89 datasets found
  1. a

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • catalogue.arctic-sdi.org
    • datasets.ai
    • +2more
    Updated Oct 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?format=MOV
    Explore at:
    Dataset updated
    Oct 28, 2019
    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  2. a

    Using Unsupervised Machine Learning For Land Use Land Cover Classification

    • gulf-coast-geospatial-geo-project.hub.arcgis.com
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GEOproject_admin (2025). Using Unsupervised Machine Learning For Land Use Land Cover Classification [Dataset]. https://gulf-coast-geospatial-geo-project.hub.arcgis.com/items/9b48d400cc77474e89f2e804e7dd4f4d
    Explore at:
    Dataset updated
    Feb 6, 2025
    Dataset authored and provided by
    GEOproject_admin
    Description

    Raczynski, K., Xavier, F., & Cartwright, J. H. (2025). GEO Tutorial: Dealing with Coastal Flooding series, part 3A: Using Unsupervised Machine Learning For Land Use Land Cover Classification. Mississippi State University: Geosystems Research Institute. [View Document] GEO TutorialNumber of Pages: 5Publication Date: 06/2025This work was supported through funding by the National Oceanic and Atmospheric Administration Regional Geospatial Modeling Grant, Award # NA19NOS4730207.

  3. GISF2E: ArcGIS, QGIS, and python tools and Tutorial

    • figshare.com
    pdf
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Road Networks (2023). GISF2E: ArcGIS, QGIS, and python tools and Tutorial [Dataset]. http://doi.org/10.6084/m9.figshare.2065320.v3
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Urban Road Networks
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    ArcGIS tool and tutorial to convert the shapefiles into network format. The latest version of the tool is available at http://csun.uic.edu/codes/GISF2E.htmlUpdate: we now have added QGIS and python tools. To download them and learn more, visit http://csun.uic.edu/codes/GISF2E.htmlPlease cite: Karduni,A., Kermanshah, A., and Derrible, S., 2016, "A protocol to convert spatial polyline data to network formats and applications to world urban road networks", Scientific Data, 3:160046, Available at http://www.nature.com/articles/sdata201646

  4. S

    Two residential districts datasets from Kielce, Poland for building semantic...

    • scidb.cn
    Updated Sep 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agnieszka Łysak (2022). Two residential districts datasets from Kielce, Poland for building semantic segmentation task [Dataset]. http://doi.org/10.57760/sciencedb.02955
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 29, 2022
    Dataset provided by
    Science Data Bank
    Authors
    Agnieszka Łysak
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    Kielce, Poland
    Description

