Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In order to use the standard hatch legend for Romanian soil texture maps in the ESRI ArcMap-10 electronic format, a dataset consisting a shapefile set (.dbf, .shp, .shx, .sbn, and .sbx files), two different .lyr files, and two different .style files have been prepared (ESRI, 2016). The shapefile set is not a “real” georeferenced layer/coverage; it is designed only to handle all the instants of soil texture items from the standard legend. This legend is related to the current Romanian system of soil taxonomy, SRTS-2012+, and consists of three sub-standards, corresponding to three taxonomic levels: soil qualifiers, soil textural classes, and soil textural subclasses. At the first level there are five hatches for the four soil qualifiers related to soil texture and for the “Skeletic” soil, and two miscellaneous items (various textures and unspecified texture), at the second level there are eight hatches for the seven soil textural classes and for the Skeletic soil, and the two miscellaneous items, and at the third level there are 14 hatches for the 13 soil textural subclasses and for the Skeletic soil, and three miscellaneous items. The correlation with the FAO soil textural classes/subclasses, used by the international soil classification system WRB, is very approximate, given that the Romanian soil classification systems use the Atterberg system to define soil particle size fractions and a specific definition of soil texture classes/subclasses – different from that of FAO. All the standard hatches may be combined to indicate an association of two soil textural classes/sub-classes in a map delineation. Also, the hatch legend may be joined to a color legend for developing a mixed map of soil type and soil texture. The two different .lyr files presented here are: legend_txtcode_srts_en.lyr, and legend_txtcode_en.lyr. Both of them are built using as value field the ‘CODE_TXT3’ field, coding the soil texture subclass at a more detailed level, but the first one uses as labels (explanation texts) the ‘TEXT_RE’ field, storing the soil texture subclass name in SRTS-2012+ and in English language, while the second one, the ‘TEXT_WRB3’ field, storing the SRTS-2012+ soil texture subclass name in English language. In order to exemplify how the legend is displayed, a .jpg file is also presented: legend_txt.jpg, displaying the legend (symbols and labels) according to the first .lyr file. The two different .style files presented here are: txt_codes.style and txt_abbrev.style. The symbol (hatches) for each different map feature has been built and stored in these two .style files, using as name the soil texture subclass code and, respectively, the SRTS-2012+ soil texture subclass name abbreviation.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: J. Cain, educator, Minnesota Alliance for Geographic EducationGrade/Audience: grade 4Resource type: lessonSubject topic(s): mapsRegion: united statesStandards: Minnesota Social Studies Standards
Standard 2: People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context. Objectives: Students will be able to:
Explore a variety of maps.
Become acquainted with the elements of maps referred to as TODALS:
Title
Orientation
Date
Author
Legend (Key)
Scale
Locate and interpret TODALS from a variety of maps.
Compare and contrast elements of given maps while looking for bias.
Reflect on the importance of knowing TODALS when understanding and interpreting maps. Summary: Basic mapping terminology is essential for understanding and interpreting various types of maps. Knowing where to find these essential elements, and interpreting their meaning, are critical to the development of a 4th grader’s knowledge of geography.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Retirement Notice: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version.This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map Viewer To show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021 By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this: 4. Click the styles button.5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off. Showing just one pair of years in ArcGIS Pro To show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well. How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022 What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch. Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com
Facebook
TwitterContained within 3rd Edition (1957) of the Atlas of Canada is a map that shows the division of Canada into climatic regions according to the classification of the climates of the world developed by W. Koppen. Koppen first divided the world into five major divisions to which he assigned the letters A, B, C, D, and E. The letters represent the range of divisions from tropical climate (A) to polar climate (E). There are no A climates in Canada. The descriptions of the four remaining major divisions are given in the map legend. Koppen then divided the large divisions into a number of climatic types in accordance with temperature differences and variations in the amounts and distribution of precipitation, on the basis of which he added certain letters to the initial letter denoting the major division. The definitions of the additional letters which apply in Canada are also given when they first appear in the map legend. Thus b is defined under Csb and the definition is, therefore, not repeated under Cfb, Dfb or Dsb. For this map, the temperature and precipitation criteria established by Koppen have been applied to Canadian data for a standard thirty year period (1921 to 1950 inclusive).
