This resource contains Lidar-DEM collection status shapefiles from the Texas Natural Resources Information System (TNRIS) [http://tnris.org]. November 2023 updates: this year, TNRIS changed its name to Texas Geographic Information Office (TxGIO). The domain name hasn't changed yet, but the data hub is continually evolving. See [1], [2] for current downloadable data.
For purposes of Hurricane Harvey studies, the 1-m DEM for Harris County (2008) has also been uploaded here as a set of 4 zipfiles containing the DEM in tiff files. See [1] for a link to the current elevation status map and downloadable DEMs.
Project name: H-GAC 2008 1m
Datasets: 1m Point Cloud, 1M Hydro-Enforced DEM, 3D Breaklines, 1ft and 5ft Contours
Points per sq meter: 1
Total area: 3678.56 sq miles
Source: Houston-Galveston Area Council (H-GAC)
Acquired by: Merrick, QA/QC: Merrick
Catalog: houston-galveston-area-council-h-gac-2008-lidar
References: [1] TNRIS/TxGIO StratMap elevation data [https://tnris.org/stratmap/elevation-lidar/] [2] TNRIS/TxGIO DataHub [https://data.tnris.org/]
The Dauphin County, PA 2016 QL2 LiDAR project called for the planning, acquisition, processing and derivative products of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania South Zone, US survey feet; NAVD1988 (Geoid 12B), US survey feet. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to 711 individual 5,000-foot x 5,000-foot tiles. Tile names use the following naming schema: "YYYYXXXXPAd" where YYYY is the first 3 characters of the tile's upper left corner Y-coordinate, XXXX - the first 4 characters of the tile's upper left corner X-coordinate, PA = Pennsylvania, and d = 'N' for North or 'S' for South. Corresponding 2.5-foot gridded hydro-flattened bare earth raster tiled DEM files and intensity image files were created using the same 5,000-foot x 5,000-foot schema. Hydro-flattened breaklines were produced in Esri file geodatabase format. Continuous 2-foot contours were produced in Esri file geodatabase format. Ground Conditions: LiDAR collection began in Spring 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established a total of 84 control points (24 calibration control points and 60 QC checkpoints). These were used to calibrate the LIDAR to known ground locations established throughout the project area.
Product: These are Digital Elevation Model (DEM) data as part of the required deliverables for the lidar project. Class 2 (Ground) lidar points in conjunction with the hydro breaklines were used to create a 1 foot hydro-flattened Raster DEM. Geographic Extent: Santa Clara county, California, covering approximately 1771 square miles. Dataset Description: The lidar project called for the Plannin...
This statewide product was created and will continue to be maintained by the Eastern Shore Regional GIS Cooperative (ESRGC). It's a comprehensive mosaic of the most current LiDAR available for the State of Maryland.The creation and maintenance of this dataset, along with the creation of its services, was funded by the Maryland Department of Information Technology.This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Image Service Link: https://mdgeodata.md.gov/lidar/rest/services/Statewide/MD_statewide_dem_ft/ImageServer
This dataset provides the point cloud data derived from small footprint waveform LiDAR data collected in August 2014 over Reynolds Creek Experimental Watershed and Hollister in southern Idaho. The LiDAR data have been georeferenced, noise-filtered, and corrected for misalignment for overlapping flight lines and are provided in 1 km tiles. High resolution digital elevation models and maps of maximum vegetation height derived from the LiDAR data are provided for each site.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The LIDAR Composite DTM (Digital Terrain Model) is a raster elevation model covering ~99% of England at 1m spatial resolution. The DTM (Digital Terrain Model) is produced from the last or only laser pulse returned to the sensor. We remove surface objects from the Digital Surface Model (DSM), using bespoke algorithms and manual editing of the data, to produce a terrain model of just the surface.
Produced by the Environment Agency in 2022, the DTM is derived from a combination of our Time Stamped archive and National LIDAR Programme surveys, which have been merged and re-sampled to give the best possible coverage. Where repeat surveys have been undertaken the newest, best resolution data is used. Where data was resampled a bilinear interpolation was used before being merged.