    Today, deep neural networks are widely used in many computer vision problems, also for geographic information systems (GIS) data. This type of data is commonly used for urban analyzes and spatial planning. We used orthophotographic images of two residential districts from Kielce, Poland for research including urban sprawl automatic analysis with Transformer-based neural network application.Orthophotomaps were obtained from Kielce GIS portal. Then, the map was manually masked into building and building surroundings classes. Finally, the ortophotomap and corresponding classification mask were simultaneously divided into small tiles. This approach is common in image data preprocessing for machine learning algorithms learning phase. Data contains two original orthophotomaps from Wietrznia and Pod Telegrafem residential districts with corresponding masks and also their tiled version, ready to provide as a training data for machine learning models.Transformed-based neural network has undergone a training process on the Wietrznia dataset, targeted for semantic segmentation of the tiles into buildings and surroundings classes. After that, inference of the models was used to test model's generalization ability on the Pod Telegrafem dataset. The efficiency of the model was satisfying, so it can be used in automatic semantic building segmentation. Then, the process of dividing the images can be reversed and complete classification mask retrieved. This mask can be used for area of the buildings calculations and urban sprawl monitoring, if the research would be repeated for GIS data from wider time horizon.Since the dataset was collected from Kielce GIS portal, as the part of the Polish Main Office of Geodesy and Cartography data resource, it may be used only for non-profit and non-commertial purposes, in private or scientific applications, under the law "Ustawa z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (Dz.U. z 2006 r. nr 90 poz 631 z późn. zm.)". There are no other legal or ethical considerations in reuse potential.Data information is presented below.wietrznia_2019.jpg - orthophotomap of Wietrznia districtmodel's - used for training, as an explanatory imagewietrznia_2019.png - classification mask of Wietrznia district - used for model's training, as a target imagewietrznia_2019_validation.jpg - one image from Wietrznia district - used for model's validation during training phasepod_telegrafem_2019.jpg - orthophotomap of Pod Telegrafem district - used for model's evaluation after training phasewietrznia_2019 - folder with wietrznia_2019.jpg (image) and wietrznia_2019.png (annotation) images, divided into 810 tiles (512 x 512 pixels each), tiles with no information were manually removed, so the training data would contain only informative tilestiles presented - used for the model during training (images and annotations for fitting the model to the data)wietrznia_2019_vaidation - folder with wietrznia_2019_validation.jpg image divided into 16 tiles (256 x 256 pixels each) - tiles were presented to the model during training (images for validation model's efficiency); it was not the part of the training datapod_telegrafem_2019 - folder with pod_telegrafem.jpg image divided into 196 tiles (256 x 265 pixels each) - tiles were presented to the model during inference (images for evaluation model's robustness)Dataset was created as described below.Firstly, the orthophotomaps were collected from Kielce Geoportal (https://gis.kielce.eu). Kielce Geoportal offers a .pst recent map from April 2019. It is an orthophotomap with a resolution of 5 x 5 pixels, constructed from a plane flight at 700 meters over ground height, taken with a camera for vertical photos. Downloading was done by WMS in open-source QGIS software (https://www.qgis.org), as a 1:500 scale map, then converted to a 1200 dpi PNG image.Secondly, the map from Wietrznia residential district was manually labelled, also in QGIS, in the same scope, as the orthophotomap. Annotation based on land cover map information was also obtained from Kielce Geoportal. There are two classes - residential building and surrounding. Second map, from Pod Telegrafem district was not annotated, since it was used in the testing phase and imitates situation, where there is no annotation for the new data presented to the model.Next, the images was converted to an RGB JPG images, and the annotation map was converted to 8-bit GRAY PNG image.Finally, Wietrznia data files were tiled to 512 x 512 pixels tiles, in Python PIL library. Tiles with no information or a relatively small amount of information (only white background or mostly white background) were manually removed. So, from the 29113 x 15938 pixels orthophotomap, only 810 tiles with corresponding annotations were left, ready to train the machine learning model for the semantic segmentation task. Pod Telegrafem orthophotomap was tiled with no manual removing, so from the 7168 x 7168 pixels ortophotomap were created 197 tiles with 256 x 256 pixels resolution. There was also image of one residential building, used for model's validation during training phase, it was not the part of the training data, but was a part of Wietrznia residential area. It was 2048 x 2048 pixel ortophotomap, tiled to 16 tiles 256 x 265 pixels each.

  5. H

    US Census QGIS Training 101 Data

    • dataverse.harvard.edu
    Updated Jun 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kevin Lane (2024). US Census QGIS Training 101 Data [Dataset]. http://doi.org/10.7910/DVN/KCOHVH
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 25, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Kevin Lane
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    This data is comprised of U.S. Census tracts for the year 2019 with data from the American Community Survey, CDC social vulnerability index, CDC Places EPA toxic release inventory sites, PM2.5 annual average from the Atmospheric Composition Analysis Group (https://sites.wustl.edu/acag/). This dataset was created as part of the CAFE Introduction to QGIS 101!!! Session on 6/27/2024 and is for training purposes only.

  6. Geoprocessing Data in QGIS (training)

    • figshare.com
    zip
    Updated Feb 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lucia Michielin; Ki Tong (2025). Geoprocessing Data in QGIS (training) [Dataset]. http://doi.org/10.6084/m9.figshare.28428731.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 17, 2025
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Lucia Michielin; Ki Tong
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This repo contains a series of datasets connected to training on geoprocessing.Within the zipped folder there are two subfolder, one containing raster data and the second one containing vector data.

