Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The reference spatial database for 2019 contains 5142 plots. We use it to calculate a land use map from satellite images. It is organized according to a nested 3-level nomenclature. This is an update of the 2018 database. The sources and techniques used to build the database by land use groups are described below: For agricultural areas, we use a land use database based on farmers' declarations (for EU subsidies). This is the "Registre Parcellaire Graphique" (RPG) published in France by the French Institute for Geographical and Forestry Informations (IGN). The description of this data is available here: http://professionnels.ign.fr/doc/DC_DL_RPG-2-0.pdf. These vector data localize the crops. The release times imply that we use the RPG for last year (2018). It is therefore necessary to verify the good coherence of the data with the image at very high spatial resolution (VHSR) Pleiades. The RPG provides little information on arboriculture. For these classes we called on colleagues specialized in mango, lychee and citrus crops who are familiar with their area and can locate plots in the VHSR image. The plots of the "greenhouse or shade cultivation" class are derived from the "industrial building" layer of the IGN's "BD Topo" product. A random selection of 20% of the polygons in the layer height field allows to keep a diversity of greenhouse types. Each polygon was verified by photo-interpretation of the Pleiades image. If the greenhouse or shade was not visible in the image, the polygon was removed. The distinction between mowed and grazed grasslands was completed through collaboration with colleagues from the SELMET joint research unit (Emmanuel Tillard, Expédit Rivière, Colas Gabriel Tovmassian and Jeanne Averna). For natural areas , there is no regularly updated mapping, but the main classes can be recognized from the GIS layers of government departments that manage these areas (ONF and DEAL). Two specific classes have been added (identified by photo-interpretation): a class of shadows due to the island's steep relief (areas not visible because of the cast shade) and a class of vegetation located on steep slopes facing the morning sun called "rampart moor". The polygons for the distinction of savannahs have been improved thanks to the knowledge of Xavier Amelot (CNRS), Béatrice Moppert and Quentin Rivière (University of La Réunion). For wet land areas , the "marsh" and "water" classes were obtained by photo-interpretation of the 2019 Pleiades image. These classes are easily recognizable on this type of image. For urban areas we randomly selected polygons from the IGN BD Topo product. For the housing type building, 4 building height classes have previously been created (depending on the height of the layer field) in order to preserve a good diversity of the types of buildings present on the island. A random selection of polygons from each class was then made. The "built" layer was completed by a random selection of industrial buildings from the "industrial built" layer of the IGN's BD TOPO product. This selection was made in the "nature" field of the layer (i‧e. the following types: silo, industrial and livestock). The "photovoltaic panel" class was obtained by photo-interpretation of the polygons on 2019 Pleiades image. La base de données spatiale de référence pour 2019, est constituée de 5142 polygones. Nous l'utilisons pour calculer une carte d'occupation du sol à partir d'images satellites. Elle est organisée selon une nomenclature emboitée à 3 niveaux. Il s'agit d'une mise à jour de la base de données pour 2018. Voici une brève description des sources et techniques utilisées pour la constituer en fonction des groupes d’occupation du sol : Pour les espaces agricoles , nous disposons d’une base de données d’occupation du sol basée sur les déclarations que font des agriculteurs pour demander les subventions de l’Union Européenne. Il s’agit du Registre Parcellaire Graphique (RPG) diffusé en France par l’Institut français de l’information géographique et forestière (IGN). La description de cette donnée est disponible ici : http://professionnels.ign.fr/doc/DC_DL_RPG-2-0.pdf. Ces données vecteur sont précises et peuvent servir de modèle pour localiser les cultures. Les délais de diffusion impliquent que nous utilisons le RPG de l’année N -1. Il est donc nécessaire de vérifier la bonne cohérence des données par photo-interprétation de l’image THRS. Le RPG fournit peu d’informations sur l’arboriculture. Pour ces classes nous avons fait appel aux collègues techniciens spécialisés dans les cultures de mangues, litchis et agrumes qui connaissent bien leur secteur et peuvent localiser des parcelles sur l’image THRS. Les parcelles de la classe « culture sous serre ou ombrage » sont issues de la couche « bâti industriel » de la BD Topo de l’IGN. Une sélection aléatoire de 20% des polygones dans le champ hauteur de la couche de l’IGN permet de conserver une diversité des types de serre. Chacun des polygones...