Facebook
TwitterSoil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations.Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from the gSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset SummaryPhenomenon Mapped: Soils of the United States and associated territoriesGeographic Extent: The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System: Web Mercator Auxiliary SphereVisible Scale: 1:144,000 to 1:1,000Source: USDA Natural Resources Conservation ServiceUpdate Frequency: AnnualPublication Date: December 2024 What can you do with this layer?ArcGIS OnlineFeature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro.Below are just a few of the things you can do with a feature service in Online and Pro.Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-up ArcGIS ProAdd this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units.Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field.Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field.Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields.Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - PresenceRating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r).Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -
Facebook
TwitterOverviewThe Jurisdictional Units dataset outlines wildland fire jurisdictional boundaries for federal, state, and local government entities on a national scale and is used within multiple wildland fire systems including the Wildland Fire Decision Support System (WFDSS), the Interior Fuels and Post-Fire Reporting System (IFPRS), the Interagency Fuels Treatment Decision Support System (IFTDSS), the Interagency Fire Occurrence Reporting Modules (InFORM), the Interagency Reporting of Wildland Fire Information System (IRWIN), and the Wildland Computer-Aided Dispatch Enterprise System (WildCAD-E).In this dataset, agency and unit names are an indication of the primary manager’s name and unit name, respectively, recognizing that:There may be multiple owner names.Jurisdiction may be held jointly by agencies at different levels of government (ie State and Local), especially on private lands, Some owner names may be blocked for security reasons.Some jurisdictions may not allow the distribution of owner names. Private ownerships are shown in this layer with JurisdictionalUnitIID=null, JurisdictionalKind=null, and LandownerKind="Private", LandownerCategory="Private". All land inside the US country boundary is covered by a polygon.Jurisdiction for privately owned land varies widely depending on state, county, or local laws and ordinances, fire workload, and other factors, and is not available in a national dataset in most cases.For publicly held lands the agency name is the surface managing agency, such as Bureau of Land Management, United States Forest Service, etc. The unit name refers to the descriptive name of the polygon (i.e. Northern California District, Boise National Forest, etc.).AttributesField NameDefinitionGeometryIDPrimary key for linking geospatial objects with other database systems. Required for every feature. Not populated for Census Block Groups.JurisdictionalUnitIDWhere it could be determined, this is the NWCG Unit Identifier (Unit ID). Where it is unknown, the value is ‘Null’. Null Unit IDs can occur because a unit may not have a Unit ID, or because one could not be reliably determined from the source data. Not every land ownership has an NWCG Unit ID. Unit ID assignment rules are available in the Unit ID standard.JurisdictionalUnitID_sansUSNWCG Unit ID with the "US" characters removed from the beginning. Provided for backwards compatibility.JurisdictionalUnitNameThe name of the Jurisdictional Unit. Where an NWCG Unit ID exists for a polygon, this is the name used in the Name field from the NWCG Unit ID database. Where no NWCG Unit ID exists, this is the “Unit Name” or other specific, descriptive unit name field from the source dataset. A value is populated for all polygons except for Census Blocks Group and for PAD-US polygons that did not have an associated name.LocalNameLocal name for the polygon provided from agency authoritative data, PAD-US, or other source.JurisdictionalKindDescribes the type of unit jurisdiction using the NWCG Landowner Kind data standard. There are two valid values: Federal, Other, and Private. A value is not populated for Census Block Groups.JurisdictionalCategoryDescribes the type of unit jurisdiction using the NWCG Landowner Category data standard. Valid values include: BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, State, OtherLoc (other local, not in the standard), Private, and ANCSA. A value is not populated for Census Block Groups.LandownerKindThe landowner kind value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. Legal values align with the NWCG Landowner Kind data standard. A value is populated for all polygons.LandownerCategoryThe landowner category value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. Legal values align with the NWCG Landowner Category data standard. A value is populated for all polygons.LandownerDepartmentFederal department information that aligns with a unit’s landownerCategory information. Legal values include: Department of Agriculture, Department of Interior, Department of Defense, and Department of Energy. A value is not populated for all polygons.DataSourceThe database from which the polygon originated. An effort is made to be as specific as possible (i.e. identify the geodatabase name and feature class in which the polygon originated).SecondaryDataSourceIf the DataSource field is an aggregation from other sources, use this field to specify the source that supplied data to the aggregation. For example, if DataSource is "PAD-US 4.0", then for a TNC polygon, the SecondaryDataSource would be " TNC_PADUS2_0_SA2015_Public_gdb ".SourceUniqueIDIdentifier (GUID or ObjectID) in the data source. Used to trace the polygon back to its authoritative source.DataSourceYearYear that the source data for the polygon were acquired.MapMethodControlled vocabulary to define how the geospatial feature was derived. MapMethod will be Mixed Methods by default for this layer as the data are from mixed sources. Valid Values include: GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; DigitizedTopo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; Phone/Tablet; Other.DateCurrentThe last edit, update, of this GIS record. Date should follow the assigned NWCG Date Time data standard, using the 24-hour clock, YYYY-MM-DDhh.mm.ssZ, ISO8601 Standard.CommentsAdditional information describing the feature.JoinMethodAdditional information on how the polygon was matched to information in the NWCG Unit ID database.LegendJurisdictionalCategoryJurisdictionalCategory values grouped for more intuitive use in a map legend or summary table. Census Block Groups are classified as “No Unit”.LegendLandownerCategoryLandownerCategory values grouped for more intuitive use in a map legend or summary table.Other Relevant NWCG Definition StandardsUnitA generic term that represents an organizational entity that only has meaning when it is contextualized by a descriptor, e.g. jurisdictional.Definition Extension: When referring to an organizational entity, a unit refers to the smallest area or lowest level. Higher levels of an organization (region, agency, department, etc.) can be derived from a unit based on organization hierarchy.Unit, JurisdictionalThe governmental entity having overall land and resource management responsibility for a specific geographical area as provided by law.Definition Extension: 1) Ultimately responsible for the fire report to account for statistical fire occurrence; 2) Responsible for setting fire management objectives; 3) Jurisdiction cannot be re-assigned by agreement; 4) The nature and extent of the incident determines jurisdiction (for example, Wildfire vs. All Hazard); 5) Responsible for signing a Delegation of Authority to the Incident Commander.See also: Protecting Unit; LandownerData SourcesThis dataset is an aggregation of multiple spatial data sources: • Authoritative land ownership records from BIA, BLM, NPS, USFS, USFWS, and the Alaska Fire Service/State of Alaska• The Protected Areas Database US (PAD-US 4.0)• Census Block-Group Geometry BIA and Tribal Data:BIA and Tribal land management data were aggregated from BIA regional offices. These data date from 2012 and were reviewed/updated in 2024. Indian Trust Land affiliated with Tribes, Reservations, or BIA Agencies: These data are not considered the system of record and are not intended to be used as such. The Bureau of Indian Affairs (BIA), Branch of Wildland Fire Management (BWFM) is not the originator of these data. The spatial data coverage is a consolidation of the best available records/data received from each of the 12 BIA Regional Offices. The data are no better than the original sources from which they were derived. Care was taken when consolidating these files. However, BWFM cannot accept any responsibility for errors, omissions, or positional accuracy in the original digital data. The information contained in these data is dynamic and is continually changing. Updates to these data will be made whenever such data are received from a Regional Office. The BWFM gives no guarantee, expressed, written, or implied, regarding the accuracy, reliability, or completeness of these data.Alaska:The state of Alaska and Alaska Fire Service (BLM) co-manage a process to aggregate authoritative land ownership, management, and jurisdictional boundary data, based on Master Title Plats. Data ProcessingTo compile this dataset, the authoritative land ownership records and the PAD-US data mentioned above were crosswalked into the Jurisdictional Unit Polygon schema and aggregated through a series of python scripts and FME models. Once aggregated, steps were taken to reduce overlaps within the data. All overlap areas larger than 300 acres were manually examined and removed with the assistance of fire management SMEs. Once overlaps were removed, Census Block Group geometry were crosswalked to the Jurisdictional Unit Polygon schema and appended in areas in which no jurisdictional boundaries were recorded within the authoritative land ownership records and the PAD-US data. Census Block Group geometries represent areas of unknown Landowner Kind/Category and Jurisdictional Kind/Category and were assigned LandownerKind and LandownerCategory values of "Private".Update FrequencyThe Authoritative land ownership records and PAD-US data used to compile this dataset are dynamic and are continually changing. Major updates to this dataset will be made once a year, and minor updates will be incorporated throughout the year as needed. New to the Latest Release (1/15/25)Now pulling from agency authoritative sources for BLM, NPS, USFS, and USFWS (instead of getting this data from PADUS).