  7. Open-Source GIScience Online Course

    • ckan.americaview.org
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.americaview.org (2021). Open-Source GIScience Online Course [Dataset]. https://ckan.americaview.org/dataset/open-source-giscience-online-course
    Explore at:
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In this course, you will explore a variety of open-source technologies for working with geosptial data, performing spatial analysis, and undertaking general data science. The first component of the class focuses on the use of QGIS and associated technologies (GDAL, PROJ, GRASS, SAGA, and Orfeo Toolbox). The second component of the class introduces Python and associated open-source libraries and modules (NumPy, Pandas, Matplotlib, Seaborn, GeoPandas, Rasterio, WhiteboxTools, and Scikit-Learn) used by geospatial scientists and data scientists. We also provide an introduction to Structured Query Language (SQL) for performing table and spatial queries. This course is designed for individuals that have a background in GIS, such as working in the ArcGIS environment, but no prior experience using open-source software and/or coding. You will be asked to work through a series of lecture modules and videos broken into several topic areas, as outlined below. Fourteen assignments and the required data have been provided as hands-on opportunites to work with data and the discussed technologies and methods. If you have any questions or suggestions, feel free to contact us. We hope to continue to update and improve this course. This course was produced by West Virginia View (http://www.wvview.org/) with support from AmericaView (https://americaview.org/). This material is based upon work supported by the U.S. Geological Survey under Grant/Cooperative Agreement No. G18AP00077. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Geological Survey. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Geological Survey. After completing this course you will be able to: apply QGIS to visualize, query, and analyze vector and raster spatial data. use available resources to further expand your knowledge of open-source technologies. describe and use a variety of open data formats. code in Python at an intermediate-level. read, summarize, visualize, and analyze data using open Python libraries. create spatial predictive models using Python and associated libraries. use SQL to perform table and spatial queries at an intermediate-level.

  8. EXPLORE Machine Learning Lunar Data Challenges 2022 - QGIS project

    • zenodo.org
    zip
    Updated Mar 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giacomo Nodjoumi; Giacomo Nodjoumi; Javier Suarez Valencia; Javier Suarez Valencia (2023). EXPLORE Machine Learning Lunar Data Challenges 2022 - QGIS project [Dataset]. http://doi.org/10.5281/zenodo.7179842
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 1, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Giacomo Nodjoumi; Giacomo Nodjoumi; Javier Suarez Valencia; Javier Suarez Valencia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains the the EXPLORE Machine Learning Data Challenge 2022 QGIS project.

    The project embed the following Archytas Dome layers:

    Raster

    • Narrow Angle Camera (NAC)
    • DEM derived from NAC
    • Slope computer on DEM

    Vectorial

    • POIs - Points Of Interest to be used in STEP 3

    More information at: https://exploredatachallenges.space/

    Images were processed from NASA PDS raw data using USGS ISIS and NASA ASP tools.

  9. Z

    2021 UN Open GIS Challenge 1 - Training on Satellite Data Analysis and...

    • data.niaid.nih.gov
    Updated Sep 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Patrick Happ (2021). 2021 UN Open GIS Challenge 1 - Training on Satellite Data Analysis and Machine Learning with QGIS (Satellite_QGIS) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_5507080
    Explore at:
    Dataset updated
    Sep 30, 2021
    Dataset authored and provided by
    Patrick Happ
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset is part of the 2021 UN Open GIS Challenge 1 - Training on Satellite Data Analysis and Machine Learning with QGIS (Satellite_QGIS), Exercise 1: Supervised Change Detection: Monitoring deglaciation in Huascaran, Peru.

    The folder structure is the following:

    Clip: clipped images to the region of interest

    Images: original images from Landsat 8, Sentinel-1 and Sentinel-2 satellites.

    Preprocess: pre-processed images.

    Reports: classification reports of the generated masks.

    Results: classification maps.

    RGB_Compositions: true color RGB compositions.

    Stacks: multiband rasters with all bands stacked from Landsat 8 satellite.

  10. q

    Data management and introduction to QGIS and RStudio for spatial analysis

    • qubeshub.org
    Updated May 22, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Meghan MacLean (2020). Data management and introduction to QGIS and RStudio for spatial analysis [Dataset]. http://doi.org/10.25334/48G8-6Y44
    Explore at:
    Dataset updated
    May 22, 2020
    Dataset provided by
    QUBES
    Authors
    Meghan MacLean
    Description

    Students learn about the importance of good data management and begin to explore QGIS and RStudio for spatial analysis purposes. Students will explore National Land Cover Database raster data and made-up vector point data on both platforms.

  11. o

    QGreenland

    • explore.openaire.eu
    • data.niaid.nih.gov
    • +1more
    Updated Feb 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Twila Moon; Matt Fisher; Trey Stafford; Lynne Harden (2021). QGreenland [Dataset]. http://doi.org/10.5281/zenodo.8247910
    Explore at:
    Dataset updated
    Feb 22, 2021
    Authors
    Twila Moon; Matt Fisher; Trey Stafford; Lynne Harden
    Description

    QGreenland is a free and open-source Greenland-focused GIS environment for data analysis and viewing, powered by QGIS.

