Facebook
TwitterProduct: These lidar data are processed Classified LAS 1.4 files, formatted to individual 1500 m x 1500 m tiles; used to create intensity images, 3D breaklines, and hydro-flattened DEMs as necessary. Geographic Extent: 7 counties in Maine, covering approximately 3981 total square miles. Counties are: Hancock, Kennebec, Knox, Penobscot, Somerset, Waldo, and Washington
Dataset Description:...
Facebook
TwitterOriginal Product: These lidar data are processed Classified LAS 1.4 files, formatted to 8988 individual 1000 m x 1000 m tiles; used to create intensity images, 3D breaklines, hydro-flattened DEMs, and spatial metadata such as the maximum surface height rasters and swath separation imagery as necessary.
Original Geographic Extent: 7 counties in Maine (Franklin, Hancock, Kennebec, Penobscot, P...
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Lidar Digital Elevation Models (DEMs) at 2-meter resolution have been used to derive watershed boundaries for the State of Maine. Geographic Information Systems (GIS) software was used to hydrologically enforce lidar DEMs and delineate watershed boundaries at pre-existing pour point locations (Price, 2016). The watershed boundaries are comparable in size to the 12-digit Hydrologic Unit catchments and have a 12-digit Hydrologic Unit Code (HUC12) identifier attribute field that has a one-to-one match with the national WBD dataset (https://www.usgs.gov/national-hydrography/watershed-boundary-dataset). This data release consists of a zip file containing an ESRI polygon shapefile (vector GIS dataset). This work was conducted in cooperation with Maine Department of Transportation and Maine Office of GIS. Curtis Price, 20160606, WBD HU12 Pour Points derived from NHDPlus: U.S. Geological Survey data release, https://www.sciencebase.gov/catalog/item/5762b664e4b07657d19a71ea
Facebook
Twitterdescription: 2015 City of Portland Maine Lidar Data Acquisition and Processing Woolpert Order No. 75564 Contractor: Woolpert, Inc. This task is for a high resolution data set of lidar covering approximately 21 square miles of the City of Portland, Maine. The lidar data was acquired and processed under the requirements identified in this task order. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.5 meters. The final products include classified LAS, four (4) feet pixel raster DEMs of the bare-earth surface in ERDAS IMG Format, and 8-bit intensity images. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Additional deliverables include hydrologic breakline data, control data, tile index and FGDC project level metadata in .xml format. Ground conditions: Water at normal levels; no unusual inundation; no snow; leaf off. This metadata record is for the DEM data served by the NOAA Digital Coast.; abstract: 2015 City of Portland Maine Lidar Data Acquisition and Processing Woolpert Order No. 75564 Contractor: Woolpert, Inc. This task is for a high resolution data set of lidar covering approximately 21 square miles of the City of Portland, Maine. The lidar data was acquired and processed under the requirements identified in this task order. Lidar data is a remotely sensed high resolution elevation data collected by an airborne platform. The lidar sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The lidar systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The task required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 0.5 meters. The final products include classified LAS, four (4) feet pixel raster DEMs of the bare-earth surface in ERDAS IMG Format, and 8-bit intensity images. Each LAS file contains lidar point information, which has been calibrated, controlled, and classified. Additional deliverables include hydrologic breakline data, control data, tile index and FGDC project level metadata in .xml format. Ground conditions: Water at normal levels; no unusual inundation; no snow; leaf off. This metadata record is for the DEM data served by the NOAA Digital Coast.
Facebook
TwitterMaine GeoLibrary LiDAR Project Catalog Footprint Index vector representation. Derivative LiDAR data Digital Elevation Model (DEM) availability. Data collected between 2006 - 2022. Quality USGS QL2 and QL3. Companion DEM services may be found in the Maine GeoLibrary Data Catalog.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Product: This lidar data set includes classified LAS files, breaklines, digital elevation models (DEMs), intensity imagery, and contours. Geographic Extent: Four partial counties in western Maine, covering approximately 5,034 total square miles Dataset Description: Maine 2016 QL2 Lidar project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Lidar Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) UTM Zone 19, meters and vertical datum of NAVD1988 (Geoid 12B), meters. Lidar data was delivered as flightline-extent unclassified LAS swaths, as processed Classified LAS files formatted to 6,115 individual 1,500 meter x 1,500 meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500 meter x 1,500 schema. Continuous breaklines were produced in Esri file geodatabase format. Continuous contours with an interval of 1 foot were created in Esri file geodatabase format. Ground Conditions: Lidar was collected in spring of 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 101 ground control points that were used to calibrate the lidar to known ground locations established throughout the Maine project area. An additional 205 independent accuracy checkpoints, 118 in Bare Earth and Urban landcovers (118 NVA points), 87 in Forested, Brushland/Trees, and Tall Weeds/Crops categories (87 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data. In addition to the lidar point data, bare earth Digital Elevation Models (DEMs), at a 1 m grid spacing, created from the lidar point data are also available. These data are available for download here: https://coast.noaa.gov/dataviewer/#/lidar/search/where:ID=6267 Breaklines created from the lidar area also available for download in either gdb or gpkg format at: https://coast.noaa.gov/htdata/lidar2_z/geoid12b/data/6264/breaklines The DEM and breakline products have not been reviewed by the NOAA Office for Coastal Management (OCM) and any conclusions drawn from the analysis of this information are not the responsibility of NOAA, OCM or its partners.