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Aggregate data files digitized from the published census volumes for 1891. The files were downloaded from the University of Saskatchewan Historical Geographic Information Systems Lab. This data were developed as part of the The Canadian Peoples / Les populations canadiennes Project.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This COVADIS data standard concerns communal map documents (CCs). This data standard provides a technical framework describing in detail how to dematerialise these town planning documents in a spatial database that can be used by a GIS tool and interoperable. This standard of data covers both the graphical plans of sectors and the information overlaying them. This standard of COVADIS data was developed on the basis of the specifications for the dematerialisation of planning documents created in 2012 by the CNIG, itself based on the consolidated version of the urban planning code dated 16 March 2012. The recommendations of these two documents are consistent even if their purpose is not the same. The COVADIS data standard provides definitions and a structure for organising and storing spatial data from communal maps in an infrastructure, while the CNIG specifications are used to frame the digitisation of these data. Part C ‘Data Structure’ presented in this COVADIS standard provides additional recommendations for the storage of data files. These are specific choices for the common data infrastructure of the ministries responsible for agriculture and sustainable development, which do not apply outside their context.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The reference spatial database for 2017 is composed of 6256 plots. We use it to calculate a land use map from satellite images.It is organized according to a nomenclature offering 3 levels of precision. We randomly selected 20% of the plots in each class to build a validation database while the remaining 80% is used for learning (5002 polygons for learning and 1254 for validation). The following is a brief description of the sources and techniques used to develop it according to land use types : For agricultural areas , we have a land use database based on farmers' declarations to apply for EU subsidies. This is the Registre Parcellaire Graphique (RPG) published in France by the French Institute of Geography (IGN). The description of this data is available here: http://professionnels.ign.fr/doc/DC_DL_RPG-2-0.pdf . These vector data are accurate and can be used as a model to locate crops. The release times imply that we use the RPG for year N -1. It is therefore necessary to check the correct consistency of the data by photo-interpretation of the VHR image. The RPG provides limited information on orchards. For these classes we called on colleagues specialised in mango, lychee and citrus fruit cultivation technicians who are familiar with their sector and can locate plots in the VHR image. Field surveys were conducted using GPS for market gardening crops. The plots of the "greenhouse or shade cultivation" class are derived from the "industrial building" layer of the IGN's "BD Topo" product of IGN. A random selection of 20% of the polygons in the height field of the IGN layer allows to keep a diversity of greenhouse types. Each of the polygons was verified by photo-interpretation of the Pleiades image. If the greenhouse or shade was not visible in the image, the polygon was deleted. For natural areas, there is no regularly updated mapping, but the main classes can be recognized from the GIS layers of the State services that manage these areas (ONF and DEAL). Two specific classes have been added (identified by photo-interpretation) to address the problems of satellite images: a class of shadows due to the island's steep terrain (areas not visible because of the shadow cast) and a class of vegetation located on steep slopes facing the morning sun called "savannah on cliffs". For wet areas, the "marsh", "water" and "hillside retention" classes were obtained by photo-interpretation of the 2017 Pleiades image. These classes are easily recognizable on this type of image. For urban areas we randomly selected polygons from the IGN's BD Topo layer. For the housing type building, 4 building height classes have previously been created (depending on the height of the layer field) in order to preserve a good diversity of the types of buildings present on the island. A random selection of polygons from each class