Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The LIDAR Composite DTM (Digital Terrain Model) is a raster elevation model covering ~99% of England at 1m spatial resolution. The DTM (Digital Terrain Model) is produced from the last or only laser pulse returned to the sensor. We remove surface objects from the Digital Surface Model (DSM), using bespoke algorithms and manual editing of the data, to produce a terrain model of just the surface.
Produced by the Environment Agency in 2022, the DTM is derived from a combination of our Time Stamped archive and National LIDAR Programme surveys, which have been merged and re-sampled to give the best possible coverage. Where repeat surveys have been undertaken the newest, best resolution data is used. Where data was resampled a bilinear interpolation was used before being merged.
The 2022 LIDAR Composite contains surveys undertaken between 6th June 2000 and 2nd April 2022. Please refer to the metadata index catalgoues which show for any location which survey was used in the production of the LIDAR composite.
The data is available to download as GeoTiff rasters in 5km tiles aligned to the OS National grid. The data is presented in metres, referenced to Ordinance Survey Newlyn and using the OSTN’15 transformation method. All individual LIDAR surveys going into the production of the composite had a vertical accuracy of +/-15cm RMSE.
The 3 m Resolution Lidar Digital Elevation Model (DEM) is the primary elevation data product produced and distributed by the National Park Service, Great Smoky Mountains National Park.
The 10 m resolution Lidar Digital Elevation Model (DEM) is the primary elevation data product produced and distributed by the National Park Service, Great Smoky Mountains National Park.
The Dauphin County, PA 2016 QL2 LiDAR project called for the planning, acquisition, processing and derivative products of LIDAR data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LIDAR Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) State Plane Pennsylvania South Zone, US survey feet; NAVD1988 (Geoid 12B), US survey feet. LiDAR data was delivered in RAW flight line swath format, processed to create Classified LAS 1.4 Files formatted to 711 individual 5,000-foot x 5,000-foot tiles. Tile names use the following naming schema: "YYYYXXXXPAd" where YYYY is the first 3 characters of the tile's upper left corner Y-coordinate, XXXX - the first 4 characters of the tile's upper left corner X-coordinate, PA = Pennsylvania, and d = 'N' for North or 'S' for South. Corresponding 2.5-foot gridded hydro-flattened bare earth raster tiled DEM files and intensity image files were created using the same 5,000-foot x 5,000-foot schema. Hydro-flattened breaklines were produced in Esri file geodatabase format. Continuous 2-foot contours were produced in Esri file geodatabase format. Ground Conditions: LiDAR collection began in Spring 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications, Quantum Spatial established a total of 84 control points (24 calibration control points and 60 QC checkpoints). These were used to calibrate the LIDAR to known ground locations established throughout the project area.
https://www.neonscience.org/data-samples/data-policies-citationhttps://www.neonscience.org/data-samples/data-policies-citation
Bare earth elevation surface (DTM) and actual surface (DSM) given in meters in the NAVD88 (Geoid12A realization) vertical reference frame. Horizontal coordinates referenced to appropriate UTM zone. Bare earth is created by classifying and removing vegetation and man-made structures from lidar point cloud prior to surface generation. Both the DSM and DTM are mosaicked onto a spatially uniform grid at 1 m spatial resolution in 1 km by 1 km tiles provided in a geotiff format.
NYC 1foot Digital Elevation Model: A bare-earth, hydro-flattened, digital-elevation surface model derived from 2010 Light Detection and Ranging (LiDAR) data. Surface models are raster representations derived by interpolating the LiDAR point data to produce a seamless gridded elevation data set. A Digital Elevation Model (DEM) is a surface model generated from the LiDAR returns that correspond to the ground with all buildings, trees and other above ground features removed. The cell values represent the elevation of the ground relative to sea level. The DEM was generated by interpolating the LiDAR ground points to create a 1 foot resolution seamless surface. Cell values correspond to the ground elevation value (feet) above sea level. A proprietary approach to surface model generation was developed that reduced spurious elevation values in areas where there were no LiDAR returns, primarily beneath buildings and over water. This was combined with a detailed manual QA/QC process, with emphasis on accurate representation of docks and bare-earth within 2000ft of the water bodies surrounding each of the five boroughs.
Please see the following link for additional documentation- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_DigitalElevationModel.md
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
LiDAR Derived Digital Elevation Models available at a 1m resolution in New Brunswick Stereographic Double Projection (NBSDP). LiDAR Derived Digital Elevation Models and Digital Surface Models available at 1m or 2m resolutions from NRCAN in Universal Transverse Mercator (UTM).
