closely, supported by robust reimbursement policies and increasing adoption of advanced therapies. The Asia Pacific region is witnessing the fastest growth, attributed to rising cancer prevalence, improving healthcare access, and expanding pharmaceutical markets. Latin America and the Middle East & Africa are also experiencing gradual growth, although limited by challenges such as inadequate healthcare infrastructure and lower awareness levels.





    Therapy Type Analysis



    The pancreatic cancer treatment market is segmented by therapy type into chemotherapy, targeted therapy, immunotherapy, radiation therapy, surgery, and others. Chemotherapy remains the cornerstone of pancreatic cancer management, especially for advanced-stage patients where surgical resection is not feasible. The advent of combination chemotherapy regimens such as FOLFIRINOX and gemcitabine-based therapies has improved median survival rates, albeit with considerable toxicity. Despite these challenges, chemotherapy continues to be widely adopted due to its established efficacy and accessibility, particularly in regions where novel

  15. r

    AIHW - Cancer Incidence and Mortality Across Regions (CIMAR) - Persons...

    • researchdata.edu.au
    null
    Updated Jun 28, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of the Commonwealth of Australia - Australian Institute of Health and Welfare (2023). AIHW - Cancer Incidence and Mortality Across Regions (CIMAR) - Persons Mortality (GCCSA) 2009-2013 [Dataset]. https://researchdata.edu.au/aihw-cancer-incidence-2009-2013/2738757
    Explore at:
    nullAvailable download formats
    Dataset updated
    Jun 28, 2023
    Dataset provided by
    Australian Urban Research Infrastructure Network (AURIN)
    Authors
    Government of the Commonwealth of Australia - Australian Institute of Health and Welfare
    License

    Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
    License information was derived automatically

    Area covered
    Description

    This dataset presents the footprint of cancer mortality statistics in Australia for all cancers combined and the 6 top cancer groupings (colorectal, leukaemia, lung, lymphoma, melanoma of the skin and pancreas) and their respective ICD-10 codes. The data spans the years 2009-2013 and is aggregated to Greater Capital City Statistical Areas (GCCSA) from the 2011 Australian Statistical Geography Standard (ASGS).

    Mortality data refer to the number of deaths due to cancer in a given time period. Cancer deaths data are sourced from the Australian Institute of Health and Welfare (AIHW) 2013 National Mortality Database (NMD).

    For further information about this dataset, please visit:

    Please note:

    • AURIN has spatially enabled the original data.

    • Due to changes in geographic classifications over time, long-term trends are not available.

    • Values assigned to "n.p." in the original data have been removed from the data.

    • The Australian and jurisdictional totals include people who could not be assigned a GCCSA. The number of people who could not be assigned a GCCSA is less than 1% of the total.

    • The Australian total also includes residents of Other Territories (Cocos (Keeling) Islands, Christmas Island and Jervis Bay Territory).

    • Cause of Death Unit Record File data are provided to the AIHW by the Registries of Births, Deaths and Marriages and the National Coronial Information System (managed by the Victorian Department of Justice) and include cause of death coded by the Australian Bureau of Statistics (ABS). The data are maintained by the AIHW in the NMD.

    • Year refers to year of occurrence of death for years up to and including 2012, and year of registration of death for 2013. Deaths registered in 2011 and earlier are based on the final version of cause of death data; deaths registered in 2012 and 2013 are based on revised and preliminary versions, respectively and are subject to further revision by the ABS.

    • Cause of death information are based on underlying cause of death and are classified according to the International Classification of Diseases and Related Health Problems (ICD). Deaths registered in 1997 onwards are classified according to the 10th revision (ICD-10).

    • Colorectal deaths presented are underestimates. For further information, refer to "Complexities in the measurement of bowel cancer in Australia" in Causes of Death, Australia (ABS cat. no. 3303.0).

  16. c

    Global Targeted Cancer Drugs Market Report 2025 Edition, Market Size, Share,...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2025). Global Targeted Cancer Drugs Market Report 2025 Edition, Market Size, Share, CAGR, Forecast, Revenue [Dataset]. https://www.cognitivemarketresearch.com/targeted-cancer-drugs-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to Cognitive Market Research , the global Targeted Cancer Drugs Market size will be XX million by 2033, whereas its compound annual growth rate (CAGR) will be XX% from 2025 to 2033. • North America held the largest share of the global Targeted Cancer Drugs market around XX% of the global revenue with a market size of USD XX million in 2024 and will grow at a compound annual growth rate (CAGR) of XX% from 2025 to 2033. • Asia Pacific held a market share of around XX% of the global revenue with a market size of USD XX million in 2024 and will grow at a compound annual growth rate (CAGR) of XX% from 2025 to 2033. • Europe accounted for a share of over XX% of the global market size of USD XX million. • The Latin American market is around XX% of the global revenue with a market size of USD XX million in 2024 and will grow at a compound annual growth rate (CAGR) of XX% from 2025 to 2033. • Middle East and Africa held the major market of around XX% of the global revenue with a market size of USD XX million in 2024 and will grow at a compound annual growth rate (CAGR) of XX% from 2025 to 2033. Market Dynamics of the Targeted Cancer Drugs Market