The 2022 LIDAR Composite contains surveys undertaken between 6th June 2000 and 2nd April 2022. Please refer to the metadata index catalgoues which show for any location which survey was used in the production of the LIDAR composite.
The data is available to download as GeoTiff rasters in 5km tiles aligned to the OS National grid. The data is presented in metres, referenced to Ordinance Survey Newlyn and using the OSTN’15 transformation method. All individual LIDAR surveys going into the production of the composite had a vertical accuracy of +/-15cm RMSE.
This raster dataset contains LiDAR-derived elevation data flown from Fall 2015 to Spring 2016, with additional reflights through Fall 2016. This dataset encompasses all of the LARIAC4 project, comprised of approximately 4214 square miles.
The NOAA Office for Coastal Management (OCM) downloaded this digital elevation model (DEM) data from the USGS site: ftp://rockyftp.cr.usgs.gov/vdelivery/Data...
Note: This service is only for using online; full resolution downloads are not supported. To enable pop ups when opening this in a new web map, then click the ellipsis (three blue dots) under the layer name in the contents, and choose Enable Pop-up.Image service created from Digital Elevation Models (DEMs) derived from county-produced LiDAR covering Wisconsin. Elevation units are in feet. This service was last updated May 2023. It can be used in conjunction with its associated Index layer, DEM and Hillshade from LiDAR - Index, to determine flight years of source LiDAR and resolution of source DEMs. Also see the Index layer item details for detailed information about counties included in this service and in related services: DEM from LiDAR (Units in Meters) and Hillshade from LiDAR.Some areas display as data gaps (white artifacts) when the service is viewed at statewide scales but display normally when zoomed in to scales of approximately 1:1,000,000 or larger. We hope to address the no-data areas and small-scale data gaps in future updates to this service. The source DEMs have not been hydrologically conditioned. The Vertical Datum for the DEMs is NAVD88.WI DNR acknowledges the USDA Natural Resources Conservation Service, USGS, FEMA, the Southeastern WI Regional Planning Commission, and the individual counties listed in DEM and Hillshade from LiDAR - Index, for making source data available. For more information, visit https://dnr.wi.gov/feedback/ and choose Geographic Information Systems Data as the subject.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The SurfZone Digital Elevation Model (DEM) was produced in 2019. Combining LIDAR and near-shore multibeam SONAR Bathymetry elevation data, it is the best currently available Digital Elevation Model (DEM) covering the inter-tidal zone produced by the Environment Agency.
The EA SurfZone DEM 2019 is supplied as a tiled raster dataset in GeoTiff format. Each tile is 5km * 5km and aligned to the Ordinance Survey National Grid. Each pixel represents 2 metres spatial resolution on the ground and elevations are presented in metres to Ordinance Survey Great Britain using the OSGM'15 and OSTM'15 transformation models. Elevations are referenced to Newlyn except for the Isles of Scilly which is referenced to St Marys.
The SurfZone DEM was produced by using a bespoke feathering technique to smooth the overlaps between LIDAR and Bathymetric surveys to produce a merged surface. Where small gaps existed between the LIDAR and Bathymetric surveys these were interpolated using a bilinear interpolation technique.
Please refer to the metadata index catalgoues which show for any location which survey was used in the production of the SurfZone DEM. The Metadata Index Catalogue provides information about the source of the survey data used, either LIDAR or Bathymetry for any area as well as the surface type, coastal monitoring region, geoidal model and transformation models used.
All LIDAR data used in the production of the SurfZone DEM was surveyed by the Environment Agency. Bathymetry data was surveyed by the Environment Agency or sourced from the National Network of Regional Coastal Monitoring Programmes of England from the Channel Coastal Observatory (www.channelcoast.org) website. The National Network of Regional Coastal Monitoring Programmes of England comprises of 6 Regional Programmes. When re-using these data, you must use the copyright statements in the licence to acknowledge the individual regions when reusing this dataset.
https://www.neonscience.org/data-samples/data-policies-citationhttps://www.neonscience.org/data-samples/data-policies-citation
Bare earth elevation surface (DTM) and actual surface (DSM) given in meters in the NAVD88 (Geoid12A realization) vertical reference frame. Horizontal coordinates referenced to appropriate UTM zone. Bare earth is created by classifying and removing vegetation and man-made structures from lidar point cloud prior to surface generation. Both the DSM and DTM are mosaicked onto a spatially uniform grid at 1 m spatial resolution in 1 km by 1 km tiles provided in a geotiff format.