was then made. The "built" layer was completed by a random selection of industrial buildings from the "industrial built" layer of the IGN's TOPO database. This selection was made in the "nature" field of the layer (i‧e. the following types: silo, industrial and livestock). The "photovoltaic panel" class was obtained by photo-interpretation of the polygons on the 2017 Pleiades image. La base de données spatiale de référence terrain pour 2017, est constituée de 6256 parcelles. Nous l'utilisons pour calculer une carte d'occupation du sol à partir d'image satellites. Elle est organisée selon une nomenclature emboitée à 3 niveaux. Nous avons sélectionné de façon aléatoire 20% des parcelles de chaque classe pour constituer une base de donnée de validation alors que les 80% restant sont utilisés pour l’apprentissage (5002 polygones pour l’apprentissage et 1254 pour la validation). Voici une brève description des sources et techniques utilisées pour la constituer en fonction des groupes d’occupation du sol : Pour les espaces agricoles , nous disposons d’une base de données d’occupation du sol basée sur les déclarations que font des agriculteurs pour demander les subventions de l’Union Européenne. Il s’agit du Registre Parcellaire Graphique (RPG) diffusé en France par l’Institut français de l’information géographique et forestière (IGN). La description de cette donnée est disponible ici : http://professionnels.ign.fr/doc/DC_DL_RPG-2-0.pdf. Ces données vecteur sont précises et peuvent servir de modèle pour localiser les cultures. Les délais de diffusion impliquent que nous utilisons le RPG de l’année N -1. Il est donc nécessaire de vérifier la bonne cohérence des données par photo-interprétation de l’image THRS. Le RPG fournit peu d’information sur l’arboriculture. Pour ces classes nous avons fait appel aux collègues techniciens spécialisés dans les cultures de mangues, litchis et agrumes qui connaissent bien leur secteur et peuvent localiser des parcelles sur l’image THRS. Des relevés de terrain ont été réalisés à l’aide d’un GPS pour les cultures de type maraichage. Les parcelles de la classe « culture sous...
Les risques naturels et technologiques sur le territoire de la CCBTA.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This COVADIS data standard concerns communal map documents (CCs). This data standard provides a technical framework describing in detail how to dematerialise these town planning documents in a spatial database that can be used by a GIS tool and interoperable. This standard of data covers both the graphical plans of sectors and the information overlaying them. This standard of COVADIS data was developed on the basis of the specifications for the dematerialisation of planning documents created in 2012 by the CNIG, itself based on the consolidated version of the urban planning code dated 16 March 2012. The recommendations of these two documents are consistent even if their purpose is not the same. The COVADIS data standard provides definitions and a structure for organising and storing spatial data from communal maps in an infrastructure, while the CNIG specifications are used to frame the digitisation of these data. Part C ‘Data Structure’ presented in this COVADIS standard provides additional recommendations for the storage of data files. These are specific choices for the common data infrastructure of the ministries responsible for agriculture and sustainable development, which do not apply outside their context.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This COVADIS data standard concerns communal map documents (CCs). This data standard provides a technical framework describing in detail how to dematerialise these town planning documents in a spatial database that can be used by a GIS tool and interoperable. This standard of data covers both the graphical plans of sectors and the information overlaying them. This standard of COVADIS data was developed on the basis of the specifications for the dematerialisation of planning documents created in 2012 by the CNIG, itself based on the consolidated version of the urban planning code dated 16 March 2012. The recommendations of these two documents are consistent even if their purpose is not the same. The COVADIS data standard provides definitions and a structure for organising and storing spatial data from communal maps in an infrastructure, while the CNIG specifications are used to frame the digitisation of these data. Part C ‘Data Structure’ presented in this COVADIS standard provides additional recommendations for the storage of data files. These are specific choices for the common data infrastructure of the ministries responsible for agriculture and sustainable development, which do not apply outside their context.
