100+ datasets found
  1. d

    Lidar Point Cloud - USGS National Map 3DEP Downloadable Data Collection

    • catalog.data.gov
    • data.usgs.gov
    Updated Mar 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Lidar Point Cloud - USGS National Map 3DEP Downloadable Data Collection [Dataset]. https://catalog.data.gov/dataset/lidar-point-cloud-usgs-national-map-3dep-downloadable-data-collection
    Explore at:
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This data collection of the 3D Elevation Program (3DEP) consists of Lidar Point Cloud (LPC) projects as provided to the USGS. These point cloud files contain all the original lidar points collected, with the original spatial reference and units preserved. These data may have been used as the source of updates to the 1/3-arcsecond, 1-arcsecond, and 2-arcsecond seamless 3DEP Digital Elevation Models (DEMs). The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Lidar (Light detection and ranging) discrete-return point cloud data are available in LAZ format. The LAZ format is a lossless compressed version of the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. Point Cloud data can be converted from LAZ to LAS or LAS to LAZ without the loss of any information. Either format stores 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of geo-referenced x, y coordinates and z (elevation), as well as other attributes for each point. Additonal information about the las file format can be found here: https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities. All 3DEP products are public domain.

  2. Wisconsin DEM and Hillshade from LiDAR - Web Map

    • data-wi-dnr.opendata.arcgis.com
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +1more
    Updated Jan 17, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wisconsin Department of Natural Resources (2019). Wisconsin DEM and Hillshade from LiDAR - Web Map [Dataset]. https://data-wi-dnr.opendata.arcgis.com/maps/f2e49a42f5e14dd5845536408279da9d
    Explore at:
    Dataset updated
    Jan 17, 2019
    Dataset authored and provided by
    Wisconsin Department of Natural Resourceshttp://dnr.wi.gov/
    Area covered
    Description

    Web map displaying Wisconsin DNR-produced Digital Elevation Model (DEM) and Hillshade image services, along with their index layer, in formats that are clickable and can be symbolized and filtered. This map can also be used as a starting point to create a new map. To open the web map from DNR's GIS Open Data Portal, click the View Metadata: link to the right of the description, then click Open in Map Viewer.

  3. Lidar Download Map

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    html
    Updated Jan 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of New Brunswick (2025). Lidar Download Map [Dataset]. https://open.canada.ca/data/en/dataset/80ccc975-d6ec-9e24-a7f9-a8bd81a0b3c2
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Jan 9, 2025
    Dataset provided by
    Government of New Brunswickhttps://www.gnb.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Lidar point cloud data with classifications – unclassified (1), ground (2), low vegetation (3), medium vegetation (4), high vegetation (5), buildings (6), low point - noise (7), reserved – model keypoint (8), high noise (18).

  4. a

    East Coast Cliff LiDAR (map)

    • data-aucklandcouncil.opendata.arcgis.com
    • hub.arcgis.com
    Updated Jul 29, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Auckland Council (2022). East Coast Cliff LiDAR (map) [Dataset]. https://data-aucklandcouncil.opendata.arcgis.com/maps/ed66fbe56da84408a807b705f3813922
    Explore at:
    Dataset updated
    Jul 29, 2022
    Dataset authored and provided by
    Auckland Council
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Click here to download the point cloud data for the North Shore coastline

      DATA ACQUISITION
    
    
        Airborne Data Acquisition
    
      An airborne laser scanner survey was conducted over the North Shore, from North Head to Long Bay
        (approximately 22.5 km following the shoreline). Operations were undertaken on 19th June 2019 in good flying
        conditions. Data were acquired using a Riegl VUX-1LR lidar system, mounted on an EC120 helicopter, operated
        by Christchurch Helicopters. The laser survey was based on the following parameters:
    
    
    
          Parameter
    
    
          Parameter
    
    
    
          Scanner
          Riegl VUX-1LR
          Pulse Repetition
          820 kHz
    
    
          Flying Height
          50-80 m above ground
          Swath Overlap
          75-100%
    
    
          Scan Angle
          180 degrees
          Aircraft speed
          45 knots
    
    
          Scan Frequency
          170 Lines per second
          Nominal pulse density
          50 pls/m2 (p/flightline)
    
    
    
      The scanner-IMU was mounted on a front facing boom extending below the cockpit with an unobstructed
        240-degree field of view, with a GNSS antenna mounted on the cockpit. 
      Survey operations were conducted from North Shore Aerodrome, with each survey comprising a sequence of short,
        linear flightlines aligned to the coast. Flightlines were acquired north-south, and then south-north, to
        account for the effects of occlusion during a single overpass. Each return sortie too approximately 70 mins
        of flying time (not including travel time to and from a regional base). Following the first sortie, all
        instrumentation was powered down and dismounted, before being remounted and reinitialized. This approach
        mimics exactly the procedure that would be followed between two widely separately surveys in time.
      Global Navigation Satellite Systems (GNSS) Base Station Data
      GNSS observations were recorded at a 3rd order (2V) LINZ geodetic mark (GSAL) to correct the roving
        positional track recorded at the sensor. This is a continuous operating reference station (CORS) operating
        as part of Global Surveys Leica Geosystems SmartFix network, recording observations at 1 s. The details of
        the reference station are as follows:
    
    
    
          LINZ
            Benchmark Code:
          GSAL (Albany Triton)
    
    
          Benchmark Position:
    
