100+ datasets found
  1. Use Deep Learning to Assess Palm Tree Health

    • hub.arcgis.com
    Updated Mar 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Tutorials (2019). Use Deep Learning to Assess Palm Tree Health [Dataset]. https://hub.arcgis.com/documents/d50cea3d161542b681333f1bc265029a
    Explore at:
    Dataset updated
    Mar 14, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Tutorials
    Description

    Coconuts and coconut products are an important commodity in the Tongan economy. Plantations, such as the one in the town of Kolovai, have thousands of trees. Inventorying each of these trees by hand would require lots of time and manpower. Alternatively, tree health and location can be surveyed using remote sensing and deep learning. In this lesson, you'll use the Deep Learning tools in ArcGIS Pro to create training samples and run a deep learning model to identify the trees on the plantation. Then, you'll estimate tree health using a Visible Atmospherically Resistant Index (VARI) calculation to determine which trees may need inspection or maintenance.

    To detect palm trees and calculate vegetation health, you only need ArcGIS Pro with the Image Analyst extension. To publish the palm tree health data as a feature service, you need ArcGIS Online and the Spatial Analyst extension.

    In this lesson you will build skills in these areas:

    • Creating training schema
    • Digitizing training samples
    • Using deep learning tools in ArcGIS Pro
    • Calculating VARI
    • Extracting data to points

    Learn ArcGIS is a hands-on, problem-based learning website using real-world scenarios. Our mission is to encourage critical thinking, and to develop resources that support STEM education.

  2. a

    Integrating Data in ArcGIS Pro

    • hub.arcgis.com
    Updated Mar 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2020). Integrating Data in ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/3a11f895a7dc4d28ad45cee9cc5ba6d8
    Explore at:
    Dataset updated
    Mar 25, 2020
    Dataset authored and provided by
    State of Delaware
    Description

    In this course, you will learn about some common types of data used for GIS mapping and analysis, and practice adding data to a file geodatabase to support a planned project.Goals Create a file geodatabase. Add data to a file geodatabase. Create an empty geodatabase feature class.

  3. All Chapters Tutorial Data

    • hub.arcgis.com
    Updated Jun 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Tutorials (2020). All Chapters Tutorial Data [Dataset]. https://hub.arcgis.com/datasets/9f9984c3eadd420689cbeced693292b2
    Explore at:
    Dataset updated
    Jun 14, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Tutorials
    Description

    Total file size: about 367M in zip format and about 600M after extracted. (To download: click the Download button at the upper right area of this page)Alternatively, you can download the data by chapters:- Go to https://go.esri.com/gtkwebgis4- Under Group Categories on the left, click each chapter, you will see the data file to download for that chapter.

  4. Geospatial Deep Learning Seminar Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Geospatial Deep Learning Seminar Online Course [Dataset]. https://ckan.americaview.org/dataset/geospatial-deep-learning-seminar-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This seminar is an applied study of deep learning methods for extracting information from geospatial data, such as aerial imagery, multispectral imagery, digital terrain data, and other digital cartographic representations. We first provide an introduction and conceptualization of artificial neural networks (ANNs). Next, we explore appropriate loss and assessment metrics for different use cases followed by the tensor data model, which is central to applying deep learning methods. Convolutional neural networks (CNNs) are then conceptualized with scene classification use cases. Lastly, we explore semantic segmentation, object detection, and instance segmentation. The primary focus of this course is semantic segmenation for pixel-level classification. The associated GitHub repo provides a series of applied examples. We hope to continue to add examples as methods and technologies further develop. These examples make use of a vareity of datasets (e.g., SAT-6, topoDL, Inria, LandCover.ai, vfillDL, and wvlcDL). Please see the repo for links to the data and associated papers. All examples have associated videos that walk through the process, which are also linked to the repo. A variety of deep learning architectures are explored including UNet, UNet++, DeepLabv3+, and Mask R-CNN. Currenlty, two examples use ArcGIS Pro and require no coding. The remaining five examples require coding and make use of PyTorch, Python, and R within the RStudio IDE. It is assumed that you have prior knowledge of coding in the Python and R enviroinments. If you do not have experience coding, please take a look at our Open-Source GIScience and Open-Source Spatial Analytics (R) courses, which explore coding in Python and R, respectively. After completing this seminar you will be able to: explain how ANNs work including weights, bias, activation, and optimization. describe and explain different loss and assessment metrics and determine appropriate use cases. use the tensor data model to represent data as input for deep learning. explain how CNNs work including convolutional operations/layers, kernel size, stride, padding, max pooling, activation, and batch normalization. use PyTorch, Python, and R to prepare data, produce and assess scene classification models, and infer to new data. explain common semantic segmentation architectures and how these methods allow for pixel-level classification and how they are different from traditional CNNs. use PyTorch, Python, and R (or ArcGIS Pro) to prepare data, produce and assess semantic segmentation models, and infer to new data.