This layer shows the Canton level boundaries of France in 2015. The boundaries are optimized to support both visualization and analysis in ArcGIS Online. Each set of boundaries contains name, ID, and/or population counts for context. The layers can be enhanced with additional attributes using data enrichment tools in ArcGIS Online.Additional boundaries for France are available in 2 hierarchies grouped by geographies that nest into each other.France Administrative BoundariesCountry (1 feature)Region (22)Departement (95)Arrondissement (323)Canton (1972)Commune (36,571)IRIS (50,178)France Postal BoundariesCountry (1 feature)Postcodes2 (96)Postcodes5 (6052)
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Description Les couches "ensoleillement" représentent des simulations de l'ensoleillement théorique basant sur le modèle numérique de la surface. Ces simulations prennent en compte les situations topographiques (alentours, pentes, expositions) et la variation temporaire pendant l'année de l'ensoleillement théorique pour une position géographique spécifique. Cette analyse crée deux type de résultats sous forme d'une grille avec une résolution d'1 m : Une visualisation de la durée de l'ensoleillement en heures par jour Une accumulation de l’énergie solaire potentielle en Watt/m2 par jour Actuellement, cette analyse a été calculée pour trois jours, notamment le 15/02 (hiver), 15/05 (printemps) et 15/08 (été) sur le modèle numérique de la surface de 2017 mis à disposition par l’Administration National Aérienne (ANA). (Lien vers dataset du MNS) L'analyse de l'ensoleillement a été réalisé avec l'outil "Rayonnement solaire zonal" du logiciel ESRI ArcMap. Une documentation détaillée est disponible ici. Une documentation détaillée du calcul d’insolation utilisé est disponible ici. Les paramètres utilisés pour l'analyse Raster en entrée : Modèle numérique de surface mis à disposition par l'Administration de la navigantion aérienne (ANA) se basant sur des données LiDAR de 2017. Latitude: 49.46 ° Configuration du temps: Time Within a day (pour 3 dates: 15/02 hiver, 15/05 printemps et 15/08 été) Intervalle de temps : 0.5 Des intervalles de 30 minutes sont utilisés et les données sont accumulées par jours. Pente et exposition : Les rasters de pente et d'exposition sont calculés à partir du modèle numérique de surface en entrée. Nombre de directions azimutales : 32 directions. Ce nombre est approprié pour une topographie complexe. Proportion du flux du rayonnement normal global : La valeur utilisée est 0,3 pour des conditions de ciel dégagé. Fraction du rayonnement traversant l'atmosphère : 0,5 pour des conditions de ciel dégagé. Grille de la durée de l'ensoleillement directe : Raster en sortie correspondant à la durée du rayonnement solaire direct en heures par jour. Structure et format des données Les données sont disponibles dans le format GeoTIF avec une résolution 1 m (système de coordonnées LUREF – EPSG : 2169). Pour chaque date, il y a un fichier duration avec la durée de l’ensoleillement en heures par jour et un fichier radiation avec l’énergie solaire potentielle en Watt/m2 par jour.
We implemented automated workflows using Jupyter notebooks for each state. The GIS processing, crucial for merging, extracting, and projecting GeoTIFF data, was performed using ArcPy—a Python package for geographic data analysis, conversion, and management within ArcGIS (Toms, 2015). After generating state-scale LES (large extent spatial) datasets in GeoTIFF format, we utilized the xarray and rioxarray Python packages to convert GeoTIFF to NetCDF. Xarray is a Python package to work with multi-dimensional arrays and rioxarray is rasterio xarray extension. Rasterio is a Python library to read and write GeoTIFF and other raster formats. Xarray facilitated data manipulation and metadata addition in the NetCDF file, while rioxarray was used to save GeoTIFF as NetCDF. These procedures resulted in the creation of three HydroShare resources (HS 3, HS 4 and HS 5) for sharing state-scale LES datasets. Notably, due to licensing constraints with ArcGIS Pro, a commercial GIS software, the Jupyter notebook development was undertaken on a Windows OS.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This COVADIS data standard concerns communal map documents (CCs). This data standard provides a technical framework describing in detail how to dematerialise these town planning documents in a spatial database that can be used by a GIS tool and interoperable. This standard of data covers both the graphical plans of sectors and the information overlaying them. This standard of COVADIS data was developed on the basis of the specifications for the dematerialisation of planning documents created in 2012 by the CNIG, itself based on the consolidated version of the urban planning code dated 16 March 2012. The recommendations of these two documents are consistent even if their purpose is not the same. The COVADIS data standard provides definitions and a structure for organising and storing spatial data from communal maps in an infrastructure, while the CNIG specifications are used to frame the digitisation of these data. Part C ‘Data Structure’ presented in this COVADIS standard provides additional recommendations for the storage of data files. These are specific choices for the common data infrastructure of the ministries responsible for agriculture and sustainable development, which do not apply outside their context.