Field Name Changes
Facebook
TwitterThis map shows the current bicycle infrastructure in New Haven. Each lines color represents a level of stress based on professor Peter Furth’s research and reports. As the legend indicates (LTS 1 Definition Key: Stand alone path or separated from traffic LTS 2 Definition Key: Bike Lane, comfortable for most adults LTS 3 Definition Key: Next to mixed traffic LTS 4 Definition Key: No dedicated bike facilities), LTS 1 is the lowest stress and LTS 4 would be the highest stress. The map can be used for several purposes. The primary general use purpose is for leisure riding or commuting in New Haven. For planning purposes, the map can be used to evaluate the current state of bicycle infrastructure and where future infrastructure can be placed to maximize safety and connectivity.
Facebook
TwitterThe California Department of Water Resources (DWR) has been collecting land use data throughout the state and using it to develop agricultural water use estimates for statewide and regional planning purposes, including water use projections, water use efficiency evaluations, groundwater model developments, climate change mitigation and adaptations, and water transfers. These data are essential for regional analysis and decision making, which has become increasingly important as DWR and other state agencies seek to address resource management issues, regulatory compliances, environmental impacts, ecosystem services, urban and economic development, and other issues. Increased availability of digital satellite imagery, aerial photography, and new analytical tools make remote sensing-based land use surveys possible at a field scale that is comparable to that of DWR’s historical on the ground field surveys. Current technologies allow accurate large-scale crop and land use identifications to be performed at desired time increments and make possible more frequent and comprehensive statewide land use information. Responding to this need, DWR sought expertise and support for identifying crop types and other land uses and quantifying crop acreages statewide using remotely sensed imagery and associated analytical techniques. Currently, Statewide Crop Maps are available for the Water Years 2014, 2016, 2018- 2022 and PROVISIONALLY for 2023.
For the latest Land Use Legend, 2022-DWR-Standard-Land-Use-Legend-Remote-Sensing-Version.pdf, please see the Data and Resources section below.
Historic County Land Use Surveys spanning 1986 - 2015 may also be accessed using the CADWR Land Use Data Viewer: https://gis.water.ca.gov/app/CADWRLandUseViewer.
For Regional Land Use Surveys follow: https://data.cnra.ca.gov/dataset/region-land-use-surveys.
For County Land Use Surveys follow: https://data.cnra.ca.gov/dataset/county-land-use-surveys.
For a collection of ArcGIS Web Applications that provide information on the DWR Land Use Program and our data products in various formats, visit the DWR Land Use Gallery: https://storymaps.arcgis.com/collections/dd14ceff7d754e85ab9c7ec84fb8790a.
Recommended citation for DWR land use data: California Department of Water Resources. (Water Year for the data). Statewide Crop Mapping—California Natural Resources Agency Open Data. Retrieved “Month Day, YEAR,” from https://data.cnra.ca.gov/dataset/statewide-crop-mapping.
Facebook
TwitterThis web application was developed by Raleigh Parks GIS Department and released publicly on December 22, 2023. If you have any questions, comments or concerns, please contact the Raleigh Parks, GIS team. How to Use Park Locator The City of Raleigh’s Park Locator tool allows users to easily search for parks and apply filters based on their favorite activities for a tailored park-finding experience. This guide will walk you through the steps to effectively use the Park Locator tool. I. Accessing the Park Locator Open your web browser and navigate to the Park Locator . The webpage is best viewed in an up-to-date browser. The web page will load, displaying a map of the area with various icons and features. On the right-hand side, a display of filter tabs and list of Parks will load. II. Using the Search Functionality A. Search by Address or Location using the map: Locate the Address search bar, this is found at the top left-hand corner of the map. Type in your location. This could be an address, or any relevant place. Use the green search button to apply your query. The map will update to show search results based on your query. B. Search by Park to filter the list in the side bar: Locate the “Search by Park Name” bar, this is found on the right-hand side of the screen, above the parks list. Type in a Park name and press enter on the keyboard. You may type in a partial or full name of the facility. III. Applying Filters Locate the filter options, the are located on the top right-hand side of the screen. There are three blue circles containing white arrows. Categories include Parks, Activities and Amenities. Select the filter criteria that are relevant to your search. This could include options such as, fitness center, pickleball courts, picnic tables, etc. Choose as many as you would like to find the park that meets all your needs. When the selections are chosen, the toggle will turn green and automatically apply filters. The map and the list will update to display parks that match your specified criteria. If your search criteria are too narrow or no parks are returned in your filter, a display message will notify you. Modify your search as necessary. IV. Viewing Park Details To get more detailed information, click on “More Info” in the park list (if available). A new tab will be displayed on the right side of your screen and the map will zoom to the park’s location. The tab will display photos and details about the selected park. Details may include the parks name, address, amenities the park hosts, directions, hours of operations, contact information, and any relevant RecLink directories. The tab will also have a link to the park’s website and park alerts. V. Additional Features Zoom In/Out: Use your mouse scroll wheel or the zoom buttons on the map to zoom in and out for a closer or broader view of the area. Pan: Click and drag the map to move around and explore different areas. Satellite View: Toggle between different map views (e.g., satellite view, terrain view) using the provided options. Legend: Refer to the legend to understand the meaning of various icons or symbols on the map. Clear Filters/Reset Map: Look for the button to clear applied filters or reset the map to its default view. Access Raleighnc.gov: use the News, Events, Projects buttons along the top left-hand of the screen to navigate and view Raleighnc.gov. Share: Share the web page using the button just below the right corner of the map. This button will give you links and can embed/share directly through social media!