Product: These are Digital Elevation Model (DEM) data for FL Panhandle as part of the required deliverables for the 2018 FL Panhandle Lidar project. Class 2 (ground) lidar points in conjunction with the hydro breaklines were used to create a 1 meter hydro-flattened Raster DEM. This delivery consists of 2859 tiles.
Geographic Extent: Bay, Calhoun, Covington, Decatur, Dixie, Escambia, Franklin...
MD/PA Sandy Supplemental Lidar Data Acquisition and Processing Production Task USGS Contract No. G10PC00057 Task Order No. G14PD00397 Woolpert Order No. 74333 CONTRACTOR: Woolpert, Inc. This task is for a high resolution data set of lidar covering approximately 1,845 square miles. The lidar data was acquired and processed under the requirements identified in this task order. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. The final products include classified LAS, one (1) meter pixel raster DEMs of the bare-earth surface in ERDAS IMG Format, and 8-bit intensity images. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Additional deliverables include hydrologic breakline data, control data, tile index, lidar processing and survey reports in PDF format, FGDC metadata files for each data deliverable in .xml format, and LAS swath data. Ground conditions: Water at normal levels; no unusual inundation; no snow; leaf off. Coastal tiles 18SVH065720 and 8SVH095690 contain no lidar points as they exist completely in water. A DEM IMG was generated for these two tiles as the digitized hydro breakline assumed the data extent in the area. As such only 2568 LAS and Intensity files will be delivered along with 2570 DEM IMG's.This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Image Service Link: https://mdgeodata.md.gov/lidar/rest/services/BaltimoreCity/MD_baltimorecity_dem_ft/ImageServer
The 10 m resolution Lidar Digital Elevation Model (DEM) is the primary elevation data product produced and distributed by the National Park Service, Great Smoky Mountains National Park.
The Digital Elevation Model (DEM) 5 Metre Grid of Australia derived from LiDAR model represents a National 5 metre (bare earth) DEM which has been derived from some 236 individual LiDAR surveys between 2001 and 2015 covering an area in excess of 245,000 square kilometres. These surveys cover Australia's populated coastal zone; floodplain surveys within the Murray Darling Basin, and individual surveys of major and minor population centres. All available 1 metre resolution LiDAR-derived DEMs have been compiled and resampled to 5 metre resolution datasets for each survey area, and then merged into a single dataset for each State. These State datasets have also been merged into a 1 second resolution national dataset.
The acquisition of the individual LiDAR surveys and derivation of the 5m product has been part of a long-term collaboration between Geoscience Australia, the Cooperative Research Centre for Spatial Information (CRCSI), the Departments of Climate Change and Environment, State and Territory jurisdictions, Local Government and the Murray Darling Basin Authority under the auspices of the National Elevation Data Framework and Coastal and Urban DEM Program, with additional data supplied by the Australian Department of Defence. The source datasets have been captured to standards that are generally consistent with the Australian ICSM LiDAR Acquisition Specifications with require a fundamental vertical accuracy of at least 0.30m (95% confidence) and horizontal accuracy of at least 0.80m (95% confidence).
https://data.linz.govt.nz/license/attribution-4-0-international/https://data.linz.govt.nz/license/attribution-4-0-international/
This layer contains the DEM for LiDAR data of the Taranaki Region, including New Plymouth, Stratford, and the surrounding area, captured between 3 April to 16 October 2021.
The DSM is available as layer Taranaki LiDAR 1m DSM (2021).
The index tiles are available as layer Taranaki LiDAR Index Tiles (2021).
The LAS point cloud and vendor project reports are available from OpenTopography.
LiDAR was captured for Taranaki Regional Council by AAM Ltd on 3 April to the 16 October 2021. The datasets were generated by AAM and their subcontractors. Data management and distribution is by Toitū Te Whenua Land Information New Zealand.