CAT: Scripts per a la reproducció de l'article (Code); dades de diferents tipus sobre les que s'ha treballat (Inputs): Punts dels jaciments i del background en format .shp (Points), Mapes rasters de les variables utilitzades en format .tiff (Variables) i línies dels rius en format .shp (Rius_UZGAR); i dades obtingudes de l'anàlisi de MaxEnt i les seves quatre particions (Outputs). ENG: Scripts for reproducing the article (Code); data of different types used in the analysis (Inputs): Points from the archaeological sites and background in .shp format (Points), raster maps of the variables used in .tiff format (Variables), and river lines in .shp format (Rius_UZGAR); and data obtained from the MaxEnt analysis and its four partitions (Outputs).
Les commentaires sur les zones de dangers indicatives décrivent les hypothèses de cheminement des eaux. Cette estimation de propagation des écoulements est basée à partir soit d'une visite de terrain, soit d'une interprétation du modèle numérique d'altitude (MNA).
https://spdx.org/licenses/etalab-2.0.htmlhttps://spdx.org/licenses/etalab-2.0.html
Le GIS Coop est un Groupement d’Intérêt Scientifique, dénommé « Coopérative de données sur la croissance des peuplements forestiers » qui a pour objet le recueil et la mise en commun de données scientifiques sur la croissance des peuplements forestiers, destinées à l’établissement de modèles de croissance et d’outils d’aide à la gestion. Cet objectif scientifique nécessite l’installation, le suivi et la mesure de réseaux multi locaux de placettes permanentes selon des protocoles standardisés couvrant au mieux toute la gamme de variabilité des conditions de croissance (climats, conditions stationnelles, sylvicultures, niveaux génétiques). Depuis la création en 1994 du GIS Coop, six partenaires (AgroParisTech, CNPF-IDF, CPFA, FCBA, INRAE (INRA+IRSTEA), ONF) bénéficient du soutien du Ministère en charge de la Forêt pour développer et gérer ces réseaux. Sept systèmes sylvicoles (peuplements équiennes de Douglas, Chênes sessile et pédonculé, Pins laricio et maritime ; peuplements mélangés à base de Chêne sessile et à base de Sapin pectiné) importants dans la ressource française sont étudiés. Chaque réseau est composé de sites expérimentaux installés de manière à explorer toute la diversité des contextes écologiques (climat, conditions stationnelles) des aires de production actuelles, tout en anticipant leur évolution. La stratégie d'échantillonnage des sites expérimentaux a été récemment révisée afin de stratifier les nouveaux plans d'échantillonnage selon des gradients environnementaux et ainsi adapter les réseaux aux nouvelles problématiques posées par les changements globaux. Ce jeu de données contient les informations recueillies à 3 reprises entre 2001 et 2009 dans un dispositif traitant de l'impact de scénarios d’éclaircies sur la croissance d'un peuplement régulier de chêne sessile. (Quercus petraea (Matt.) Liebl. - dispositif de Tronçais) The GIS Coop is a Scientific Interest Group, called "Cooperative of data on the growth of forest stands", which aims to collect and pool scientific data on the growth of forest stands, intended for the establishment of growth models and management tools. This scientific objective requires the installation, monitoring and measurement of multi-local networks of permanent plots according to standardized protocols covering the full range of variability of growth conditions (climates, site conditions, silviculture, genetic levels). Since the creation of GIS Coop in 1994, six partners (AgroParisTech, CNPF-IDF, CPFA, FCBA, INRAE(INRA, Irstea), ONF) have been supported by the Ministry in charge of forests to develop and manage these networks. Seven silvicultural systems (even-aged stands of Douglas-fir, Sessile and Pedunculate oak, Laricio and Maritime pine; mixed stands of Sessile oak and Silver fir) important in the French resource are studied. Each network is composed of experimental sites installed in order to explore the full diversity of ecological contexts (climate, site conditions) of current production areas, while anticipating their evolution. The sampling strategy of the experimental sites has been recently revised in order to stratify the new sampling plans according to environmental gradients and thus adapt the networks to the new issues raised by global changes. This dataset contains information collected between 2001 and 2009 in an experimental trial dealing with the impact of thinning scenarios on the growth of a regular stand of sessile oak (Quercus petraea (Matt.) Liebl.- site of Tronçais).