  5. a

    ArcGIS Pro Fundamentals

    • hub.arcgis.com
    Updated May 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). ArcGIS Pro Fundamentals [Dataset]. https://hub.arcgis.com/documents/ccd396a41cc944258e0d3c0461c473ea
    Explore at:
    Dataset updated
    May 3, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    Enroll in this plan to get familiar with the user interface, apply commonly used tools, and master the basics of mapping and analyzing data using ArcGIS Pro.Goals Install ArcGIS Pro and efficiently locate tools, options, and user interface elements. Add data to a map, symbolize map features to represent type, categories, or quantities; and optimize map display at various scales. Create a file geodatabase to organize and accurately maintain GIS data over time. Complete common mapping, editing, and analysis workflows.

  6. Earth Observation with Satellite Remote Sensing in ArcGIS Pro

    • ckan.americaview.org
    Updated May 3, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Earth Observation with Satellite Remote Sensing in ArcGIS Pro [Dataset]. https://ckan.americaview.org/dataset/earth-observation-with-satellite-remote-sensing-in-arcgis-pro
    Explore at:
    Dataset updated
    May 3, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Earth
    Description

    Lesson 1. An Introduction to working with multispectral satellite data in ArcGIS Pro In which we learn: • How to unpack tar and gz files from USGS EROS • The basic map interface in ArcGIS • How to add image files • What each individual band of Landsat spectral data looks like • The difference between: o Analysis-ready data: surface reflectance and surface temperature o Landsat Collection 1 Level 3 data: burned area and dynamic surface water o Sentinel2data o ISRO AWiFS and LISS-3 data Lesson 2. Basic image preprocessing In which we learn: • How to composite using the composite band tool • How to represent composite images • All about band combinations • How to composite using raster functions • How to subset data into a rectangle • How to clip to a polygon Lesson 3. Working with mosaic datasets In which we learn: o How to prepare an empty mosaic dataset o How to add images to a mosaic dataset o How to change symbology in a mosaic dataset o How to add a time attribute o How to add a time dimension to the mosaic dataset o How to view time series data in a mosaic dataset Lesson 4. Working with and creating derived datasets In which we learn: • How to visualize Landsat ARD surface temperature • How to calculate F° from K° using ARD surface temperature • How to generate and apply .lyrx files • How to calculate an NDVI raster using ISRO LISS-3 data • How to visualize burned areas using Landsat Level 3 data • How to visualize dynamic surface water extent using Landsat Level 3 data

  7. U

    Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro

    • data.usgs.gov
    • catalog.data.gov
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Black, Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro [Dataset]. http://doi.org/10.5066/P9RGW46K
    Explore at:
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Sarah Black
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Dec 2, 2020
    Description

    GIS project files and imagery data required to complete the Introduction to Planetary Image Analysis and Geologic Mapping in ArcGIS Pro tutorial. These data cover the area in and around Jezero crater, Mars.

  8. a

    02.1 Integrating Data in ArcGIS Pro

    • hub.arcgis.com
    Updated Feb 16, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Iowa Department of Transportation (2017). 02.1 Integrating Data in ArcGIS Pro [Dataset]. https://hub.arcgis.com/documents/cd5acdcc91324ea383262de3ecec17d0
    Explore at:
    Dataset updated
    Feb 16, 2017
    Dataset authored and provided by
    Iowa Department of Transportation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    You have been assigned a new project, which you have researched, and you have identified the data that you need.The next step is to gather, organize, and potentially create the data that you need for your project analysis.In this course, you will learn how to gather and organize data using ArcGIS Pro. You will also create a file geodatabase where you will store the data that you import and create.After completing this course, you will be able to perform the following tasks:Create a geodatabase in ArcGIS Pro.Create feature classes in ArcGIS Pro by exporting and importing data.Create a new, empty feature class in ArcGIS Pro.

  9. O

    A series of linked tutorials on ArcGIS Pro from Colby College in Maine, USA....