Data comprises:
DEM: tif or asc tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout
DSM: tif or asc tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout
Point cloud: las tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout
Pulse density specification is at a minimum of 8 pulses/square metre for urban areas and 4 pulses/square metre for the rest of the dataset.
Vertical Accuracy Specification is +/- 0.2m (95%) Horizontal Accuracy Specification is +/- 1.0m (95%)
Vertical datum is NZVD2016.
https://data.linz.govt.nz/license/attribution-4-0-international/https://data.linz.govt.nz/license/attribution-4-0-international/
This layer contains the DEM for LiDAR data in the Northland region, captured between 18 April 2024 – 28 June 2024
The DSM is available as layer Northland LiDAR 1m DSM (2024).
The Index Tiles are available as layer Northland LiDAR Index Tiles (2024).
The LAS Point Cloud is available as layer Northland LiDAR Point Cloud (2024).
LiDAR was captured for Regional Software Holdings Ltd by Landpro Ltd from 18 April to 28 June 2024. The dataset was generated by Landpro and their subcontractors. Data management and distribution is by Toitū Te Whenua Land Information New Zealand. Data comprises:
DEM: tif or asc tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout
DSM: tif or asc tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout
Point cloud: las tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout
Pulse density specification is at a minimum of 8 pulses/square metre.
Vertical Accuracy Specification is +/- 0.2m (95%) Horizontal Accuracy Specification is +/- 1.0m (95%)
Vertical datum is NZVD2016.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
Dewberry collected 1000 square miles of lidar data in Pasco County, Florida. The nominal pulse spacing for this project was 1 point every 0.35 meters or a nominal pulse density of 8 points per square meter. Dewberrry used proprietary procedures to classify the LAS according to project specifications: 1-Unclassified, 2-Ground, 6-Building Rooftops, 7-Low Noise, 9-Water, 17- Bridge Decks, 18-Hi...
https://data.linz.govt.nz/license/attribution-4-0-international/https://data.linz.govt.nz/license/attribution-4-0-international/
This layer contains the DEM for LiDAR data in the Southland Region, captured between 15 December 2020 to 30 January 2024.
The DSM is available as layer Southland - LiDAR 1m DSM (2020-2024).
The index tiles are available as layer Southland - LiDAR Index Tiles (2020-2024).
The LAS point cloud and vendor project reports are available from OpenTopography.
LiDAR was captured for Environment Southland by Aerial Surveys Ltd between 15 December 2020 to 30 January 2024. These datasets were generated by Aerial Surveys and their subcontractors. Data management and distribution is by Toitū Te Whenua Land Information New Zealand.
Data comprises:
DEM: tif or asc tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout
DSM: tif or asc tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout
Point cloud: las tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout
Pulse density specification is at a minimum of 4 pulses/square metre.
Vertical Accuracy Specification is +/- 0.2m (95%) Horizontal Accuracy Specification is +/- 1.0m (95%)
Vertical datum is NZVD2016.
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. The one-meter DEM is the highest resolution standard DEM offered in the 3DEP product suite. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
This resource contains Lidar-DEM collection status shapefiles from the Texas Natural Resources Information System (TNRIS) [http://tnris.org]. November 2023 updates: this year, TNRIS changed its name to Texas Geographic Information Office (TxGIO). The domain name hasn't changed yet, but the data hub is continually evolving. See [1], [2] for current downloadable data.
For purposes of Hurricane Harvey studies, the 1-m DEM for Harris County (2008) has also been uploaded here as a set of 4 zipfiles containing the DEM in tiff files. See [1] for a link to the current elevation status map and downloadable DEMs.
Project name: H-GAC 2008 1m
Datasets: 1m Point Cloud, 1M Hydro-Enforced DEM, 3D Breaklines, 1ft and 5ft Contours
Points per sq meter: 1
Total area: 3678.56 sq miles
Source: Houston-Galveston Area Council (H-GAC)
Acquired by: Merrick, QA/QC: Merrick
Catalog: houston-galveston-area-council-h-gac-2008-lidar
References: [1] TNRIS/TxGIO StratMap elevation data [https://tnris.org/stratmap/elevation-lidar/] [2] TNRIS/TxGIO DataHub [https://data.tnris.org/]