U.S. Geological Survey (USGS) scientists conducted field data collection efforts during the weeks of September 9-13 and November 18-22, 2019, using a combination of technologies to map and validate topography, vegetation, and features in two areas of interest (AOI's) in north central Colorado. The western AOI included land managed by the Bureau of Land Management and the U.S. Forest Service. The eastern AOI included agricultural and urban areas. The work was initiated as an effort to test and evaluate the Leica Geosystems CountryMapper* sensor. The CountryMapper is a hybrid sensor that collects imagery and light detection and ranging (lidar) data simultaneously. The CountryMapper has the potential to collect data that satisfies both USGS National Geospatial Program (NGP) 3D Elevation Program (3DEP) and U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) requirements in a single collection. Real Time Kinematic Global Navigational Satellite System (RTK-GNSS), total station, ground based lidar (GBL), Unmanned Aerial System (UAS) lidar, and UAS imagery data were collected to compare to the data collected by the CountryMapper. * Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.
The Tas Imagery and LiDAR Program Index shows the planning and progress of current and future capture of aerial imagery and LiDAR data procured through the Tasmanian Imagery Program. The Tas Imagery and LiDAR Program Index shows the planning and progress of current and future capture of aerial imagery and LiDAR data procured through the Tasmanian Imagery Program.
This data collection of the 3D Elevation Program (3DEP) consists of Lidar Point Cloud (LPC) projects as provided to the USGS. These point cloud files contain all the original lidar points collected, with the original spatial reference and units preserved. These data may have been used as the source of updates to the 1/3-arcsecond, 1-arcsecond, and 2-arcsecond seamless 3DEP Digital Elevation Models (DEMs). The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Lidar (Light detection and ranging) discrete-return point cloud data are available in LAZ format. The LAZ format is a lossless compressed version of the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. Point Cloud data can be converted from LAZ to LAS or LAS to LAZ without the loss of any information. Either format stores 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of geo-referenced x, y coordinates and z (elevation), as well as other attributes for each point. Additonal information about the las file format can be found here: https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities. All 3DEP products are public domain.
Lidar (light detection and ranging) is a technology that can measure the 3-dimentional location of objects, including the solid earth surface. The data consists of a point cloud of the positions of solid objects that reflected a laser pulse, typically from an airborne platform. In addition to the position, each point may also be attributed by the type of object it reflected from, the intensity of the reflection, and other system dependent metadata. The NOAA Coastal Lidar Data is a collection of lidar projects from many different sources and agencies, geographically focused on the coastal areas of the United States of America. The data is provided in Entwine Point Tiles (https://entwine.io) format, which is a lossless streamable octree of the point cloud. Datasets are maintained in their original projects and care should be taken when merging projects. The coordinate reference system for the data is The NAD83(2011) UTM zone appropriate for the center of each data set and the orthometric datum appropriate for that area (for example, NAVD88 in the mainland United States, PRVD02 in Puerto Rico, or GUVD03 in Guam). The geoid model used is reflected in the data set resource name.
https://coast.noaa.gov/digitalcoast/data/coastallidar.html and https://coast.noaa.gov/digitalcoast/data/jalbtcx.html
Periodically, as new data becomes available
Open Data. There are no restrictions on the use of this data.
This layer shows LiDAR Data in Hong Kong. It is a set of data made available by the Civil Engineering and Development Department under the Government of Hong Kong Special Administrative Region (the "Government") at https://portal.csdi.gov.hk ("CSDI Portal"). The source data has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of CSDI Portal at https://portal.csdi.gov.hk.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contains Lidar-DEM collection status shapefiles from the Texas Natural Resources Information System (TNRIS) [http://tnris.org]. November 2023 updates: this year, TNRIS changed its name to Texas Geographic Information Office (TxGIO). The domain name hasn't changed yet, but the data hub is continually evolving. See [1], [2] for current downloadable data.
For purposes of Hurricane Harvey studies, the 1-m DEM for Harris County (2008) has also been uploaded here as a set of 4 zipfiles containing the DEM in tiff files. See [1] for a link to the current elevation status map and downloadable DEMs.