    • data.ct.gov
    application/rdfxml +5
    Updated Aug 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). A series of linked tutorials on ArcGIS Pro from Colby College in Maine, USA. [Dataset]. https://data.ct.gov/dataset/A-series-of-linked-tutorials-on-ArcGIS-Pro-from-Co/vh7x-ki8b
    Explore at:
    json, tsv, csv, application/rssxml, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Aug 30, 2023
    Area covered
    United States, Maine
    Description

    {{description}}

  10. g

    Analyze COVID-19 Risk Using ArcGIS Pro Lesson

    • coronavirus.geotecnologias.com
    Updated Mar 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Learn ArcGIS (2020). Analyze COVID-19 Risk Using ArcGIS Pro Lesson [Dataset]. https://coronavirus.geotecnologias.com/documents/b49f4226fd1f4bccb72ab5d308c7da73
    Explore at:
    Dataset updated
    Mar 20, 2020
    Dataset authored and provided by
    Learn ArcGIS
    Area covered
    Description

    Create risk maps for transmission, susceptibility, and resource scarcity. You'll also create a map of risk profiles to help pinpoint targeted intervention areas.For more information on the methodology and context behind the analyses, read this Map COVID-19 Risk Story Map.

  11. a

    08. Learn ArcGIS

    • hub.arcgis.com
    Updated Aug 16, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Teachers Teaching Teachers GIS (2018). 08. Learn ArcGIS [Dataset]. https://hub.arcgis.com/documents/EsriT3G::08-learn-arcgis
    Explore at:
    Dataset updated
    Aug 16, 2018
    Dataset authored and provided by
    Teachers Teaching Teachers GIS
    Area covered
    Description

    Scenario-based activities using specific tools, built by Esri and users. Explore the lessons, then filter for desired tools and level. At the bottom of the front page, one can request for free a 60-day login to the Learn Org, to use with their lessons ... but membership in the Learn Org is for adults only, as the process requires the user to provide first name, last name, and email address. K12 students should ONLY use their assigned school Org login in order to prevent sharing personally identifiable information. K12 students should therefore only be exploring lessons that engage software in the School Bundle -- ArcGIS Online (includes Survey123, Collector, Dashboard, Story Maps, Web AppBuilder), Community Analyst, or ArcGIS Pro or ArcMap.Go to the Learn site at http://learn.arcgis.com.

  12. f

    terraceDL: A geomorphology deep learning dataset of agricultural terraces in...

    • figshare.com
    bin
    Updated Mar 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron Maxwell (2023). terraceDL: A geomorphology deep learning dataset of agricultural terraces in Iowa, USA [Dataset]. http://doi.org/10.6084/m9.figshare.22320373.v2
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 22, 2023
    Dataset provided by
    figshare
    Authors
    Aaron Maxwell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iowa, United States
    Description

    scripts.zip

    arcgisTools.atbx: terrainDerivatives: make terrain derivatives from digital terrain model (Band 1 = TPI (50 m radius circle), Band 2 = square root of slope, Band 3 = TPI (annulus), Band 4 = hillshade, Band 5 = multidirectional hillshades, Band 6 = slopeshade). rasterizeFeatures: convert vector polygons to raster masks (1 = feature, 0 = background).

    makeChips.R: R function to break terrain derivatives and chips into image chips of a defined size. makeTerrainDerivatives.R: R function to generated 6-band terrain derivatives from digital terrain data (same as ArcGIS Pro tool). merge_logs.R: R script to merge training logs into a single file. predictToExtents.ipynb: Python notebook to use trained model to predict to new data. trainExperiments.ipynb: Python notebook used to train semantic segmentation models using PyTorch and the Segmentation Models package. assessmentExperiments.ipynb: Python code to generate assessment metrics using PyTorch and the torchmetrics library. graphs_results.R: R code to make graphs with ggplot2 to summarize results. makeChipsList.R: R code to generate lists of chips in a directory. makeMasks.R: R function to make raster masks from vector data (same as rasterizeFeatures ArcGIS Pro tool).

    terraceDL.zip

    dems: LiDAR DTM data partitioned into training, testing, and validation datasets based on HUC8 watershed boundaries. Original DTM data were provided by the Iowa BMP mapping project: https://www.gis.iastate.edu/BMPs. extents: extents of the training, testing, and validation areas as defined by HUC 8 watershed boundaries. vectors: vector features representing agricultural terraces and partitioned into separate training, testing, and validation datasets. Original digitized features were provided by the Iowa BMP Mapping Project: https://www.gis.iastate.edu/BMPs.