    Key Drivers of the Targeted Cancer Drugs Market

    Rising incidence of cancer enhances the targeted cancer drugs market growth
    

    Tobacco use, high body mass index, alcohol usage, low intake of fruits and vegetables, and lack of physical activity are responsible for about one-third of cancer-related risk. Furthermore, one significant risk factor for lung cancer is air pollution. About 30% of cancer cases in low- and lower-middle-income nations are caused by diseases that cause cancer, such as hepatitis and the human papillomavirus (HPV). How frequently a cancer arises (incidence) and how long people typically live after being diagnosed (survival) are the two factors that determine cancer prevalence. This indicates that the most prevalent malignancies with the longest survival have the highest prevalence counts. Compared to a less common cancer with a longer survival, a common cancer with a shorter survival may have a lower prevalence count. For instance, according to the American Cancer Society 2023, non-Hodgkin lymphoma, a less common cancer, has a higher prevalence rate than lung cancer, despite lung cancer being one of the most common malignancies in the US. There are more persons living after a diagnosis of non-Hodgkin lymphoma than after a diagnostic of lung cancer because those with non-Hodgkin lymphoma have a higher chance of surviving longer than those with lung cancer. There were 1,777,566 new cases of cancer reported in the US in 2021. An estimated 608,366 Americans lost their lives to cancer in 2022. https://www.cdc.gov/cancer/data/index.html In the twenty-first century, cancer is a significant social, public health, and economic issue, accounting for about one in six fatalities (16.8%) and one in four deaths (22.8%) from noncommunicable diseases (NCDs) globally. Three out of ten premature deaths worldwide are caused by NCDs (30.3% in people aged 30 to 69), and in 177 out of 183 nations, it ranks among the top three causes of death for this age group. Apart from being a significant hindrance to extending life expectancy, cancer is linked to significant societal and macroeconomic expenses, which differ in extent depending on the type of cancer, location, and gender. For instance, according to International Agency for Research on Cancer in 2022, there were about 20 million new cases of cancer, including nonmelanoma skin cancers (NMSCs), and 9.7 million cancer-related deaths. According to estimates, one in five men and women will get cancer at some point in their lives, while one in nine men and one in twelve women will pass away from the disease. With about 2.5 million new cases, or one in eight cancers worldwide (12.4% of all cancers), lung cancer was the most commonly diagnosed cancer in 2022. It was followed by stomach (4.9%), colorectum (9.6%), prostate (7.3%), and female breast (11.6%) cancers. With an anticipated 1.8 million deaths (18.7%), lung cancer was also the most common cause of cancer-related mortality. Colorectal (9.3%), liver (7.8%), female breast (6.9%), and stomach (6.8%) cancers were next in line. The two most common cancers in both men and women were lung and breast cancer. https://acsjournals.onlinelibrary.wile...

  17. H

    Cause-of-death statistics in 2020 in the Republic of Korea

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Feb 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sun Huh (2023). Cause-of-death statistics in 2020 in the Republic of Korea [Dataset]. http://doi.org/10.7910/DVN/TEKYDG
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 18, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Sun Huh
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    South Korea
    Description

    Abstract Background: This study analyzed the causes of death in the Korean population in 2020. Methods: Cause-of-death data for 2020 from Statistics Korea were examined based on the Korean Standard Classification of Diseases and Causes of Death, 7th revision and the International Statistical Classification of Diseases and Related Health Problems, 10th revision. Results: In total, 304,948 deaths occurred, reflecting an increase of 9,838 (3.3%) from 2019. The crude death rate (the number of deaths per 100,000 people) was 593.9, corresponding to an increase of 19.0 (3.3%) from 2019. The 10 leading causes of death, in descending order, were malignant neoplasms, heart diseases, pneumonia, cerebrovascular diseases, intentional self-harm, diabetes mellitus, Alzheimer’s disease, liver diseases, hypertensive diseases, and sepsis. Cancer accounted for 27.0% of deaths. Within the category of malignant neoplasms, the top 5 leading organs of involvement were the lung, liver, colon, stomach, and pancreas. Sepsis was included in the 10 leading causes of death for the first time. Mortality due to pneumonia decreased to 43.3 (per 100,000 people) from 45.1 in 2019. The number of deaths due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was 950, of which 54.5% were in people aged 80 or older. Conclusion: These changes reflect the continuing increase in deaths due to diseases of old age, including sepsis. The decrease in deaths due to pneumonia may have been due to protective measures against SARS-CoV-2. With the concomitant decrease in fertility, 2020 became the first year in which Korea’s natural total population decreased.