  12. Open Source GIS Training for Improved Protected Area Planning and Management...

    • solomonislands-data.sprep.org
    • pacific-data.sprep.org
    pdf, zip
    Updated Feb 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bradley Eichelberger, SPREP PIPAP GIS Consultant (2022). Open Source GIS Training for Improved Protected Area Planning and Management in the Solomon Islands [Dataset]. https://solomonislands-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-solomon-islands
    Explore at:
    zip(702782472), pdf(3669473), pdf(969719), pdf(5434848)Available download formats
    Dataset updated
    Feb 15, 2022
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    Authors
    Bradley Eichelberger, SPREP PIPAP GIS Consultant
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Solomon Islands, 168.10043334961 -12.561265715616)), POLYGON ((155.35629272461 -12.561265715616, 155.35629272461 -4.0464671937446, 168.10043334961 -4.0464671937446
    Description

    Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from a workshop that was conducted on October 19-23, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

    Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

  13. QGIS

    • samoa-data.sprep.org
    • pacificdata.org
    • +14more
    pdf, zip
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Secretariat of the Pacific Regional Environment Programme (2025). QGIS [Dataset]. https://samoa-data.sprep.org/dataset/qgis
    Explore at:
    pdf, pdf(179911), pdf(25618331), zipAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Pacific Region
    Description

    QGIS is a Free and Open Source Geographic Information System. This dataset contains all the information to get you started.

  14. Training: 3. GIS Concepts, Applications, and Software

    • sudan-uneplive.hub.arcgis.com
    Updated Jun 25, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    UN Environment, Early Warning &Data Analytics (2020). Training: 3. GIS Concepts, Applications, and Software [Dataset]. https://sudan-uneplive.hub.arcgis.com/documents/642a61631daf44e0b91991fbd774e3e8
    Explore at:
    Dataset updated
    Jun 25, 2020
    Dataset provided by
    United Nations Environment Programmehttp://www.unep.org/
    Authors
    UN Environment, Early Warning &Data Analytics
    Description

    This is a full-day training, developed by UNEP CMB, to introduce participants to the basics of GIS, how to import points from Excel to a GIS, and how to make maps with QGIS, MapX and Tableau. It prioritizes the use of free and open software.

  15. Z

    Forest fire assessement training dataset (2022-07-18 fire at Maclas -...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Oct 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Roelandt Nicolas (2023). Forest fire assessement training dataset (2022-07-18 fire at Maclas - France) [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8435541
    Explore at:
    Dataset updated
    Oct 16, 2023
    Dataset authored and provided by
    Roelandt Nicolas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    France, Maclas
    Description

    This dataset has been created to train Univ. Eiffel personnels on raster data handling with QGIS. It provides the following elements:

    Geopackage database with the following layers:

    QGIS project Extract from the SENTINEL-2 2022-06-11 B8A band Extract from the SENTINEL-2 2022-06-11 B12 band Extract from the SENTINEL-2 2022-07-21 B8A band Extract from the SENTINEL-2 2022-07-21 B12 band Reclassified delta NBR raster layer Delta NBR vector layer Studied area bounding box Intermediate results:

    pre-event NBR raster file post-event NBR raster file Delta NBR raster file Delta NBR raster file multiplied by 1000 (for easier reclassification) Data sources IDs from opensearch-theia.cnes.fr-sentinel2-l2a catalogue :

    SENTINEL2B_20220721-104826-811_L2A_T31TFL_D SENTINEL2B_20220611-104824-395_L2A_T31TFL_D

  16. Digital Geohazard-GIS Map of the Zion National Park Study Area, Utah (NPS,...

    • catalog.data.gov
    Updated Nov 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geohazard-GIS Map of the Zion National Park Study Area, Utah (NPS, GRD, GRI, ZION, ZION_geohazards digital map) adapted from a Utah Geological Survey Special Study Map by Lund, Knudsen, and Sharrow (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geohazard-gis-map-of-the-zion-national-park-study-area-utah-nps-grd-gri-zion-zion-
    Explore at:
    Dataset updated
    Nov 2, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Utah
    Description

    The Digital Geohazard-GIS Map of the Zion National Park Study Area, Utah is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (zion_geohazards.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (zion_geohazards.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (zion_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (zion_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (zion_geohazards_metadata_faq.pdf). Please read the zion_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Utah Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (zion_geohazards_metadata.txt or zion_geohazards_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  17. S