Facebook
TwitterJurisdictional Unit, 2022-05-21. For use with WFDSS, IFTDSS, IRWIN, and InFORM.This is a feature service which provides Identify and Copy Feature capabilities. If fast-drawing at coarse zoom levels is a requirement, consider using the tile (map) service layer located at https://nifc.maps.arcgis.com/home/item.html?id=3b2c5daad00742cd9f9b676c09d03d13.OverviewThe Jurisdictional Agencies dataset is developed as a national land management geospatial layer, focused on representing wildland fire jurisdictional responsibility, for interagency wildland fire applications, including WFDSS (Wildland Fire Decision Support System), IFTDSS (Interagency Fuels Treatment Decision Support System), IRWIN (Interagency Reporting of Wildland Fire Information), and InFORM (Interagency Fire Occurrence Reporting Modules). It is intended to provide federal wildland fire jurisdictional boundaries on a national scale. The agency and unit names are an indication of the primary manager name and unit name, respectively, recognizing that:There may be multiple owner names.Jurisdiction may be held jointly by agencies at different levels of government (ie State and Local), especially on private lands, Some owner names may be blocked for security reasons.Some jurisdictions may not allow the distribution of owner names. Private ownerships are shown in this layer with JurisdictionalUnitIdentifier=null,JurisdictionalUnitAgency=null, JurisdictionalUnitKind=null, and LandownerKind="Private", LandownerCategory="Private". All land inside the US country boundary is covered by a polygon.Jurisdiction for privately owned land varies widely depending on state, county, or local laws and ordinances, fire workload, and other factors, and is not available in a national dataset in most cases.For publicly held lands the agency name is the surface managing agency, such as Bureau of Land Management, United States Forest Service, etc. The unit name refers to the descriptive name of the polygon (i.e. Northern California District, Boise National Forest, etc.).These data are used to automatically populate fields on the WFDSS Incident Information page.This data layer implements the NWCG Jurisdictional Unit Polygon Geospatial Data Layer Standard.Relevant NWCG Definitions and StandardsUnit2. A generic term that represents an organizational entity that only has meaning when it is contextualized by a descriptor, e.g. jurisdictional.Definition Extension: When referring to an organizational entity, a unit refers to the smallest area or lowest level. Higher levels of an organization (region, agency, department, etc) can be derived from a unit based on organization hierarchy.Unit, JurisdictionalThe governmental entity having overall land and resource management responsibility for a specific geographical area as provided by law.Definition Extension: 1) Ultimately responsible for the fire report to account for statistical fire occurrence; 2) Responsible for setting fire management objectives; 3) Jurisdiction cannot be re-assigned by agreement; 4) The nature and extent of the incident determines jurisdiction (for example, Wildfire vs. All Hazard); 5) Responsible for signing a Delegation of Authority to the Incident Commander.See also: Unit, Protecting; LandownerUnit IdentifierThis data standard specifies the standard format and rules for Unit Identifier, a code used within the wildland fire community to uniquely identify a particular government organizational unit.Landowner Kind & CategoryThis data standard provides a two-tier classification (kind and category) of landownership. Attribute Fields JurisdictionalAgencyKind Describes the type of unit Jurisdiction using the NWCG Landowner Kind data standard. There are two valid values: Federal, and Other. A value may not be populated for all polygons.JurisdictionalAgencyCategoryDescribes the type of unit Jurisdiction using the NWCG Landowner Category data standard. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State. A value may not be populated for all polygons.JurisdictionalUnitNameThe name of the Jurisdictional Unit. Where an NWCG Unit ID exists for a polygon, this is the name used in the Name field from the NWCG Unit ID database. Where no NWCG Unit ID exists, this is the “Unit Name” or other specific, descriptive unit name field from the source dataset. A value is populated for all polygons.JurisdictionalUnitIDWhere it could be determined, this is the NWCG Standard Unit Identifier (Unit ID). Where it is unknown, the value is ‘Null’. Null Unit IDs can occur because a unit may not have a Unit ID, or because one could not be reliably determined from the source data. Not every land ownership has an NWCG Unit ID. Unit ID assignment rules are available from the Unit ID standard, linked above.LandownerKindThe landowner category value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. There are three valid values: Federal, Private, or Other.LandownerCategoryThe landowner kind value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. A value is populated for all polygons. Valid values include: ANCSA, BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, OtherLoc (other local, not in the standard), State, Private.DataSourceThe database from which the polygon originated. Be as specific as possible, identify the geodatabase name and feature class in which the polygon originated.SecondaryDataSourceIf the Data Source is an aggregation from other sources, use this field to specify the source that supplied data to the aggregation. For example, if Data Source is "PAD-US 2.1", then for a USDA Forest Service polygon, the Secondary Data Source would be "USDA FS Automated Lands Program (ALP)". For a BLM polygon in the same dataset, Secondary Source would be "Surface Management Agency (SMA)."SourceUniqueIDIdentifier (GUID or ObjectID) in the data source. Used to trace the polygon back to its authoritative source.MapMethod:Controlled vocabulary to define how the geospatial feature was derived. Map method may help define data quality. MapMethod will be Mixed Method by default for this layer as the data are from mixed sources. Valid Values include: GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; DigitizedTopo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; Phone/Tablet; OtherDateCurrentThe last edit, update, of this GIS record. Date should follow the assigned NWCG Date Time data standard, using 24 hour clock, YYYY-MM-DDhh.mm.ssZ, ISO8601 Standard.CommentsAdditional information describing the feature. GeometryIDPrimary key