Project name: H-GAC 2008 1m
Datasets: 1m Point Cloud, 1M Hydro-Enforced DEM, 3D Breaklines, 1ft and 5ft Contours
Points per sq meter: 1
Total area: 3678.56 sq miles
Source: Houston-Galveston Area Council (H-GAC)
Acquired by: Merrick, QA/QC: Merrick
Catalog: houston-galveston-area-council-h-gac-2008-lidar
References: [1] TNRIS/TxGIO StratMap elevation data [https://tnris.org/stratmap/elevation-lidar/] [2] TNRIS/TxGIO DataHub [https://data.tnris.org/]
This web map provides an index for identifying subsets of LiDAR data acquired for the greater metropolitan Phoenix region in 2014 via a (non-3DEP) USGS LiDAR program.Two index layers are included in this web map: (1) Point Cloud Index, (2) Raster Index. Another layer, Maricopa County Municipalities, is included as an additional geographic reference aid. LiDAR Point Cloud Index The Point Cloud Index layer indexes the raw LiDAR point cloud data (available in las/laz file formats). Each tile's file name can be identified by clicking on a particular tile.DEM Raster IndexThe Raster Index layer indexes the LiDAR-derived bare earth digital elevation model (DEM) surface data (available in tif file format). Users can click on a particular tile within the index to identify its ID.Once you have identified your file name or ID of interest, please submit a quick service request through the Map and Geospatial Hub's Service Request Form.Technical SpecificationsHorizontal Projection: UTM 12N WGS 84 (meters)Vertical Datum: NAVD 1988 (meters) Geoid 12APoint Spacing (minimum): 0.5 m / 1.64 ftAbove Ground Level (AGL) average flight height: 1700 m / 5,579 ftMean Sea Level (MSL) average flying height: 1981 m / 6500 ftAverage Ground Speed: 140 knots / 161 mphField of View (full): 28 degreesPulse Rate: 312.2 kHzScan Rate: 54.8 HzSide Lap (Minimum): 25%
The EarthScope Northern California Lidar project acquired high resolution airborne laser swath mapping imagery along major active faults as part of the EarthScope Facility project funded by the National Science Foundation (NSF). Between this project and the previously conducted B4 project, also funded by NSF, the entire San Andreas fault system has now been imaged with high resolution airborne lidar, along with many other important geologic features. EarthScope is funded by NSF and conducted in partnership with the USGS and NASA. GeoEarthScope is a component of EarthScope that includes the acquisition of aerial and satellite imagery and geochronology. EarthScope is managed at UNAVCO.Please use the following language to acknowledge EarthScope Lidar:This material is based on services provided to the Plate Boundary Observatory by NCALM (http://www.ncalm.org). PBO is operated by UNAVCO for EarthScope (http://www.earthscope.org) and supported by the National Science Foundation (No. EAR-0350028 and EAR-0732947).
https://www.neonscience.org/data-samples/data-policies-citationhttps://www.neonscience.org/data-samples/data-policies-citation
Bare earth elevation surface (DTM) and actual surface (DSM) given in meters in the NAVD88 (Geoid12A realization) vertical reference frame. Horizontal coordinates referenced to appropriate UTM zone. Bare earth is created by classifying and removing vegetation and man-made structures from lidar point cloud prior to surface generation. Both the DSM and DTM are mosaicked onto a spatially uniform grid at 1 m spatial resolution in 1 km by 1 km tiles provided in a geotiff format.
The LiDAR Index was created to illustrate the extents of LiDAR imagery and data currently Existing or In the Progress or Planned for the Department of Water and Environmental Regulation (DWER). Each area is delineated by a polygon with attributes denoting its general area coverage, status, file location, Contractor and availability of metadata. Exists various datasets with varying degrees of accuracy, coverage and access. DWER custodial datasets can be purchased by external entities by contacting the Department of Water and Environmental Regulation.
High Resolution LiDAR elevation and nearshore bathymetry data for Hog Island, Northampton County, VA, collected on October 11, 2011 on behalf of the USACE Engineer Research and Development Center using the Coastal Zone Mapping and Imaging Lidar (CZMIL) system. CZMIL integrates a lidar sensor with topographic and bathymetric capabilities, a digital camera and a hyperspectral imager on a single remote sensing platform for use in coastal mapping and charting activities. RGB air photo imagery is provided as a separate VCRLTER dataset. Two data entities are included here: (1) the LiDAR point cloud (approximate point density of 100 points per square meter [denser over structures and dense vegetation], average point spacing of 0.48 m.) contained in a mosaic of 211 LAS files (standard LiDAR LAS file format); and (2) a polygon INDEX shapefile showing the footprint of each LAS file and containing a summary description of each LAS file in the attribute table (LAS file name, point count, point spacing, and minimum and maximum elevation). Note that the two co-collected 2011 USACE datasets (LiDAR and RGB ) are in different coordinate systems: (A) the horizontal and vertical units of the LiDAR data are in US feet, not meters. (B) the horizontal units of the associated RGB mosaic images are in [standard] meters. Also Note that THESE ARE VERY LARGE DATASETS and download should not be attempted unless you have a fast network connection and plenty of disk space. The LAS file data collection is 7.3 GB compressed (11.7 GB uncompressed). The RGB imagery mosaic data collection is 12.9 GB compressed (30.8 GB uncompressed).