Facebook
TwitterTile Download LinkProduct: These are Digital Elevation Model (DEM) data for Franklin, Oxford, Piscataquis, and Somerset Counties, Maine as part of the required deliverables for the 2016 Maine Lidar project. Class 2 (ground) lidar points in conjunction with the hydro breaklines were used to create a 1 meter hydro-flattened raster DEM. Geographic Extent: Four partial counties in western Maine, covering approximately 5,034 total square miles Dataset Description: Maine 2016 QL2 Lidar project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.7 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Lidar Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011) UTM Zone 19, meters and vertical datum of NAVD1988 (Geoid 12B), meters. Lidar data was delivered as flightline-extent unclassified LAS swaths, as processed Classified LAS 1.4 files formatted to 6,115 individual 1,500 meter x 1,500 meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500 meter x 1,500 schema. Continuous breaklines were produced in Esri file geodatabase format. Continuous contours with an interval of 1 foot were created in Esri file geodatabase format. Ground Conditions: Lidar was collected in spring of 2016, while no snow was on the ground and rivers were at or below normal levels. In order to post process the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 101 ground control points that were used to calibrate the lidar to known ground locations established throughout the Maine project area. An additional 205 independent accuracy checkpoints, 118 in Bare Earth and Urban landcovers (118 NVA points), 87 in Forested, Brushland/Trees, and Tall Weeds/Crops categories (87 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.
Facebook
TwitterCompilation of Maine DEMs generated from lidar as hillshade. Users looking for lidar data and/or data derivatives should contact, in order:
United States Interagency Elevation Inventory (USIEI): https://coast.noaa.gov/inventory/NOAA: Data Access Viewer - NOAA Office for Coastal Management: https://coast.noaa.gov/dataviewer/ Maine GeoLibrary Elevation Discovery and Download: https://www1.maine.gov/geolib/ediscovery/site/landing.html National Map (USGS) ftp: ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/
Facebook
TwitterGeographic Extent: Central Maine, covering approximately 2,882 total square miles at QL 2. Western Massachusetts, covering approximately 815 total square miles at QL 1. Western Massachusetts, covering approximately 2,770 total square miles at QL 2.
Dataset Description:
The Maine and Massachusetts 20...
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset consists of the raster and vector data used to generate lidar-derived hydrography for Mount Desert Island in Maine. The data release contents are: The "Stream_Network_Acadia_NP.zip" contains data files for a polyline shapefile representing the Mount Desert Island stream network centerlines derived from a 1-meter resolution lidar Digital Elevation Model (DEM). The "fac_Acadia_NP.zip" contains a GeoTIFF raster used to represent the number of upstream cells flowing into each downstream cell. The "fdr_Acadia_NP.zip" contains a GeoTIFF raster used to represent the cardinal direction in which water is predicted to flow out of each cell. The "Hydrolines_Acadia_NP.zip" contains data files for a polyline shapefile used for hydrologic enforcement of the 1-meter resolution lidar-derived digital elevation model (DEM). The "Seedpoints_Acadia_NP.zip" contains data files for a point shapefile used for the headwater initiation locations of the Mount Desert Island stream network.
Facebook
TwitterThis metadata document describes the collection and processing of Light Detection and Ranging (LIDAR) data over an area along the coast of Maine. Data was collected at a nominal two (2) meter post spacing between points. Two elevation data sets were compiled in this project, first surface returns, in which features that are above the ground, such as buildings, bridges, tree tops, etc. have not been eliminated and a Bare Earth Data set. Original contact information: Contact Org: NOAA Office for Coastal Management Phone: 843-740-1202 Email: coastal.info@noaa.gov
Facebook
TwitterProduct: These lidar data are processed Classified LAS 1.4 files, formatted to 128 individual 1500 m x 1500 m tiles; used to create intensity images, 3D breaklines, and hydro-flattened DEMs as necessary. Geographic Extent: York County in Maine, covering approximately 92 total square miles. Dataset Description: The ME_SouthCoastal_2_2020 Work Unit 212010 project called for the planning, acquisit...
Facebook
TwitterThe U.S. Geological Survey (USGS), in cooperation with the U.S. National Park Service (NPS), has compiled a Geographic Information System (GIS) dataset. The spatial data layer provided in this data release is derived from high-resolution lidar digital elevation models (DEM’s) for the Katahdin Woods and Waters National Monument in Penobscot County, Maine. The data provided in this release includes a stream network centerline polyline shapefile derived from hydro-enforcement that shows stream location within the Katahdin Woods and Waters National Monument boundary.
Facebook
TwitterThis metadata record describes the light detection and ranging (lidar) dataset titled 2018 - 2019 State of Maine Lidar: Crown of Maine.
Product: These lidar data are processed classified LAS 1.4 files, formatted to 8,056 individual 1,500 m x 1,500 m tiles; used to create intensity images, 3D breaklines, and hydro-flattened DEMs as necessary. This lidar data set includes unclassified swath LAS...