for linking geospatial objects with other database systems. Required for every feature. This field may be renamed for each standard to fit the feature.JurisdictionalUnitID_sansUSNWCG Unit ID with the "US" characters removed from the beginning. Provided for backwards compatibility.JoinMethodAdditional information on how the polygon was matched information in the NWCG Unit ID database.LocalNameLocalName for the polygon provided from PADUS or other source.LegendJurisdictionalAgencyJurisdictional Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.LegendLandownerAgencyLandowner Agency but smaller landholding agencies, or agencies of indeterminate status are grouped for more intuitive use in a map legend or summary table.DataSourceYearYear that the source data for the polygon were acquired.Data InputThis dataset is based on an aggregation of 4 spatial data sources: Protected Areas Database US (PAD-US 2.1), data from Bureau of Indian Affairs regional offices, the BLM Alaska Fire Service/State of Alaska, and Census Block-Group Geometry. NWCG Unit ID and Agency Kind/Category data are tabular and sourced from UnitIDActive.txt, in the WFMI Unit ID application (https://wfmi.nifc.gov/unit_id/Publish.html). Areas of with unknown Landowner Kind/Category and Jurisdictional Agency Kind/Category are assigned LandownerKind and LandownerCategory values of "Private" by use of the non-water polygons from the Census Block-Group geometry.PAD-US 2.1:This dataset is based in large part on the USGS Protected Areas Database of the United States - PAD-US 2.`. PAD-US is a compilation of authoritative protected areas data between agencies and organizations that ultimately results in a comprehensive and accurate inventory of protected areas for the United States to meet a variety of needs (e.g. conservation, recreation, public health, transportation, energy siting, ecological, or watershed assessments and planning). Extensive documentation on PAD-US processes and data sources is available.How these data were aggregated:Boundaries, and their descriptors, available in spatial databases (i.e. shapefiles or geodatabase feature classes) from land management agencies are the desired and primary data sources in PAD-US. If these authoritative sources are unavailable, or the agency recommends another source, data may be incorporated by other aggregators such as non-governmental organizations. Data sources are tracked for each record in the PAD-US geodatabase (see below).BIA and Tribal Data:BIA and Tribal land management data are not available in PAD-US. As such, data were aggregated from BIA regional offices. These data date from 2012 and were substantially updated in 2022. Indian Trust Land affiliated with Tribes, Reservations, or BIA Agencies: These data are not considered the system of record and are not intended to be used as such. The Bureau of Indian Affairs (BIA), Branch of Wildland Fire Management (BWFM) is not the originator of these data. The
Facebook
TwitterData licence Germany – Attribution – Version 2.0https://www.govdata.de/dl-de/by-2-0
License information was derived automatically
The Thuringian State Office for Soil Management and Geoinformation has a top. Overview map of Thuringia on a scale of 1:600,000, edition of selected cycle paths in Thuringia (ÜK Th 600 cycle paths) published. The scale was adapted to the analogue map in DIN A3 format (297 x 420 mm). A small legend explains the meaning of characters and labels. In the north-eastern part, the map shows the cities of Halle and Leipzig with their transport connections, which can be of help to drivers. Of course, the approved Thuringian motorway sections of the A71 and A38 are not missing either.
Facebook
Twitterhttps://spdx.org/licenses/etalab-2.0.htmlhttps://spdx.org/licenses/etalab-2.0.html
The Soil Geographical Data Base of France at Scale 1:1,000,000 is part of the European Soil Geographical Data Base of Europe. It is the resulting product of a collaborative project involving all the European Union and neighbouring countries. It is a simplified representation of the diversity and spatial variability of the soil coverage for France. The methodology used to differentiate and name the main soil types is based on the terminology of the F.A.O. legend for the Soil Map of the World at Scale 1:5,000,000. This terminology has been refined and adapted to take account of the specificities of the landscapes in Europe. It is itself founded on the distinction of the main pedogenetic processes leading to soil differentiation. The database contains a list of Soil Typological Units (STU). Besides the soil names they represent, these units are described by variables (attributes) specifying the nature and properties of the soils: for example the texture, the water regime, etc. The geographical representation was chosen at a scale corresponding to the 1:1,000,000. At this scale, it is not feasible to delineate the STUs. Therefore they are grouped into Soil Mapping Units (SMU) to form soil associations and to illustrate the functioning of pedological systems within the landscapes. Harmonisation of the soil data from the member countries is based on a dictionary giving the definition for each occurrence of the variables. Considering the scale, the precision of the variables is weak. Furthermore these variables were estimated over large areas by expert judgement rather than measured on local soil samples. This expertise results from synthesis and generalisation tasks of national or regional maps published at more detailed scales, for example 1:50,000 or 1:25,000 scales. Delineation of the Soil Mapping Units is also the result of expertise and experience. The spatial variability of soils is very important and is difficult to express at global levels of precision. Quality indices of the information (purity and confidence level) are included with the data in order to guide usage.
Facebook
TwitterData licence Germany – Attribution – Version 2.0https://www.govdata.de/dl-de/by-2-0
License information was derived automatically
The Thuringian State Office for Soil Management and Geoinformation has a top. Overview map 1:250,000 edition Federal Garden Show 2021 (ÜK Th 250 T BUGA 2021) published. The scale was adapted to the analogue map in DIN A3 format (297 x 420 mm). A small legend explains the meaning of characters and labels. The map shows the locations of the BUGA 2021 in Erfurt with the external locations in Thuringia.
Facebook
TwitterOverview
The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control.