Detroit Street View (DSV) is an urban remote sensing program run by the Enterprise Geographic Information Systems (EGIS) Team within the Department of Innovation and Technology at the City of Detroit. The mission of Detroit Street View is ‘To continuously observe and document Detroit’s changing physical environment through remote sensing, resulting in freely available foundational data that empowers effective city operations, informed decision making, awareness, and innovation.’ LiDAR (as well as panoramic imagery) is collected using a vehicle-mounted mobile mapping system.
Due to variations in processing, index lines are not currently available for all existing LiDAR datasets, including all data collected before September 2020. Index lines represent the approximate path of the vehicle within the time extent of the given LiDAR file. The actual geographic extent of the LiDAR point cloud varies dependent on line-of-sight.
Compressed (LAZ format) point cloud files may be requested by emailing gis@detroitmi.gov with a description of the desired geographic area, any specific dates/file names, and an explanation of interest and/or intended use. Requests will be filled at the discretion and availability of the Enterprise GIS Team. Deliverable file size limitations may apply and requestors may be asked to provide their own online location or physical media for transfer.
LiDAR was collected using an uncalibrated Trimble MX2 mobile mapping system. The data is not quality controlled, and no accuracy assessment is provided or implied. Results are known to vary significantly. Users should exercise caution and conduct their own comprehensive suitability assessments before requesting and applying this data.
Sample Dataset: https://detroitmi.maps.arcgis.com/home/item.html?id=69853441d944442f9e79199b57f26fe3
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The U.S. DOI Office of Surface Mining Reclamation and Enforcement funded this aerial LiDAR and aerial imagery survey. The dataset covers the John Henry Mine (surface coal mine) in Washington.
The intended use of the data is to support the corresponding mine teams on current and future projects. Example use cases include: precise area and volumetric measurements, assisting with upcoming TOJs (Termination of Jurisdictions) and bond releases, change detection analysis, monitoring the progression and reclamation of mining, and visualizing 3D models.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This feature service is available through CT ECO, a partnership between UConn CLEAR and CT DEEP. The tile grid service is as an index for accessing aerial imagery and lidar elevation data files for Connecticut and is used in the Download Tool. There are 23,381 tiles in the grid, each representing a uniform geographic area. Attributes for each tile include file names with hyperlinks leading to zip files of imagery and elevation files for multiple data acquisitions (see list below). The file links provide direct access making it easy for users to retrieve data for specific locations in Connecticut. Dataset InformationExtent: The tile grid has the extent of data acquisitions which cover Connecticut and beyond in some places.Date: The tile grid was originally created as part of the 2016 flight which further divided tiles collected in the 2012 flight. More Information The datasets linked in the table of the tile grid, which are also available in the Download Tool, include2023 Acquisition - aerial imagery (GeoTIFF, MrSID Gen 3, MrSID Gen 4), DEM elevation (GeoTIFF), lidar point cloud (LAZ)2019 Acquisition - aerial imagery (GeoTIFF)2016 Acquisition - aerial imagery (GeoTIFF, MrSID Gen 3, MrSID Gen 4), DEM elevation (GeoTIFF), lidar point cloud (LAS)Also see the CT Aerial Imagery page and CT Elevation pages on CT ECO for more information. Credit and FundingThe tile grid with links was created for use in the Download Tool which was part of a project between the CT GIS Office and UConn CLEAR/CT ECO. Each data acquisition had different funders and partners. Please see the acquisition pages for that information.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The LIDAR Composite DTM (Digital Terrain Model) is a raster elevation model covering ~99% of England at 1m spatial resolution. The DTM (Digital Terrain Model) is produced from the last or only laser pulse returned to the sensor. We remove surface objects from the Digital Surface Model (DSM), using bespoke algorithms and manual editing of the data, to produce a terrain model of just the surface.
Produced by the Environment Agency in 2022, the DTM is derived from a combination of our Time Stamped archive and National LIDAR Programme surveys, which have been merged and re-sampled to give the best possible coverage. Where repeat surveys have been undertaken the newest, best resolution data is used. Where data was resampled a bilinear interpolation was used before being merged.