  13. d

    Test Resource for OGC Web Services

    • search.dataone.org
    • hydroshare.org
    • +1more
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Wise Calhoon (2022). Test Resource for OGC Web Services [Dataset]. https://search.dataone.org/view/sha256%3A59bae29350865fc2ca6d4c4d3f5995a2a51b7b0ebb9cc8414122cf46a63846c0
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Jacob Wise Calhoon
    Time period covered
    Aug 6, 2020
    Area covered
    Description

    This resource contains the test data for the GeoServer OGC Web Services tutorials for various GIS applications including ArcGIS Pro, ArcMap, ArcGIS Story Maps, and QGIS. The contents of the data include a polygon shapefile, a polyline shapefile, a point shapefile, and a raster dataset; all of which pertain to the state of Utah, USA. The polygon shapefile is of every county in the state of Utah. The polyline is of every trail in the state of Utah. The point shapefile is the current list of GNIS place names in the state of Utah. The raster dataset covers a region in the center of the state of Utah. All datasets are projected to NAD 1983 Zone 12N.

  14. Viewshed

    • rwanda.africageoportal.com
    • africageoportal.com
    • +3more
    Updated Jul 4, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). Viewshed [Dataset]. https://rwanda.africageoportal.com/content/1ff463dbeac14b619b9edbd7a9437037
    Explore at:
    Dataset updated
    Jul 4, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Viewshed analysis layer is used to identify visible areas. You specify the places you are interested in, either from a file or interactively, and the Viewshed service combines this with Esri-curated elevation data to create output polygons of visible areas. Some questions you can answer with the Viewshed task include:What areas can I see from this location? What areas can see me?Can I see the proposed wind farm?What areas can be seen from the proposed fire tower?The maximum number of input features is 1000.Viewshed has the following optional parameters:Maximum Distance: The maximum distance to calculate the viewshed.Maximum Distance Units: The units for the Maximum Distance parameter. The default is meters.DEM Resolution: The source elevation data; the default is 90m resolution SRTM. Other options include 30m, 24m, 10m, and Finest.Observer Height: The height above the surface of the observer. The default value of 1.75 meters is an average height of a person. If you are looking from an elevation location such as an observation tower or a tall building, use that height instead.Observer Height Units: The units for the Observer Height parameter. The default is meters.Surface Offset: The height above the surface of the object you are trying to see. The default value is 0. If you are trying to see buildings or wind turbines add their height here.Surface Offset Units: The units for the Surface Offset parameter. The default is meters.Generalize Viewshed Polygons: Determine if the viewshed polygons are to be generalized or not. The viewshed calculation is based upon a raster elevation model which creates a result with stair-stepped edges. To create a more pleasing appearance, and improve performance, the default behavior is to generalize the polygons. This generalization will not change the accuracy of the result for any location more than one half of the DEM's resolution.By default, this tool currently works worldwide between 60 degrees north and 56 degrees south based on the 3 arc-second (approximately 90 meter) resolution SRTM dataset. Depending upon the DEM resolution pick by the user, different data sources will be used by the tool. For 24m, tool will use global dataset WorldDEM4Ortho (excluding the counties of Azerbaijan, DR Congo and Ukraine) 0.8 arc-second (approximately 24 meter) from Airbus Defence and Space GmbH. For 30m, tool will use 1 arc-second resolution data in North America (Canada, United States, and Mexico) from the USGS National Elevation Dataset (NED), SRTM DEM-S dataset from Geoscience Australia in Australia and SRTM data between 60 degrees north and 56 degrees south in the remaining parts of the world (Africa, South America, most of Europe and continental Asia, the East Indies, New Zealand, and islands of the western Pacific). For 10m, tool will use 1/3 arc-second resolution data in the continental United States from USGS National Elevation Dataset (NED) and approximately 10 meter data covering Netherlands, Norway, Finland, Denmark, Austria, Spain, Japan Estonia, Latvia, Lithuania, Slovakia, Italy, Northern Ireland, Switzerland and Liechtenstein from various authoritative sources.To learn more, read the developer documentation for Viewshed or follow the Learn ArcGIS exercise called I Can See for Miles and Miles. To use this Geoprocessing service in ArcGIS Desktop 10.2.1 and higher, you can either connect to the Ready-to-Use Services, or create an ArcGIS Server connection. Connect to the Ready-to-Use Services by first signing in to your ArcGIS Online Organizational Account:Once you are signed in, the Ready-to-Use Services will appear in the Ready-to-Use Services folder or the Catalog window:If you would like to add a direct connection to the Elevation ArcGIS Server in ArcGIS for Desktop or ArcGIS Pro, use this URL to connect: https://elevation.arcgis.com/arcgis/services. You will also need to provide your account credentials. ArcGIS for Desktop:ArcGIS Pro:The ArcGIS help has additional information about how to do this:Learn how to make a ArcGIS Server Connection in ArcGIS Desktop. Learn more about using geoprocessing services in ArcGIS Desktop.This tool is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  15. H