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
The effect of acid inputs on the environment depends on the quantity and acidity of atmospheric inputs, and the buffering capacity of the terrestrial and aquatic ecosystems. The effect of acidic precipitation on soil is potentially significant because the soil is the reservoir of plant nutrients and the source of much of the water for aquatic systems. Changes in the soil's chemistry may therefore be reflected in both the terrestrial and aquatic environments. Information on the effects of acidic precipitation on soils is available from effects near point sources of pollution, from experimentation with simulated rain solutions, from natural changes observed in soil over time, and from models and soil forming theories. Anticipated effects of soil acidification include: reduced pH, leaching of basic cations (such as magnesium and calcium) and other exchangeable plant nutrients, reduction in base saturation and cation-exchange capacity, mobilization of soil-bound metals such as aluminum, and changes in biological activity such as decreased nitrification and soil respiration.The principal objective of the baseline program is to establish a uniform data base for soils across the province. This data base 1) provides current data to identify future trends, 2) enables the development of laboratory experiments which define soil sensitivity criteria to acidic precipitation, and 3) provides information required for sensitivity mapping of soils throughout Ontario.L'effet des apports acides sur l'environnement dépend de la quantité et de l'acidité des apports atmosphériques et de la capacité tampon des écosystèmes terrestres et aquatiques. L'effet des précipitations acides sur le sol est potentiellement important car le sol est le réservoir de nutriments des plantes et la source d'une grande partie de l'eau pour les systèmes aquatiques. Les changements dans la chimie du sol peuvent donc se refléter à la fois dans les environnements terrestres et aquatiques. Des informations sur les effets des précipitations acides sur les sols sont disponibles à partir des effets à proximité de sources ponctuelles de pollution, de l'expérimentation de solutions de pluie simulées, des changements naturels observés dans le sol au fil du temps, et de modèles et de théories de formation du sol. Les effets anticipés de l'acidification du sol comprennent: pH réduit, lessivage des cations basiques (tels que le magnésium et le calcium) et d'autres nutriments végétaux échangeables, réduction de la saturation en bases et de la capacité d'échange de cations, mobilisation de métaux liés au sol tels que l'aluminium et changements dans activité biologique telle que diminution de la nitrification et respiration du sol.Le principal objectif du programme de référence est d'établir une base de données uniforme pour les sols de la province. Cette base de données 1) fournit des données actuelles pour identifier les tendances futures, 2) permet le développement d'expériences de laboratoire qui définissent les critères de sensibilité du sol aux précipitations acides, et 3) fournit les informations nécessaires à la cartographie de la sensibilité des sols à travers l'Ontario.Additional DocumentationDataDescription_APIOS (docx) - Data description document for the APIOS dataset | Document avec description des données pour le projet APIOS (170KB)APIOS_Sites (csv) - Site information collected at the APIOS sampling locations | Informations au niveau du site pour les sites d'échantillonnages du projet APIOS (69 KB)APIOS_HorizonsAll (csv) - Raw analytical data for APIOS sample sites | Données analytiques brutes pour les sites d'échantillonnages du projet APIOS (319 KB)APIOS_HorizonAverages (csv) - Analytical data averaged by soil horizon for APIOS sample sites, since horizons were often sampled in duplicate | Moyenne des données analytiques pour les sites d'échantillonnages du projet APIOS puisque les horizons ont souvent été échantillonnées en double (185 KB)APIOS Methods Manual - Report describing