    Satellite Remote Sensing Software Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Satellite Remote Sensing Software Report [Dataset]. https://www.marketreportanalytics.com/reports/satellite-remote-sensing-software-53977
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global satellite remote sensing software market is experiencing robust growth, driven by increasing demand across diverse sectors. While precise figures for market size and CAGR aren't provided, considering the technological advancements and applications in agriculture (precision farming, crop monitoring), water conservancy (flood management, irrigation optimization), forest management (deforestation monitoring, resource assessment), and the public sector (urban planning, disaster response), a conservative estimate places the 2025 market size at approximately $2 billion. This figure reflects the substantial investments in satellite imagery acquisition and analysis capabilities worldwide. The market is further fueled by the rising adoption of cloud-based solutions, enhancing accessibility and scalability of software platforms. Trends such as the integration of AI and machine learning for automated image processing, the proliferation of high-resolution satellite imagery, and the increasing availability of open-source software are accelerating market expansion. However, factors such as the high cost of specialized software licenses and the need for skilled professionals to operate the sophisticated systems act as restraints. The market is segmented by application (agriculture, water conservancy, forest management, public sector, others) and software type (open-source, non-open-source). The North American and European markets currently hold significant shares, but the Asia-Pacific region is witnessing rapid growth due to increasing infrastructure development and government initiatives promoting geospatial technologies. This dynamic market landscape presents lucrative opportunities for both established players and emerging companies in the years to come. The forecast period (2025-2033) anticipates continued growth, with a projected CAGR of approximately 12%, driven by the aforementioned technological advancements and broadening applications across various industry verticals. The competitive landscape is comprised of both major players like ESRI, Trimble, and PCI Geomatica, offering comprehensive suites of software, and smaller, specialized companies focusing on niche applications or open-source solutions. The market is characterized by both proprietary and open-source software options. Open-source solutions like QGIS and GRASS GIS offer cost-effective alternatives, particularly for research and smaller organizations, while commercial solutions provide advanced functionalities and support. The increasing availability of cloud-based solutions is blurring the lines between these segments, with hybrid models emerging that combine the benefits of both. Future growth will be significantly influenced by collaborations between software providers and satellite imagery providers, fostering a more integrated ecosystem and streamlining the data acquisition and processing workflow. The market will continue to benefit from advancements in satellite technology, producing higher-resolution, more frequent, and more affordable imagery.

  18. H

    Digital Elevation Models and GIS in Hydrology (M2)

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Jun 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Irene Garousi-Nejad; Belize Lane (2021). Digital Elevation Models and GIS in Hydrology (M2) [Dataset]. http://doi.org/10.4211/hs.9c4a6e2090924d97955a197fea67fd72
    Explore at:
    zip(88.2 MB)Available download formats
    Dataset updated
    Jun 7, 2021
    Dataset provided by
    HydroShare
    Authors
    Irene Garousi-Nejad; Belize Lane
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This resource contains data inputs and a Jupyter Notebook that is used to introduce Hydrologic Analysis using Terrain Analysis Using Digital Elevation Models (TauDEM) and Python. TauDEM is a free and open-source set of Digital Elevation Model (DEM) tools developed at Utah State University for the extraction and analysis of hydrologic information from topography. This resource is part of a HydroLearn Physical Hydrology learning module available at https://edx.hydrolearn.org/courses/course-v1:Utah_State_University+CEE6400+2019_Fall/about

    In this activity, the student learns how to (1) derive hydrologically useful information from Digital Elevation Models (DEMs); (2) describe the sequence of steps involved in mapping stream networks, catchments, and watersheds; and (3) compute an approximate water balance for a watershed-based on publicly available data.

    Please note that this exercise is designed for the Logan River watershed, which drains to USGS streamflow gauge 10109000 located just east of Logan, Utah. However, this Jupyter Notebook and the analysis can readily be applied to other locations of interest. If running the terrain analysis for other study sites, you need to prepare a DEM TIF file, an outlet shapefile for the area of interest, and the average annual streamflow and precipitation data. - There are several sources to obtain DEM data. In the U.S., the DEM data (with different spatial resolutions) can be obtained from the National Elevation Dataset available from the national map (http://viewer.nationalmap.gov/viewer/). Another DEM data source is the Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), an international research effort that obtained digital elevation models on a near-global scale (search for Digital Elevation at https://www.usgs.gov/centers/eros/science/usgs-eros-archive-products-overview?qt-science_center_objects=0#qt-science_center_objects). - If not already available, you can generate the outlet shapefile by applying basic terrain analysis steps in geospatial information system models such as ArcGIS or QGIS. - You also need to obtain average annual streamflow and precipitation data for the watershed of interest to assess the annual water balance and calculate the runoff ratio in this exercise. In the U.S., the streamflow data can be obtained from the USGS NWIS website (https://waterdata.usgs.gov/nwis) and the precipitation from PRISM (https://prism.oregonstate.edu/normals/). Note that using other datasets may require preprocessing steps to make data ready to use for this exercise.