    GeoServer Tutorials

    • hydroshare.org
    • beta.hydroshare.org
    zip
    Updated Aug 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Wise Calhoon (2022). GeoServer Tutorials [Dataset]. https://www.hydroshare.org/resource/753127b14dd443a1a4f2cf9634835d7a
    Explore at:
    zip(14.4 MB)Available download formats
    Dataset updated
    Aug 4, 2022
    Dataset provided by
    HydroShare
    Authors
    Jacob Wise Calhoon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This resources contains PDF files and Python notebook files that demonstrate how to create geospatial resources in HydroShare and how to use these resources through web services provided by the built-in HydroShare GeoServer instance. Geospatial resources can be consumed directly into ArcMap, ArcGIS, Story Maps, Quantum GIS (QGIS), Leaflet, and many other mapping environments. This provides HydroShare users with the ability to store data and retrieve it via services without needing to set up new data services. All tutorials cover how to add WMS and WFS connections. WCS connections are available for QGIS and are covered in the QGIS tutorial. The tutorials and examples provided here are intended to get the novice user up-to-speed with WMS and GeoServer, though we encourage users to read further on these topic using internet searches and other resources. Also included in this resource is a tutorial designed to that walk users through the process of creating a GeoServer connected resource.

    The current list of available tutorials: - Creating a Resource - ArcGIS Pro - ArcMap - ArcGIS Story Maps - QGIS - IpyLeaflet - Folium

  16. Regression Model Map

    • anrgeodata.vermont.gov
    Updated May 10, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Tutorials (2019). Regression Model Map [Dataset]. https://anrgeodata.vermont.gov/content/50b4195ee6b04a8bb2b3a78899ccd710
    Explore at:
    Dataset updated
    May 10, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Tutorials
    Area covered
    Description

    Explore time-discrete statistical climate downscaling using regression tools and a Jupyter notebook with Python to automate temperature predictions and build a time-series mosaic. This has been created for the Learn ArcGIS lesson Downscale climate data with machine learning.This is an archived copy of the tutorial data and will no longer be updated. For an up-to-date version, available only in English, please see Regression Analysis: Building a Regression Model Using ArcGIS Pro, Regression Analysis: Performing Random Forest Regression Using ArcGIS Pro, and Downscaling a Prediction Model Using ArcGIS Notebooks and ArcGIS Pro.

  17. f

    vfillDL: A geomorphology deep learning dataset of valley fill faces...

    • figshare.com
    bin
    Updated Mar 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aaron Maxwell (2023). vfillDL: A geomorphology deep learning dataset of valley fill faces resulting from mountaintop removal coal mining (southern West Virginia, eastern Kentucky, and southwestern Virginia, USA) [Dataset]. http://doi.org/10.6084/m9.figshare.22318522.v2
    Explore at:
    binAvailable download formats
    Dataset updated
    Mar 22, 2023
    Dataset provided by
    figshare
    Authors
    Aaron Maxwell
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Southwest Virginia, West Virginia, Southern West Virginia, United States
    Description

    scripts.zip

    arcgisTools.atbx: terrainDerivatives: make terrain derivatives from digital terrain model (Band 1 = TPI (50 m radius circle), Band 2 = square root of slope, Band 3 = TPI (annulus), Band 4 = hillshade, Band 5 = multidirectional hillshades, Band 6 = slopeshade). rasterizeFeatures: convert vector polygons to raster masks (1 = feature, 0 = background).