National Geospatial Data Asset
This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee.
Dataset Source Details
Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground.
Cartographic Visualization
The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below.
Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html
Contact
Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip
Attribute Structure
The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension
These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE
The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB.
Core Attributes
The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields.
County Code and Country Name Fields
“CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard.
The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user.
Descriptive Fields
The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes
Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line.
ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line
A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively.
The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps.
The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line.
Use of Core Attributes in Cartographic Visualization
Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between:
Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction.
The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling.
Use of
Facebook
TwitterThe Thuringian State Office for Soil Management and Geoinformation has one top. Overview map 1:250 000 issue Bundesgartenschau 2021 (ÜK Th 250 T BUGA 2021) The scale has been adapted to the analog card in the format DIN A3 (297 x 420 mm). A small legend explains the meaning of signs and labels. The map shows the locations of BUGA 2021 in Erfurt with its external locations in Thuringia.
Facebook
TwitterAttribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
Land cover maps are the basic data layer required for understanding and modeling ecological patterns and processes. The Circumpolar Arctic Vegetation Map (CAVM), produced in 2003, has been widely used as a base map for studies in the arctic tundra biome. However, the relatively coarse resolution and vector format of the map were not compatible with many other data sets. We present a new version of the CAVM, building on the strengths of the original map, while providing a finer spatial resolution, raster format, and improved mapping. The Raster CAVM uses the legend, extent and projection of the original CAVM. The legend has 16 vegetation types, glacier, saline water, freshwater, and non-arctic land. The Raster CAVM divides the original rock-water-vegetation complex map unit that mapped the Canadian Shield into two map units, one with lichen-dominated vegetation and one with shrub-dominated vegetation. In contrast to the original hand-drawn CAVM, the raster map is based on unsupervised classifications of seventeen geographic/floristic sub-sections of the Arctic, using AVHRR and MODIS data (reflectance data and NDVI) and elevation data. The units resulting from the classification were modeled to the CAVM types using a wide variety of ancillary data. The map was reviewed by experts familiar with their particular region, including of the original authors of the CAVM from the U.S., Canada, Greenland (Denmark), Iceland, Norway (including Svalbard) and Russia.
Detailed information about the methods can be found in the publication to which this dataset is a supplement.
In order to use these data, you must cite this data set with the following citation:
Raynolds, Martha; Walker, Donald (2019), “Raster Circumpolar Arctic Vegetation Map”, Mendeley Data, v1 https://dx.doi.org/10.17632/c4xj5rv6kv.1
Facebook
TwitterD.C.'s median rent for a one bedroom apartment stands at $2,495, significantly higher than the national median rent of approximately $1,567. Click on different U.S. cities to see the median rent for a one bedroom apartment2.The map on the left side shows the percentage of people by census tract that are considered "cost burdened" by housing costs, by paying 30% or more of their household income on rent and utilities3. The map on the right side shows the median household income by census tract4. You can click on the "list" icon in the lower left corner to see the map legend, and meanings of map symbology. Areas that are cost burdened are often areas with the lowest median household incomes. There are also areas in wards where median incomes are high, but the cost of living is also high, leading to a greater cost burden.
Facebook
TwitterData licence Germany – Attribution – Version 2.0https://www.govdata.de/dl-de/by-2-0
License information was derived automatically
The Thuringian State Office for Soil Management and Geoinformation has a top. Overview map 1:250,000 edition 100 years Thuringia The Thuringian states around 1920 (ÜK Th 250 T 100 years Thuringia) Edition 2020 published. The scale was adapted to the analogue map in DIN A3 format (297 x 420 mm). A small legend explains the meaning of characters and labels.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Twenty-three 1:1 million topographic maps covering the Australian Antarctic Territory were published by the Division of National Mapping. Four of these maps were updated in 1987. Three additional maps were published for the Australian Antarctic Division (AAD) by the Australian Surveying and Land Information Group (AUSLIG) in 1989. Two of these were updated by the AAD between 1998 and 1999.
In 2023, twenty-two updated 1:1 million topographic maps were produced by the AAD, covering from 36°E to 160°E in East Antarctica. Attached is a list of all maps and their map catalogue numbers. High-resolution files from the SCAR Map Catalogue are available from the download links below. The A4 legend for the series is included in every SCAR Map Catalogue entry for the map series.
The maps are available in the SCAR Map Catalogue:
• SQ 37-38: Map Catalogue No. 16202 – https://data.aad.gov.au/map-catalogue/map/16202
• SQ 39-40: Map Catalogue No. 16203 – https://data.aad.gov.au/map-catalogue/map/16203
• SQ 41-42: Map Catalogue No. 16204 – https://data.aad.gov.au/map-catalogue/map/16204
• SQ 43-44: Map Catalogue No. 16205 – https://data.aad.gov.au/map-catalogue/map/16205
• SQ 45-46: Map Catalogue No. 16206 – https://data.aad.gov.au/map-catalogue/map/16206
• SQ 47-48: Map Catalogue No. 16207 – https://data.aad.gov.au/map-catalogue/map/16207
• SQ 49-50: Map Catalogue No. 16208 – https://data.aad.gov.au/map-catalogue/map/16208
• SQ 51-52: Map Catalogue No. 16209 – https://data.aad.gov.au/map-catalogue/map/16209
• SQ 53-54: Map Catalogue No. 16210 – https://data.aad.gov.au/map-catalogue/map/16210
• SQ 55-56: Map Catalogue No. 16211 – https://data.aad.gov.au/map-catalogue/map/16211
• SR 37-38: Map Catalogue No. 16212 – https://data.aad.gov.au/map-catalogue/map/16212
• SR 39-40: Map Catalogue No. 16213 – https://data.aad.gov.au/map-catalogue/map/16213
• SR 41-42: Map Catalogue No. 16214 – https://data.aad.gov.au/map-catalogue/map/16214
• SR 43-44: Map Catalogue No. 16215 – https://data.aad.gov.au/map-catalogue/map/16215
• SR 49-50: Map Catalogue No. 16216 – https://data.aad.gov.au/map-catalogue/map/16216
• SR 55-56: Map Catalogue No. 16217 – https://data.aad.gov.au/map-catalogue/map/16217
• SR 57-58: Map Catalogue No. 16218 – https://data.aad.gov.au/map-catalogue/map/16218
• SS 40-42: Map Catalogue No. 16219 – https://data.aad.gov.au/map-catalogue/map/16219
• SS 43-45: Map Catalogue No. 16220 – https://data.aad.gov.au/map-catalogue/map/16220
• SS 55-57: Map Catalogue No. 16221 – https://data.aad.gov.au/map-catalogue/map/16221
• ST 54-57: Map Catalogue No. 16222 – https://data.aad.gov.au/map-catalogue/map/16222
• SU 53-57: Map Catalogue No. 16223 – https://data.aad.gov.au/map-catalogue/map/16223
To view data sources and imagery used in the creation of this map series, see metadata record: https://data.aad.gov.au/metadata/East_Antarctic_25K_topographic_data_2023
Note: Data delivered from the services linked to this metadata record may link to data more current than described in this record. Please contact mapping@antarctica.gov.au if you specifically want a copy of the data used for this mapping series.