This lidar data set includes unclassified swath LAS 1.4 files, classified LAS 1.4 files, breaklines, digital elevation models (DEMs), first return digital surface models (DSMs), and intensity imagery. Geographic Extent: Fourteen partial counties in Utah, covering approximately 7,005 total square kilometers; partial coverage of three counties covering approximately 182 square kilometers in the Minidoka QL1 AOI. This area is part of the Bear Lake / Cache Valley QL1 AOI. Dataset Description: The Utah 2016 Lidar project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.35 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Lidar Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011), UTM Zone 12, meters and vertical datum of NAVD88 (GEOID12B), meters. Lidar data was delivered as flightline-extent unclassified LAS swaths, as processed Classified LAS 1.4 files formatted to 215 individual 1,000 meter x 1,000 meter tiles; as tiled intensity imagery, as tiled bare earth DEMs, and as tiled first return DSMs all tiled a 2,000 meter x 2,000 meter schema (82 tiles). Continuous breaklines were produced in Esri shapefile format. Ground Conditions: Lidar was partially collected in fall of 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. established a total of 28 ground control points that were used to calibrate the lidar to known ground locations established throughout the project area. An additional 5 independent accuracy checkpoints, 5 in Bare Earth and Urban landcovers (5 NVA points), 6 in the Shrubs and Tall Grass category (6 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains Lidar-DEM collection status shapefiles from the Texas Natural Resources Information System (TNRIS) [http://tnris.org]. November 2023 updates: this year, TNRIS changed its name to Texas Geographic Information Office (TxGIO). The domain name hasn't changed yet, but the data hub is continually evolving. See [1], [2] for current downloadable data.
For purposes of Hurricane Harvey studies, the 1-m DEM for Harris County (2008) has also been uploaded here as a set of 4 zipfiles containing the DEM in tiff files. See [1] for a link to the current elevation status map and downloadable DEMs.
Project name: H-GAC 2008 1m
Datasets: 1m Point Cloud, 1M Hydro-Enforced DEM, 3D Breaklines, 1ft and 5ft Contours
Points per sq meter: 1
Total area: 3678.56 sq miles
Source: Houston-Galveston Area Council (H-GAC)
Acquired by: Merrick, QA/QC: Merrick
Catalog: houston-galveston-area-council-h-gac-2008-lidar
References: [1] TNRIS/TxGIO StratMap elevation data [https://tnris.org/stratmap/elevation-lidar/] [2] TNRIS/TxGIO DataHub [https://data.tnris.org/]
Product: These are Digital Elevation Model (DEM) data as part of the required deliverables for the lidar project. Class 2 (Ground) lidar points in conjunction with the hydro breaklines were used to create a 1 foot hydro-flattened Raster DEM. Geographic Extent: Santa Clara county, California, covering approximately 1771 square miles. Dataset Description: The lidar project called for the Plannin...
Original Dataset Product: These are Digital Elevation Model (DEM) data for California as part of the required deliverables for the CA_SanFrancisco_B23, Work Unit 300449 project. Class 2 (ground) LiDAR points in conjunction with the hydro breaklines were used to create a 0.25 meter hydro-flattened Raster DEM.
Original Dataset Geographic Extent: 4 counties (Alameda, Marin, San Francisco, San...
These raster datasets are 3-meter lidar-derived images of Monroe County, West Virginia, and were created using geographic information systems (GIS) software. Lidar-derived elevation data acquired in late December of 2016 were used to create a 3-meter resolution working digital elevation model (DEM), from which a hillshade was applied and a topographic position index (TPI) raster was calculated. These two rasters were uploaded into GlobalMapper, where the TPI raster was made partially transparent and overlaid the hillshade DEM. The resulting image was exported to create a 3-meter resolution lidar-derived image. The data is projected in North America Datum (NAD) 1983 UTM Zone 17.
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 (NAD83). All bare earth elevation values are in meters and are referenced to the North American Vertical Datum of 1988 (NAVD88). Each tile is distributed in the UTM Zone in which it lies. If a tile crosses two UTM zones, it is delivered in both zones. The one-meter DEM is the highest resolution standard DEM offered in the 3DEP product suite. Other 3DEP products are nationally seamless DEMs in resolutions of 1/3, 1, and 2 arc seconds. These seamless DEMs were referred to as the National Elevation Dataset (NED) from about 2000 through 2015 at which time they became the seamless DEM layers under the 3DEP program and the NED name and system were retired. Other 3DEP products include five-meter DEMs in Alaska as well as various source datasets including the lidar point cloud and interferometric synthetic aperture radar (Ifsar) digital surface models and intensity images. All 3DEP products are public domain.
The Digital Elevation Model (DEM) 5 Metre Grid of Australia derived from LiDAR model represents a National 5 metre (bare earth) DEM which has been derived from some 236 individual LiDAR surveys between 2001 and 2015 covering an area in excess of 245,000 square kilometres. These surveys cover Australia's populated coastal zone; floodplain surveys within the Murray Darling Basin, and individual surveys of major and minor population centres. All available 1 metre resolution LiDAR-derived DEMs have been compiled and resampled to 5 metre resolution datasets for each survey area, and then merged into a single dataset for each State. These State datasets have also been merged into a 1 second resolution national dataset.