    makeChips.R: R function to break terrain derivatives and chips into image chips of a defined size. makeTerrainDerivatives.R: R function to generated 6-band terrain derivatives from digital terrain data (same as ArcGIS Pro tool). merge_logs.R: R script to merge training logs into a single file. predictToExtents.ipynb: Python notebook to use trained model to predict to new data. trainExperiments.ipynb: Python notebook used to train semantic segmentation models using PyTorch and the Segmentation Models package. assessmentExperiments.ipynb: Python code to generate assessment metrics using PyTorch and the torchmetrics library. graphs_results.R: R code to make graphs with ggplot2 to summarize results. makeChipsList.R: R code to generate lists of chips in a directory. makeMasks.R: R function to make raster masks from vector data (same as rasterizeFeatures ArcGIS Pro tool).

    vfillDL.zip

    dems: LiDAR DTM data partitioned into training, three testing, and two validation datasets. Original DTM data were obtained from 3DEP (https://www.usgs.gov/3d-elevation-program) and the WV GIS Technical Center (https://wvgis.wvu.edu/) . extents: extents of the training, testing, and validation areas. These extents were defined by the researchers. vectors: vector features representing valley fills and partitioned into separate training, testing, and validation datasets. Extents were created by the researchers.

  18. p

    Building Point Classification - New Zealand

    • pacificgeoportal.com
    Updated Sep 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eagle Technology Group Ltd (2023). Building Point Classification - New Zealand [Dataset]. https://www.pacificgeoportal.com/content/ebc54f498df94224990cf5f6598a5665
    Explore at:
    Dataset updated
    Sep 18, 2023
    Dataset authored and provided by
    Eagle Technology Group Ltd
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New Zealand
    Description

    This New Zealand Point Cloud Classification Deep Learning Package will classify point clouds into building and background classes. This model is optimized to work with New Zealand aerial LiDAR data.The classification of point cloud datasets to identify Building is useful in applications such as high-quality 3D basemap creation, urban planning, and planning climate change response.Building could have a complex irregular geometrical structure that is hard to capture using traditional means. Deep learning models are highly capable of learning these complex structures and giving superior results.This model is designed to extract Building in both urban and rural area in New Zealand.The Training/Testing/Validation dataset are taken within New Zealand resulting of a high reliability to recognize the pattern of NZ common building architecture.Licensing requirementsArcGIS Desktop - ArcGIS 3D Analyst extension for ArcGIS ProUsing the modelThe model can be used in ArcGIS Pro's Classify Point Cloud Using Trained Model tool. Before using this model, ensure that the supported deep learning frameworks libraries are installed. For more details, check Deep Learning Libraries Installer for ArcGIS.Note: Deep learning is computationally intensive, and a powerful GPU is recommended to process large datasets.The model is trained with classified LiDAR that follows the The model was trained using a training dataset with the full set of points. Therefore, it is important to make the full set of points available to the neural network while predicting - allowing it to better discriminate points of 'class of interest' versus background points. It is recommended to use 'selective/target classification' and 'class preservation' functionalities during prediction to have better control over the classification and scenarios with false positives.The model was trained on airborne lidar datasets and is expected to perform best with similar datasets. Classification of terrestrial point cloud datasets may work but has not been validated. For such cases, this pre-trained model may be fine-tuned to save on cost, time, and compute resources while improving accuracy. Another example where fine-tuning this model can be useful is when the object of interest is tram wires, railway wires, etc. which are geometrically similar to electricity wires. When fine-tuning this model, the target training data characteristics such as class structure, maximum number of points per block and extra attributes should match those of the data originally used for training this model (see Training data section below).OutputThe model will classify the point cloud into the following classes with their meaning as defined by the American Society for Photogrammetry and Remote Sensing (ASPRS) described below: 0 Background 6 BuildingApplicable geographiesThe model is expected to work well in the New Zealand. It's seen to produce favorable results as shown in many regions. However, results can vary for datasets that are statistically dissimilar to training data.Training dataset - Auckland, Christchurch, Kapiti, Wellington Testing dataset - Auckland, WellingtonValidation/Evaluation dataset - Hutt City Dataset City Training Auckland, Christchurch, Kapiti, Wellington Testing Auckland, Wellington Validating HuttModel architectureThis model uses the SemanticQueryNetwork model architecture implemented in ArcGIS Pro.Accuracy metricsThe table below summarizes the accuracy of the predictions on the validation dataset. - Precision Recall F1-score Never Classified 0.984921 0.975853 0.979762 Building 0.951285 0.967563 0.9584Training dataThis model is trained on classified dataset originally provided by Open TopoGraphy with < 1% of manual labelling and correction.Train-Test split percentage {Train: 75~%, Test: 25~%} Chosen this ratio based on the analysis from previous epoch statistics which appears to have a descent improvementThe training data used has the following characteristics: X, Y, and Z linear unitMeter Z range-137.74 m to 410.50 m Number of Returns1 to 5 Intensity16 to 65520 Point spacing0.2 ± 0.1 Scan angle-17 to +17 Maximum points per block8192 Block Size50 Meters Class structure[0, 6]Sample resultsModel to classify a dataset with 23pts/m density Wellington city dataset. The model's performance are directly proportional to the dataset point density and noise exlcuded point clouds.To learn how to use this model, see this story