Other sources include:
- Symbology – font is Open Sans. Natural features = italics, human-made features = non-italics (this includes coast or land name, Island names), hydrology features = blue italic text.
- Bathymetry (metres) was derived from the GEBCO (General Bathymetric Chart of the Oceans) 2021 Grid: GEBCO Compilation Group (2021) GEBCO 2021 Grid (doi:10.5285/c6612cbe-50b3-0cff-e053-6c86abc09f8f)
- Hillshade and contours were derived from The Reference Elevation Model of Antarctica version 2 (REMA 2): Howat, Ian, et al., 2022, “The Reference Elevation Model of Antarctica – Mosaics, Version 2”, https://doi.org/10.7910/DVN/EBW8UC Harvard Dataverse, V1, 2022. DEM(s) courtesy of the Polar Geospatial Center.
- Landsat Image Mosaic of Antarctica (LIMA): Bindschadler, R., Vornberger, P., Fleming, A., Fox, A., Mullins, J., Binnie, D., Paulson, S., Granneman, B., and Gorodetzky, D., 2008, The Landsat Image Mosaic of Antarctica, Remote Sensing of Environment, 112, pp. 4214-4226. The LIMA mosaic is used with a 50% transparency over the Rema2 hillshade. This layer adds some depth, definition and colour and disguises some artifacts in Rema2 data. Note: Sentinel 2 Imagery were unavailable for a small portion of the final map in the series, SU 53-57. Rock data for this portion of map were sourced from the Antarctic Digital Database: https://scar.org/library-data/maps/add-digital-database
Facebook
TwitterThis nowCOAST time-enabled map service provides maps depicting NWS gridded forecasts of the following selected sensible surface weather variables or elements: air temperature (including daily maximum and minimum), apparent air temperature, dew point temperature, relative humidity, wind velocity, wind speed, wind gust, total sky cover, and significant wave height for the next 6-7 days. Additional forecast maps are available for 6-hr quantitative precipitation (QPF), 6-hr quantitative snowfall, and 12-hr probability of precipitation. These NWS forecasts are from the National Digital Forecast Database (NDFD) at a 2.5 km horizontal spatial resolution. Surface is defined as 10 m (33 feet) above ground level (AGL) for wind variables and 2 m (5.5 ft) AGL for air temperature, dew point temperature, and relative humidity variables. The forecasts extend out to 7 days from 0000 UTC on Day 1 (current day). The forecasts are updated in the nowCOAST map service four times per day. For more detailed information about the update schedule, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule
The forecast projection availability times listed below are generally accurate, however forecast interval and forecast horizon vary by region and variable. For the most up-to-date information, please see http://www.nws.noaa.gov/ndfd/resources/NDFD_element_status.pdf and http://graphical.weather.gov/docs/datamanagement.php.
The forecasts of the air, apparent, and dew point temperatures are displayed using different colors at 2 degree Fahrenheit increments from -30 to 130 degrees F in order to use the same color legend throughout the year for the United States. This is the same color scale used for displaying the NDFD maximum and minimum air temperature forecasts. Air and dew point temperature forecasts are available every hour out to +36 hours from forecast issuance time, at 3-hour intervals from +36 to +72 hours, and at 6-hour intervals from +72 to +168 hours (7 days). Maximum and minimum air temperature forecasts are each available every 24 hours out to +168 hours (7 days) from 0000 UTC on Day 1 (current day).
The relative humidity (RH) forecasts are depicted using different colors for every 5-percent interval. The increment and color scale used to display the RH forecasts were developed to highlight NWS local fire weather watch/red flag warning RH criteria at the low end (e.g. 15, 25, & 35% thresholds) and important high end RH thresholds for other users (e.g. agricultural producers) such as 95%. The RH forecasts are available every hour out to +36 hours from 0000 UTC on Day 1 (current day), at 3-hour intervals from +36 to +72 hours, and at 6-hour intervals from +72 to +168 hours (7 days).
The 6-hr total precipitation amount forecasts or QPFs are symbolized using different colors at 0.01, 0.10, 0.25 inch intervals, at 1/4 inch intervals up to 4.0 (e.g. 0.50, 0.75, 1.00, 1.25, etc.), at 1-inch intervals from 4 to 10 inches and then at 2-inch intervals up to 14 inches. The increments from 0.01 to 1.00 or 2.00 inches are similar to what are used on NCEP/Weather Prediction Center's QPF products and the NWS River Forecast Center (RFC) daily precipitation analysis. Precipitation forecasts are available for each 6-hour period out to +72 hours (3 days) from 0000 UTC on Day 1 (current day).