The acquisition of the individual LiDAR surveys and derivation of the 5m product has been part of a long-term collaboration between Geoscience Australia, the Cooperative Research Centre for Spatial Information (CRCSI), the Departments of Climate Change and Environment, State and Territory jurisdictions, Local Government and the Murray Darling Basin Authority under the auspices of the National Elevation Data Framework and Coastal and Urban DEM Program, with additional data supplied by the Australian Department of Defence. The source datasets have been captured to standards that are generally consistent with the Australian ICSM LiDAR Acquisition Specifications with require a fundamental vertical accuracy of at least 0.30m (95% confidence) and horizontal accuracy of at least 0.80m (95% confidence).
The Digital Elevation Model (DEM) dataset consists of tiled lidar DEM Images. Each file contains a raster image of the DEM. The Geographical Extent of this dataset extends to the entirety of the Southwest FL Lidar boundary delivery, approximately 2,347 square miles of the AOIs.
This raster dataset contains LiDAR-derived elevation data flown from Fall 2015 to Spring 2016, with additional reflights through Fall 2016. This dataset encompasses all of the LARIAC4 project, comprised of approximately 4214 square miles.
The NOAA Office for Coastal Management (OCM) downloaded this digital elevation model (DEM) data from the USGS site: ftp://rockyftp.cr.usgs.gov/vdelivery/Data...
The lidar Digital Elevation Model (DEM) is the primary elevation data product produced and distributed by the National Park Service, Great Smoky Mountains National Park.
These digital elevation model (DEM) data consist of ground surface elevations derived from source lidar measurements collected in April and August 2022 in the vicinity of Millbrook, NY during the SMAPVEX19-22 campaign. This location was chosen due to its forested land cover, as SMAPVEX19-22 aims to validate satellite derived soil moisture estimates in forested areas. The two acquisition periods occurred to characterize differences during "leaf-off" and "leaf-on" conditions.
https://data.peelregion.ca/pages/licensehttps://data.peelregion.ca/pages/license
Peel's Digital Elevation Model (DEM) provides a generalized representation of both surface and ground features at a 1 metre resolution. The data is created using breaklines and a 10-metre grid of masspoints, both of which are photogrammatically created.
Available products
Peel Digital Elevation Model in TIFF format - 1.5 Gigabytes
Specifications
Capture year: Spring 2022 Spatial resolution: 1-metre File format: GeoTIFF, losslessly compressed Pixel type and depth: 32-bit float Horizontal projection: NAD 1983 UTM Zone 17N (EPSG: 26917) Vertical projection: CGVD 1928 (EPSG: 5713) Horizontal accuracy: ±50 centimetres Vertical accuracy: ±50 centimetres Method of creation: photogrammetric
Other data (Lidar) The Region of Peel doesn't have Lidar data in-house. The Province of Ontario through Land Information Ontario provides the following Lidar and Lidar-based datasets through their open data program:
Lidar-derived Digital Terrain Model (DTM) Lidar-derived Digital Surface Model (DSM) Lidar-derived classified point cloud - by request
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The High Resolution Digital Elevation Model (HRDEM) product is derived from airborne LiDAR data (mainly in the south) and satellite images in the north. The complete coverage of the Canadian territory is gradually being established. It includes a Digital Terrain Model (DTM), a Digital Surface Model (DSM) and other derived data. For DTM datasets, derived data available are slope, aspect, shaded relief, color relief and color shaded relief maps and for DSM datasets, derived data available are shaded relief, color relief and color shaded relief maps. The productive forest line is used to separate the northern and the southern parts of the country. This line is approximate and may change based on requirements. In the southern part of the country (south of the productive forest line), DTM and DSM datasets are generated from airborne LiDAR data. They are offered at a 1 m or 2 m resolution and projected to the UTM NAD83 (CSRS) coordinate system and the corresponding zones. The datasets at a 1 m resolution cover an area of 10 km x 10 km while datasets at a 2 m resolution cover an area of 20 km by 20 km. In the northern part of the country (north of the productive forest line), due to the low density of vegetation and infrastructure, only DSM datasets are generally generated. Most of these datasets have optical digital images as their source data. They are generated at a 2 m resolution using the Polar Stereographic North coordinate system referenced to WGS84 horizontal datum or UTM NAD83 (CSRS) coordinate system. Each dataset covers an area of 50 km by 50 km. For some locations in the north, DSM and DTM datasets can also be generated from airborne LiDAR data. In this case, these products will be generated with the same specifications as those generated from airborne LiDAR in the southern part of the country. The HRDEM product is referenced to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013), which is now the reference standard for heights across Canada. Source data for HRDEM datasets is acquired through multiple projects with different partners. Since data is being acquired by project, there is no integration or edgematching done between projects. The tiles are aligned within each project. The product High Resolution Digital Elevation Model (HRDEM) is part of the CanElevation Series created in support to the National Elevation Data Strategy implemented by NRCan. Collaboration is a key factor to the success of the National Elevation Data Strategy. Refer to the “Supporting Document” section to access the list of the different partners including links to their respective data.