  18. D

    Lung Cancer Diagnostic Tests Market Report | Global Forecast From 2025 To...

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Lung Cancer Diagnostic Tests Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-lung-cancer-diagnostic-tests-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Lung Cancer Diagnostic Tests Market Outlook



    The lung cancer diagnostic tests market size was valued at USD 2.5 billion in 2023 and is projected to reach USD 6.1 billion by 2032, growing at a Compound Annual Growth Rate (CAGR) of 10.5% during the forecast period. This substantial growth can be attributed to the rising prevalence of lung cancer globally, advancements in diagnostic technologies, and increasing awareness regarding early detection and treatment of lung cancer. The growing aging population and the high incidence of smoking, which is a leading cause of lung cancer, further propel the demand for diagnostic tests.



    The increasing prevalence of lung cancer is one of the primary drivers of market growth. Lung cancer remains the leading cause of cancer-related deaths worldwide, necessitating the development of more accurate and early diagnostic methods. With advancements in medical technology, such as molecular diagnostics and non-invasive imaging techniques, the accuracy and efficiency of lung cancer diagnosis have significantly improved. These innovations not only enhance the detection rate but also facilitate personalized treatment plans, thereby improving patient outcomes.



    Furthermore, government initiatives and funding for cancer research play a crucial role in market expansion. Many countries are investing heavily in cancer research, leading to the development of new diagnostic tools and techniques. For instance, organizations such as the National Cancer Institute (NCI) in the United States provide substantial grants for lung cancer research, fostering innovations in diagnostics. In addition, public awareness campaigns and screening programs conducted by healthcare organizations and governments encourage early diagnosis, which is vital for successful treatment and survival rates.



    The integration of artificial intelligence (AI) and machine learning in diagnostic tools is another significant factor contributing to market growth. AI algorithms can analyze medical images with high precision, aiding radiologists in identifying lung cancer at earlier stages. Moreover, AI-driven software can evaluate large datasets from genetic and molecular tests, providing insights into the most effective treatment options based on individual patient profiles. This technological advancement not only enhances the accuracy of diagnostics but also reduces the time required for analysis, thereby increasing the efficiency of healthcare services.



    The EGFR Mutation Test is a pivotal advancement in the realm of lung cancer diagnostics, offering a more personalized approach to treatment. This test specifically identifies mutations in the Epidermal Growth Factor Receptor (EGFR) gene, which are often present in non-small cell lung cancer (NSCLC) patients. By detecting these mutations, healthcare providers can tailor therapies that target the specific genetic alterations, thereby improving treatment efficacy and patient outcomes. The growing adoption of EGFR Mutation Tests underscores the shift towards precision medicine, where treatments are increasingly customized based on individual genetic profiles. This approach not only enhances the effectiveness of therapies but also minimizes adverse effects, as treatments are more accurately aligned with the patient's unique genetic makeup.



    Regionally, North America holds the largest share of the lung cancer diagnostic tests market, followed by Europe and Asia Pacific. The dominance of North America can be attributed to the presence of advanced healthcare infrastructure, high healthcare expenditure, and a robust research landscape. The Asia Pacific region, however, is expected to witness the highest growth rate during the forecast period, driven by increasing healthcare investments, growing awareness about lung cancer, and rising incidences of the disease in countries like China and India. The growing middle-class population and improving healthcare access in these countries further support market growth.



    Test Type Analysis



    The lung cancer diagnostic tests market is segmented by test type into imaging tests, sputum cytology, tissue biopsy, molecular tests, and others. Imaging tests are one of the most commonly used diagnostic methods for lung cancer detection. Techniques such as X-rays, CT scans, and PET scans provide detailed visuals of the lungs, helping in identifying abnormal growths or tumors. The non-invasive nature of these tests and their ability to provide quick results make them a preferred choice among healthcare

  19. M

    Colorectal Cancer Therapies Market Projected To Hit USD 19.8 Billion By 2033...