The 6-hr total snowfall amount forecasts are depicted using different colors at 1-inch intervals for snowfall greater than 0.01 inches. Snowfall forecasts are available for each 6-hour period out to +48 hours (2 days) from 0000 UTC on Day 1 (current day).
The 12-hr probability of precipitation (PoP) forecasts are displayed for probabilities over 10 percent using different colors at 10, 20, 30, 60, and 85+ percent. The probability of precipitation forecasts are available for each 12-hour period out to +72 hours (3 days) from 0000 UTC on Day 1 (current day).
The wind speed and wind gust forecasts are depicted using different colors at 5 knots increment up to 115 knots. The legend includes tick marks for both knots and miles per hour. The same color scale is used for displaying the RTMA surface wind speed forecasts. The wind velocity is depicted by curved wind barbs along streamlines. The direction of the wind is indicated with an arrowhead on the wind barb. The flags on the wind barb are the standard meteorological convention in units of knots. The wind speed and wind velocity forecasts are available hourly out to +36 hours from 00:00 UTC on Day 1 (current day), at 3-hour intervals out to +72 hours, and at 6-hour intervals from +72 to +168 hours (7 days). The wind gust forecasts are available hourly out to +36 hours from 0000 UTC on Day 1 (current day) and at 3-hour intervals out to +72 hours (3 days).
The total sky cover forecasts are displayed using progressively darker shades of gray for 10, 30, 60, and 80+ percentage values. Sky cover values under 10 percent are shown as transparent. The sky cover forecasts are available for each hour out to +36 hours from 0000 UTC on Day 1 (current day), every 3 hours from +36 to +72 hours, and every 6 hours from +72 to +168 hours (7 days).
The significant wave height forecasts are symbolized with different colors at 1-foot intervals up to 20 feet and at 5-foot intervals from 20 feet to 35+ feet. The significant wave height forecasts are available for each hour out to +36 hours from 0000 UTC on Day 1 (current day), every 3 hours from +36 to +72 hours, and every 6 hours from +72 to +144 hours (6 days).
Background Information
The NDFD is a seamless composite or mosaic of gridded forecasts from individual NWS Weather Forecast Offices (WFOs) from around the U.S.
as well as the NCEP/Ocean
Prediction Center and National Hurricane Center/TAFB. NDFD has a spatial resolution of 2.5 km. The 2.5km resolution NDFD forecasts are presently experimental,
but are scheduled to become operational in May/June 2014.
The time resolution of forecast projections varies by variable (element)
based on user needs, forecast skill, and forecaster workload. Each WFO prepares gridded NDFD forecasts for their specific geographic area of
responsibility. When these locally generated forecasts are merged into a national mosaic, occasionally areas of discontinuity will be evident.
Staff at NWS forecast offices attempt to resolve discontinuities along the boundaries of the forecasts by coordinating with forecasters at
surrounding WFOs and using workstation forecast tools that identify and resolve
some of these differences. The NWS is making progress in this area, and recognizes that this is a significant issue in which improvements are still needed.
The NDFD was developed by NWS Meteorological Development Laboratory.
As mentioned above, a curved wind barb with an arrow head is used to display the wind velocity forecasts instead of the traditional wind barb.
The curved wind barb was developed and evaluated
at the Data Visualization Laboratory of the NOAA-UNH Joint Hydrographic Center/Center for Coastal and Ocean Mapping (Ware et al., 2014).
The curved wind barb combines the best features of the wind barb, that it displays speed in a readable form, with the best features of
the streamlines which shows wind patterns. The arrow
head helps to convey the flow direction.
Time Information
This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.
This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.
In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.
Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In order to use the standard hatch legend for Romanian soil texture maps in the ESRI ArcMap-10 electronic format, a dataset consisting a shapefile set (.dbf, .shp, .shx, .sbn, and .sbx files), two different .lyr files, and two different .style files have been prepared (ESRI, 2016). The shapefile set is not a “real” georeferenced layer/coverage; it is designed only to handle all the instants of soil texture items from the standard legend. This legend is related to the current Romanian system of soil taxonomy, SRTS-2012+, and consists of three sub-standards, corresponding to three taxonomic levels: soil qualifiers, soil textural classes, and soil textural subclasses. At the first level there are five hatches for the four soil qualifiers related to soil texture and for the “Skeletic” soil, and two miscellaneous items (various textures and unspecified texture), at the second level there are eight hatches for the seven soil textural classes and for the Skeletic soil, and the two miscellaneous items, and at the third level there are 14 hatches for the 13 soil textural subclasses and for the Skeletic soil, and three miscellaneous items. The correlation with the FAO soil textural classes/subclasses, used by the international soil classification system WRB, is very approximate, given that the Romanian soil classification systems use the Atterberg system to define soil particle size fractions and a specific definition of soil texture classes/subclasses – different from that of FAO. All the standard hatches may be combined to indicate an association of two soil textural classes/sub-classes in a map delineation. Also, the hatch legend may be joined to a color legend for developing a mixed map of soil type and soil texture. The two different .lyr files presented here are: legend_txtcode_srts_en.lyr, and legend_txtcode_en.lyr. Both of them are built using as value field the ‘CODE_TXT3’ field, coding the soil texture subclass at a more detailed level, but the first one uses as labels (explanation texts) the ‘TEXT_RE’ field, storing the soil texture subclass name in SRTS-2012+ and in English language, while the second one, the ‘TEXT_WRB3’ field, storing the SRTS-2012+ soil texture subclass name in English language. In order to exemplify how the legend is displayed, a .jpg file is also presented: legend_txt.jpg, displaying the legend (symbols and labels) according to the first .lyr file. The two different .style files presented here are: txt_codes.style and txt_abbrev.style. The symbol (hatches) for each different map feature has been built and stored in these two .style files, using as name the soil texture subclass code and, respectively, the SRTS-2012+ soil texture subclass name abbreviation.