Facebook
TwitterThe NOAA Maine Topbathymetric Lidar was collected by NV5 using Leica Chiroptera Hawkeye 4X systems. The lidar acquisitions were flown between 20221006 and 20231216 in 120 missions. The final classified lidar data were then transformed from ellipsoid (GRS80) to geoidal height (Geoid18) and used to create topobathymetric DEMs in Cloud Optimized GeoTIFF format with 1m pixel resolution.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Purpose: To acquire detailed surface elevation data for use in conservation planning, design, research, floodplain mapping, dam safety assessments and elevation modeling, etc. Classified LAS files are used to show the manually reviewed bare earth surface. This allows the user to create intensity images, breaklines and raster DEMs. The purpose of these LiDAR data was to produce high accuracy 3D hydro-flattened digital elevation models (DEMs) with a 1-meter cell size. These raw LiDAR point cloud data were used to create classified LiDAR LAS files, intensity images, 3D breaklines, and hydro-flattened DEMs as necessary.Product: These are Digital Elevation Model (DEM) data for Northern Maine as part of the required deliverables for the Crown of Maine 2018 QL2 LiDAR project. Class 2 (ground) lidar points in conjunction with the hydro breaklines were used to create a 1-meter hydro-flattened raster DEM.This lidar data set includes unclassified swath LAS 1.4 files, classified LAS 1.4 files, hydro and bridge breaklines, hydro-flattened digital elevation models (DEMs), and intensity imagery. Geographic Extent: 4 partial counties in Northern Maine, covering approximately 6,732 total square miles. Dataset Description: The Crown of Maine 2018 QL2 LiDAR project called for the planning, acquisition, processing, and derivative products of lidar data to be collected at a nominal pulse spacing (NPS) of 0.71 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base LiDAR Specification, Version 1.2. The data were developed based on a horizontal projection/datum of NAD 1983 (2011), UTM Zone 19, meters and vertical datum of NAVD 1988 (GEOID 12B), meters. LiDAR data were delivered as processed Classified LAS 1.4 files formatted to 8,056 individual 1,500-meter x 1,500-meter tiles, as tiled intensity imagery, and as tiled bare earth DEMs; all tiled to the same 1,500-meter x 1,500-meter schema. Continuous breaklines were produced in Esri file geodatabase format. Ground Conditions: LiDAR was collected in spring of 2018 and 2019, while no snow was on the ground and rivers were at or below normal levels. In order to post process the LiDAR data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Quantum Spatial, Inc. utilized a total of 150 ground control points that were used to calibrate the LiDAR to known ground locations established throughout the project area. An additional 256 independent accuracy checkpoints, 149 in Bare Earth and Urban landcovers (149 NVA points), 107 in Tall Weeds categories (107 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data.
Facebook
TwitterThe Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2001 Gulf Coast USGS/NASA ATM lidar survey. Beach width is included and is defined as the distance between the dune toe and shoreline along a cross-shore profile. The beach slope is calculated using this beach width and the elevation of the shoreline and dune toe.
Facebook
TwitterThe Storm-Induced Coastal Change Hazards component of the National Assessment of Coastal Change Hazards project focuses on understanding the magnitude and variability of extreme storm impacts on sandy beaches. Lidar-derived beach morphologic features such as dune crest, toe and shoreline help define the vulnerability of the beach to storm impacts. This dataset defines the elevation and position of the seaward-most dune crest and toe and the mean high water shoreline derived from the 2004 NOAA Maine lidar survey. Beach width is included and is defined as the distance between the dune toe and shoreline along a cross-shore profile. The beach slope is calculated using this beach width and the elevation of the shoreline and dune toe.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The LiDAR systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures, and vegetation. The work order required the LiDAR data to be collected at a nominal pulse spacing (NPS) of 1.5 meter. The final products include first, last, and at least one intermediate return LAS, full classified LAS and one (1) meter pixel raster DEMs of the bare-earth surface delivered in Esri 10 ArcGrid format.
Facebook
TwitterThe Maine Geological Survey Lidar application shows the extent of lidar in Maine with towns, parcels, and USGS 1:24,000 scale quadrangles also provided. Users looking for lidar data and/or data derivatives should contact:1) United States Interagency Elevation Inventory (USIEI): https://coast.noaa.gov/inventory/2) NOAA: Data Access Viewer - NOAA Office for Coastal Management: https://coast.noaa.gov/dataviewer/3) Maine GeoLibrary Elevation Discovery and Download: https://www1.maine.gov/geolib/ediscovery/site/landing.html4) National Map (USGS) ftp: ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/
Facebook
TwitterProduct: These lidar data are processed Classified LAS 1.4 files, formatted to individual 1500 m x 1500 m tiles; used to create intensity images, 3D breaklines, and hydro-flattened DEMs as necessary. Geographic Extent: 7 counties in Maine, covering approximately 3981 total square miles. Counties are: Hancock, Kennebec, Knox, Penobscot, Somerset, Waldo, and Washington
Dataset Description:...