    • media.market.us
    Updated May 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market.us Media (2025). Colorectal Cancer Therapies Market Projected To Hit USD 19.8 Billion By 2033 [Dataset]. https://media.market.us/colorectal-cancer-therapeutics-market-news/
    Explore at:
    Dataset updated
    May 20, 2025
    Dataset authored and provided by
    Market.us Media
    License

    https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy

    Time period covered
    2022 - 2032
    Description

    Overview

    New York, NY – May 20, 2025 – Global Colorectal Cancer Therapeutics Market size is expected to be worth around US$ 19.8 Billion by 2033 from US$ 12.5 Billion in 2023, growing at a CAGR of 4.7% during the forecast period from 2024 to 2033.

    The global colorectal cancer therapeutics market is witnessing steady growth, driven by rising incidence rates, advancements in treatment modalities, and growing public awareness regarding early diagnosis. Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide and a leading cause of cancer-related deaths. According to the World Health Organization (WHO), colorectal cancer accounted for over 1.9 million new cases and approximately 935,000 deaths globally in 2020.

    The market is experiencing strong momentum due to increasing investments in precision medicine, targeted therapies, and immuno-oncology. Treatments such as chemotherapy, radiation therapy, targeted drugs (e.g., EGFR and VEGF inhibitors), and immune checkpoint inhibitors have improved survival outcomes for CRC patients. In recent years, biologics and combination regimens have shown enhanced efficacy, especially in advanced and metastatic colorectal cancer cases.

    North America dominates the global market owing to robust healthcare infrastructure, supportive reimbursement policies, and high screening rates. Meanwhile, the Asia-Pacific region is expected to witness significant growth due to increasing awareness and expanding access to oncology care. Further, research into biomarkers and molecular profiling is enabling the development of personalized therapies. Government initiatives, including cancer screening programs and public health campaigns, are expected to continue supporting market expansion.

    https://sp-ao.shortpixel.ai/client/to_auto,q_lossy,ret_img,w_1217,h_739/https://market.us/wp-content/uploads/2024/12/Colorectal-Cancer-Therapeutics-Market-Size.jpg" alt="Colorectal Cancer Therapeutics Market Size" class="wp-image-135800">

  20. Leading causes of death among Black U.S. residents from 2020 to 2022

    • statista.com
    • ai-chatbox.pro
    Updated Dec 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Leading causes of death among Black U.S. residents from 2020 to 2022 [Dataset]. https://www.statista.com/statistics/233310/distribution-of-the-10-leading-causes-of-death-among-african-americans/
    Explore at:
    Dataset updated
    Dec 13, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The leading causes of death among Black residents in the United States in 2022 included diseases of the heart, cancer, unintentional injuries, and stroke. The leading causes of death for African Americans generally reflects the leading causes of death for the entire United States population. However, a major exception is that death from assault or homicide is the seventh leading cause of death among African Americans, but is not among the ten leading causes for the general population. Homicide among African Americans The homicide rate among African Americans has been higher than that of other races and ethnicities for many years. In 2023, around 9,284 Black people were murdered in the United States, compared to 7,289 white people. A majority of these homicides are committed with firearms, which are easily accessible in the United States. In 2022, around 14,189 Black people died by firearms. However, suicide deaths account for over half of all deaths from firearms in the United States. Cancer disparities There are also major disparities in access to health care and the impact of various diseases. For example, the incidence rate of cancer among African American males is the greatest among all ethnicities and races. Furthermore, although the incidence rate of cancer is lower among African American women than it is among white women, cancer death rates are still higher among African American women.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). Deaths by cancer in the U.S. 1950-2023 [Dataset]. https://www.statista.com/statistics/184566/deaths-by-cancer-in-the-us-since-1950/
Organization logo

Deaths by cancer in the U.S. 1950-2023

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jun 24, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

Cancer was responsible for around *** deaths per 100,000 population in the United States in 2023. The death rate for cancer has steadily decreased since the 1990’s, but cancer still remains the second leading cause of death in the United States. The deadliest type of cancer for both men and women is cancer of the lung and bronchus which will account for an estimated ****** deaths among men alone in 2025. Probability of surviving Survival rates for cancer vary significantly depending on the type of cancer. The cancers with the highest rates of survival include cancers of the thyroid, prostate, and testis, with five-year survival rates as high as ** percent for thyroid cancer. The cancers with the lowest five-year survival rates include cancers of the pancreas, liver, and esophagus. Risk factors It is difficult to determine why one person develops cancer while another does not, but certain risk factors have been shown to increase a person’s chance of developing cancer. For example, cigarette smoking has been proven to increase the risk of developing various cancers. In fact, around ** percent of cancers of the lung, bronchus and trachea among adults aged 30 years and older can be attributed to cigarette smoking. Other modifiable risk factors for cancer include being obese, drinking alcohol, and sun exposure.

Search
Clear search
Close search
Google apps
Main menu