  19. e

    New Zealand Esri User Conference

    • nzeuc.eagle.co.nz
    • nzeuc-eaglegis.hub.arcgis.com
    Updated May 5, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eagle Technology Group Ltd (2022). New Zealand Esri User Conference [Dataset]. https://nzeuc.eagle.co.nz/content/4395b4d4090e4898a54c9d2386506630
    Explore at:
    Dataset updated
    May 5, 2022
    Dataset authored and provided by
    Eagle Technology Group Ltd
    Area covered
    New Zealand
    Description

    Learn, Reconnect, and Discover the latest advances in Geographic Information Systems (GIS) technology when the New Zealand Esri User Conference returns in-person. Join hundreds of users from around the New Zealand and the South Pacific to discover how they’re leveraging GIS capabilities to solve problems, create shared understanding, and map common ground.This year's 3-day event includes not-to-be-missed opportunities for training, networking and sharing your own stories and experiences.A 2-day option is available for those short on time, while a 4-day option includes discounted instructor-led training for migrating to ArcGIS Pro.

  20. Glassy North Arrows for ArcGIS Pro

    • cacgeoportal.com
    Updated Sep 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Styles (2020). Glassy North Arrows for ArcGIS Pro [Dataset]. https://www.cacgeoportal.com/content/998442e7b1e943e592b67ec03091fcbe
    Explore at:
    Dataset updated
    Sep 25, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Styles
    Description

    This style for ArcGIS Pro contains four north arrows. They have a glassy semitransparent white appearance with a shadow effect for better visibility over highly textured surfaces while muted enough to provide balance.Plus they're a bit of fun sizzle.Will they look good over your map? Maybe! I wouldn't try them over a solid basemap though. They will look pretty bad probably. They are intended for the busy high contrast varied hues of an imagery basemap. But of course you will do what you feel is right, which may include not using them for any map.There is an arrowhead style north arrow and a cardinal ring arrow. These are standard north arrow shapes available in ArcGIS Pro, but given the glassy appearance. A stylized "N" and a minimalist arrow were drawn as custom SVGs then added to ArcGIS Pro and given the glassy appearance.Enjoy! John Nelson

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri Tutorials (2019). Use Deep Learning to Assess Palm Tree Health [Dataset]. https://hub.arcgis.com/documents/d50cea3d161542b681333f1bc265029a
Organization logo

Use Deep Learning to Assess Palm Tree Health

Explore at:
Dataset updated
Mar 14, 2019
Dataset provided by
Esrihttp://esri.com/
Authors
Esri Tutorials
Description

Coconuts and coconut products are an important commodity in the Tongan economy. Plantations, such as the one in the town of Kolovai, have thousands of trees. Inventorying each of these trees by hand would require lots of time and manpower. Alternatively, tree health and location can be surveyed using remote sensing and deep learning. In this lesson, you'll use the Deep Learning tools in ArcGIS Pro to create training samples and run a deep learning model to identify the trees on the plantation. Then, you'll estimate tree health using a Visible Atmospherically Resistant Index (VARI) calculation to determine which trees may need inspection or maintenance.

To detect palm trees and calculate vegetation health, you only need ArcGIS Pro with the Image Analyst extension. To publish the palm tree health data as a feature service, you need ArcGIS Online and the Spatial Analyst extension.

In this lesson you will build skills in these areas:

  • Creating training schema
  • Digitizing training samples
  • Using deep learning tools in ArcGIS Pro
  • Calculating VARI
  • Extracting data to points

Learn ArcGIS is a hands-on, problem-based learning website using real-world scenarios. Our mission is to encourage critical thinking, and to develop resources that support STEM education.

Search
Clear search
Close search
Google apps
Main menu