the sampling and analytical methods for the project | Rapport qui décrit les méthodes d'échantillonages et les analyses de laboratoires pour le projet. (1.0 MB)APIOS002_85_OntarioSoilBaselineSurvey_Vol1 - Report (1985) providing a description of the APIOS program, including objectives, overview of sampling methods, and introduction to soil formation and distribution across Ontario | Rapport (1985) qui décrit le programme APIOS, y inclus les méthodes d'échantillonnages, une introduction au développement et à la distribution des sols en Ontario. (1.0 MB).APIOS002_85_OntarioSoilBaselineSurvey_Vol2 - Report (1985) providing analytical data collected for southern Ontario | Rapport (1985) qui présente les données analytiques provenant du sud Ontarien. (46 MB).APIOS002_85_OntarioSoilBaselineSurvey_Vol3 - Report (1985) providing analytical data collected for northern Ontario | Rapport (1985) qui présente les données analytiques provenant du nord Ontarien. (1.3 MB).APIOS008_83_OntarioSoilBaselineSurvey_Vol1 - Report (1983) providing a description of the APIOS program, including objectives, overview of sampling methods, and introduction to soil formation and distribution across Ontario | Rapport (1983) qui décrit le programme APIOS, y inclus les méthodes d'échantillonnages, une introduction au développement et à la distribution des sols en Ontario. (500 KB).APIOS008_83_OntarioSoilBaselineSurvey_Vol2 - Report (1983) providing analytical data collected for southern Ontario | Rapport (1983) qui présente les données analytiques provenant du sud Ontarien. (51 MB).APIOS008_83_OntarioSoilBaselineSurvey_Vol3 - Report (1983) providing analytical data collected for northern Ontario | Rapport (1985) qui présente les données analytiques provenant du nord Ontarien. (23 MB).StatusCompleteMaintenance and Update FrequencyCompleteContactDaniel Saurette, omafra.gis@ontario.ca
GIS dataset and PDF of the Natural Risk Prevention Plan — flooding of the commune of LES Tourettes 26353 approved on 26/05/2014
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
Une route est au sens littéral une voie terrestre (au niveau du sol ou sur viaduc) aménagée pour permettre la circulation de véhicules à roues. Ce terme s'applique plutôt aux voies importantes situées en rase campagne et ne peut être apparenté à une rue. Dans les pays vastes et peu peuplés, à la fin du XXe siècle, de nombreuses routes étaient encore des chemins empierrés ou damés (les « sentiers battus »).Source: https://fr.wikipedia.org/wiki/Route
GIS dataset and PDF of Urbanisation Documents of the Local Urbanisation Plan of SAINT PAUL LES ROMANS 26323 — PLU approved on 06/11/2007 — Compatibility N°1 approved on 21/05/2019 enforceability 24/05/2019
This COVADIS data standard concerns local planning documents (LDPs) and land use plans (POSs that are PLU). This data standard provides a technical framework describing in detail how to dematerialise these planning documents into a spatial database that can be used by a GIS tool and interoperable. This standard of data concerns both the graphic zoning plans, the superimposed requirements and the regulations applying to each type of area.This standard of COVADIS data was developed on the basis of the specifications for the dematerialisation of urban planning documents updated in 2012 by the CNIG, itself based on the consolidated version of the urban planning code dated 16 March 2012. The recommendations of these two documents are consistent even if their purpose is not the same. The COVADIS data standard provides definitions and a structure for organising and storing existing PLU/POS spatial data in an infrastructure in digital form, while the CNIG specification serves to frame the digitisation of such data. The ‘Data Structure’ section presented in this COVADIS standard provides additional recommendations for the storage of data files (see Part C). These are choices specific to the MAA and MEDDE data infrastructure that do not apply outside their context. Communal maps are the subject of another COVADIS data standard.