The 2022 LIDAR Composite contains surveys undertaken between 6th June 2000 and 2nd April 2022. Please refer to the metadata index catalgoues which show for any location which survey was used in the production of the LIDAR composite.
The data is available to download as GeoTiff rasters in 5km tiles aligned to the OS National grid. The data is presented in metres, referenced to Ordinance Survey Newlyn and using the OSTN’15 transformation method. All individual LIDAR surveys going into the production of the composite had a vertical accuracy of +/-15cm RMSE.
The goal of the USGS 3D Elevation Program (3DEP) is to collect elevation data in the form of light detection and ranging (LiDAR) data over the conterminous United States, Hawaii, and the U.S. territories, with data acquired over an 8-year period. This dataset provides two realizations of the 3DEP point cloud data. The first resource is a public access organization provided in Entwine Point Tiles format, which a lossless, full-density, streamable octree based on LASzip (LAZ) encoding. The second resource is a Requester Pays of the original, Raw LAZ (Compressed LAS) 1.4 3DEP format, and more complete in coverage, as sources with incomplete or missing CRS, will not have an ETP tile generated. Resource names in both buckets correspond to the USGS project names.
Topographic and bathymetric LiDAR data was collected for New York City in 2017. Topographic data was collected for the entire city, plus an additional 100 meter buffer, using a Leica ALS80 sensor equipped to capture at least 8 pulse/m2. Dates of capture for topographic data were between 05/03/2017 and 05/17/2017 during 50% leaf-off conditions. Bathymetric data was collected in select areas of the city (where bathymetric data capture was expected) using a Riegl VQ-880-G sensor equipped to capture approximately 15 pulses/m2 (1.5 Secchi depths). Dates of capture for bathymetric were between 07/04/2017 - 07/26/2017. LiDAR data was tidally-coordinated and captured between mean lower low water (+30% of mean tide) ranges.
The horizontal datum for all datasets is NAD83, the vertical datum is NAVD88, Geoid 12B, and the data is projected in New York State Plane - Long Island. Units are in US Survey Feet. To learn more about these datasets, visit the interactive “Understanding the 2017 New York City LiDAR Capture” Story Map -- https://maps.nyc.gov/lidar/2017/ Please see the following link for additional documentation on this dataset -- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_LiDAR_Summary.md The following datasets are available for download via the New York State GIS Clearinghouse. The following links direct to the New York State website which includes links to download. Users may use the statewide interactive DEM download application to download specific areas of interest (hydroflattened DEM and classified point clouds only). Tile index for DEMs on the application correspond to tile indexes for hydro-enforced and digital surface models.Light Detection and Ranging (lidar) is a technology used to create high-resolution models of ground elevation with a vertical accuracy of 10 centimeters (4 inches). rnrnFEMA collects lidar elevation data to support flood mapping. USGS is the primary Federal steward of lidar data. FEMA archives lidar data for FEMA projects where USGS does not manage the Lidar data collection. rnrnDatapoints include ground elevation models and vertical metrics for ground elevation.
View available LiDAR data and request LAS files or spot elevations derived from LiDAR
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Digital Elevation Model Imagery Catalog layer describes precision elevation datasets acquired from LiDAR and aerial / satellite sensors currently archived in the department. Precision elevation products are defined as Digital Terrain Models (or bare Earth Digital Elevation Models) captured from either LiDAR sources or photogrammetrically derived from aerial photography. LiDAR classified point clouds and derived Digital Terrain Models under a CC-BY license have been uploaded to the ELVIS Elevation and Depth Online Portal (https://elevation.fsdf.org.au/).
U.S. Geological Survey (USGS) scientists conducted field data collection efforts during the weeks of September 9-13 and November 18-22, 2019, using a combination of technologies to map and validate topography, vegetation, and features in two areas of interest (AOI's) in north central Colorado. The western AOI included land managed by the Bureau of Land Management and the U.S. Forest Service. The eastern AOI included agricultural and urban areas. The work was initiated as an effort to test and evaluate the Leica Geosystems CountryMapper* sensor. The CountryMapper is a hybrid sensor that collects imagery and light detection and ranging (lidar) data simultaneously. The CountryMapper has the potential to collect data that satisfies both USGS National Geospatial Program (NGP) 3D Elevation Program (3DEP) and U.S. Department of Agriculture (USDA) National Agriculture Imagery Program (NAIP) requirements in a single collection. Real Time Kinematic Global Navigational Satellite System (RTK-GNSS), total station, ground based lidar (GBL), Unmanned Aerial System (UAS) lidar, and UAS imagery data were collected to compare to the data collected by the CountryMapper. * Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.