  19. w

    GIS methods for hydrogeology mapping in Timor-Leste, QGIS version (free...

    • data.wu.ac.at
    • cinergi.sdsc.edu
    pdf
    Updated Jun 26, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). GIS methods for hydrogeology mapping in Timor-Leste, QGIS version (free software): Vulnerability assessment of climate change impacts on groundwater resources in Timor-Leste [Dataset]. https://data.wu.ac.at/schema/data_gov_au/ZTNhMTkxNjItODgwMi00M2U5LTk0MzgtOWVmYTcxMDhhYTUy
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 26, 2018
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This document outlines some of the methods used by Geoscience Australia (GA) to symbolise the Geology and Hydrogeology map of Timor-Leste. It is designed to be used as a knowledge-sharing and educational tool by water resource management and geology technicians from Timor-Leste government agencies.

  20. Raw planetary images and boulder labels data (as shapefiles) collected...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Nov 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nils Prieur; Nils Prieur; Brian Amaro; Brian Amaro; Emiliano Gonzalez; Emiliano Gonzalez; Mathieu Lapotre; Mathieu Lapotre (2024). Raw planetary images and boulder labels data (as shapefiles) collected during the BOULDERING Marie Skłodowska-Curie Global fellowship [Dataset]. http://doi.org/10.5281/zenodo.14250970
    Explore at:
    zipAvailable download formats
    Dataset updated
    Nov 30, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Nils Prieur; Nils Prieur; Brian Amaro; Brian Amaro; Emiliano Gonzalez; Emiliano Gonzalez; Mathieu Lapotre; Mathieu Lapotre
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Nov 2024
    Description

    This database contains 64 large images of craters on the lunar and martian surfaces and 3 images of boulder fields on Earth (see manuscript https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2023JE008013 for more information on those terrestrial locations). The data was collected during the BOULDERING Marie Skłodowska-Curie Global fellowship between October 2021 and 2024.

    For each image, the boulder outlines within specific tiles within the image were carefully mapped in QGIS. More information about the labelling procedure can be found in the following manuscript (https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2023JE008013). This dataset differs from the previous dataset included along with the manuscript https://zenodo.org/records/8171052, as it contains more mapped images, especially of boulder populations around young impact structures on the Moon (cold spots).

    For each location, you will find a raster with a .tif format, and three shapefiles:

    • a boulder-mapping file, which is the manually digitized outline of boulders.

    • a tiles-completely-mapped file, which depicts the patches/tiles/windows on which the boulder mapping has been conducted.

    • a global-tiles file, which shows all of the image patches/tiles/windows (pick the term you are the most familiar with) within a raster.

    In addition you will find .pkl (which stands for pickle), which contains some information about the patches/tiles/windows if you would need to clip those windows out from the original raster. You can find more information in the way we process this raw data into a format which can be ingested in a deep learning model (see https://zenodo.org/records/14250874) in the two following github repositories (https://github.com/astroNils/YOLOv8-BeyondEarth and https://github.com/astroNils/MLtools). If you don't plan in adding more training data, you can directly used the pre-processed database (see https://zenodo.org/records/14250874).

    There are multiple locations/images per planetary body. Cold spots are located on the Moon, but they are saved in a folder of their own.

    Note that the cold spots boulder mapping shapefiles are partially manually mapped, and partially originating from predictions made from a deep learning model (which explains the outline of boulders are predicted within one pixel).

    How to cite:

    Please refer to the "how to cite" section of the readme file of https://github.com/astroNils/YOLOv8-BeyondEarth.

    Structure:

    .
    └── raw_data/
    ├── coldspots/
     │ └── image_name/
     │  ├── shp/
     │  │ ├── 
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2019). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?format=MOV

QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems

Explore at:
Dataset updated
Oct 28, 2019
Description

Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

Search
Clear search
Close search
Google apps
Main menu