Set of GIS data and PDF of Urbanisation Documents of the Local Urbanisation Plan of CHANTEMERLE LES BLES 26072 PLU approved on 28/03/2006 — Update approved on 15/03/2012
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The reference spatial database for 2019 contains 5142 plots. We use it to calculate a land use map from satellite images. It is organized according to a nested 3-level nomenclature. This is an update of the 2018 database. The sources and techniques used to build the database by land use groups are described below: For agricultural areas, we use a land use database based on farmers' declarations (for EU subsidies). This is the "Registre Parcellaire Graphique" (RPG) published in France by the French Institute for Geographical and Forestry Informations (IGN). The description of this data is available here: http://professionnels.ign.fr/doc/DC_DL_RPG-2-0.pdf. These vector data localize the crops. The release times imply that we use the RPG for last year (2018). It is therefore necessary to verify the good coherence of the data with the image at very high spatial resolution (VHSR) Pleiades. The RPG provides little information on arboriculture. For these classes we called on colleagues specialized in mango, lychee and citrus crops who are familiar with their area and can locate plots in the VHSR image. The plots of the "greenhouse or shade cultivation" class are derived from the "industrial building" layer of the IGN's "BD Topo" product. A random selection of 20% of the polygons in the layer height field allows to keep a diversity of greenhouse types. Each polygon was verified by photo-interpretation of the Pleiades image. If the greenhouse or shade was not visible in the image, the polygon was removed. The distinction between mowed and grazed grasslands was completed through collaboration with colleagues from the SELMET joint research unit (Emmanuel Tillard, Expédit Rivière, Colas Gabriel Tovmassian and Jeanne Averna). For natural areas , there is no regularly updated mapping, but the main classes can be recognized from the GIS layers of government departments that manage these areas (ONF and DEAL). Two specific classes have been added (identified by photo-interpretation): a class of shadows due to the island's steep relief (areas not visible because of the cast shade) and a class of vegetation located on steep slopes facing the morning sun called "rampart moor". The polygons for the distinction of savannahs have been improved thanks to the knowledge of Xavier Amelot (CNRS), Béatrice Moppert and Quentin Rivière (University of La Réunion). For wet land areas , the "marsh" and "water" classes were obtained by photo-interpretation of the 2019 Pleiades image. These classes are easily recognizable on this type of image. For urban areas we randomly selected polygons from the IGN BD Topo product. For the housing type building, 4 building height classes have previously been created (depending on the height of the layer field) in order to preserve a good diversity of the types of buildings present on the island. A random selection of polygons from each class was then made. The "built" layer was completed by a random selection of industrial buildings from the "industrial built" layer of the IGN's BD TOPO product. This selection was made in the "nature" field of the layer (i‧e. the following types: silo, industrial and livestock). The "photovoltaic panel" class was obtained by photo-interpretation of the polygons on 2019 Pleiades image. La base de données spatiale de référence pour 2019, est constituée de 5142 polygones. Nous l'utilisons pour calculer une carte d'occupation du sol à partir d'images satellites. Elle est organisée selon une nomenclature emboitée à 3 niveaux. Il s'agit d'une mise à jour de la base de données pour 2018. Voici une brève description des sources et techniques utilisées pour la constituer en fonction des groupes d’occupation du sol : Pour les espaces agricoles , nous disposons d’une base de données d’occupation du sol basée sur les déclarations que font des agriculteurs pour demander les subventions de l’Union Européenne. Il s’agit du Registre Parcellaire Graphique (RPG) diffusé en France par l’Institut français de l’information géographique et forestière (IGN). La description de cette donnée est disponible ici : http://professionnels.ign.fr/doc/DC_DL_RPG-2-0.pdf. Ces données vecteur sont précises et peuvent servir de modèle pour localiser les cultures. Les délais de diffusion impliquent que nous utilisons le RPG de l’année N -1. Il est donc nécessaire de vérifier la bonne cohérence des données par photo-interprétation de l’image THRS. Le RPG fournit peu d’informations sur l’arboriculture. Pour ces classes nous avons fait appel aux collègues techniciens spécialisés dans les cultures de mangues, litchis et agrumes qui connaissent bien leur secteur et peuvent localiser des parcelles sur l’image THRS. Les parcelles de la classe « culture sous serre ou ombrage » sont issues de la couche « bâti industriel » de la BD Topo de l’IGN. Une sélection aléatoire de 20% des polygones dans le champ hauteur de la couche de l’IGN permet de conserver une diversité des types de serre. Chacun des polygones...