          Latitude:
          36° 44' 27.51079" S
    
    
          Longitude:
          174° 43' 23.50966" E
    
    
          Ellipsoidal height
            (m):
          88.262
    
    
          Antenna:
    
          Leica AS10
    
    
    
      A further ground survey of check point data was acquired using Leica GS15 GNSS systems operating using
        network RTK GNSS based on the Global Survey SmartFix network. >300 observations were acquired from
        across the survey area, classified by land-cover to include hard surfaces (roads); and short grass pasture.
        Note: network RTK GNSS have typical absolute accuracies of 4-6 cm over the baseline lengths used here (15-25
        km).
      Real Time Kinematic GNSS Checkpoint Data
      A distributed network of 351 checkpoints were acquired as checkpoints to evaluate the vertical accuracy and
        precision of the survey data. All points were collected using network-derived RTK GNSS observations based
        on the Leica Geosystems SmartFix network of broadcasting referencing stations. Measurements were acquired
        with a Leica GS16 receiver on the 24th January 2020, and acquisition settings that enforced a 3D standard
        deviation of < 0.025 m for each observation. To capture any broad scale patterns of georeferencing
        error, the checkpoints were collected in four regional surveys at Browns Bay, Mairangi Bay, Milford and
        Narrow Neck, as shown in Figure 6 overleaf.
    
      DATA PROCESSING
      Trajectory Modelling
      Lidar positioning and orientation (POS) was determined using the roving GNSS/IMU and static GNSS observations
        acquired using Waypoint Inertial Explorer Software. The resulting solution maintained attitude separation
        of less than +-2 arcmin and positional separation of less than +-1 cm. Trajectories were solved
        independently for each of the two surveys.
      Lidar Calibration
      Swath calibration based on overlap analysis was undertaken using the TerraScan and TerraMatch software
        suite. Flightline calibration was undertaken to solve for global and flightline specific deviations and
        fluctuations in attitude and DZ based on over 100,000 tie-lines derived from ground observations. The
        results of the calibration, based on all used tie-lines is shown in Table 2 below:
    
    
    
    
          Survey
          Initial mean 3D
            mismatch (m)
          Calibrated mean 3D
            mismatch
    
    
          1
          0.055
          0.014
    
    
          2
          0.044
          0.011
    
    
    
      Point Cloud Classification
      Data were classified using standard routines into ground, above ground and noise.
    
        For Survey 1, the point density over the entire area is 97.5 points/m² for all point classes and 44.2
          points/m2 for only ground points.
        For Survey 2, the point density over the entire area is 55.7 points/m² for all point classes and 30.9
          points/m2 for only ground points.
    
      The difference between the two datasets reflects trimming of Survey 1 to incorporate only the coastal fringe,
        while Survey 2 extends inland by typically 300 m to provide a demonstration of the potential wider coverage
        observable from the flightpath. On the beach areas and along the cliff sections, typical densities are in
        excess of 100 points/m2 in both surveys. The final point cloud classification for each survey is shown in
        Table 3:
    
    
    
          Surface Type
          Classification Code
    
          Point Class
          Survey 1
            Observations
          Survey 2
            Observations
    
    
          Unclassified
          1
          Off-Ground
          204,644,243
          226,749,086
    
    
          Ground
          2
          Ground
          143,160,406
          182,111,679
    
    
          Total Points
    
    
          347,804,649
          408,860,765
    
  5. k

    LiDAR Download Grid

    • hub.kansasgis.org
    Updated Apr 29, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kansas State Government GIS (2019). LiDAR Download Grid [Dataset]. https://hub.kansasgis.org/maps/036c672b624c472f8dc2bb2b0290e5ce
    Explore at:
    Dataset updated
    Apr 29, 2019
    Dataset authored and provided by
    Kansas State Government GIS
    Area covered
    Description

    Interactive map with tile grid including download links for Kansas LiDAR data. Not all LiDAR file types available for all grid tiles.The full Kansas geospatial catalog is administered by the Kansas Data Access & Support Center (DASC) and can be found at the following URL: https://hub.kansasgis.org/

  6. G

    LiDAR dendrometric map

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +1more
    csv, html, pdf, shp +1
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government and Municipalities of Québec (2025). LiDAR dendrometric map [Dataset]. https://open.canada.ca/data/en/dataset/02d6f853-b0fe-4aa4-bc73-dff0db45d8ae
    Explore at:
    pdf, csv, html, zip, shpAvailable download formats
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Government and Municipalities of Québec
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The link: Access the data directory is available in the section*Dataset Description Sheets; Additional Information*. The LiDAR dendrometric map presents various dendrometric characteristics that are useful in particular in forest planning. It is a product in vector format that is complementary to the results of forest compilations found in the Original Ecoforest Map and Inventory Results and in the Results of forest compilations by forel. The geometric entities defined from the LiDAR data are at a finer scale than those in the ecoforest map. The main variables predicted and accessible in the product are as follows: • Usable volume per hectare by species, species group and certain diameter groups • Volume per hectare distributed by product for certain species groups • Basal area and number of stems per hectare for certain species groups for certain species groups • Average usable volume per stem and average diameter for certain species groups • Average usable volume per stem and average diameter for certain species groups The volumes compiled in the LiDAR dendrometric map are variables distinct from the gross volume market on Predicted foot in others results of forest compilations, in the Cubage Tariff and for the stems counted in the sample plots of the ecoforestry inventory of southern Quebec, for example in the Temporary sample plots of the fifth inventory. This distinct volume is here qualified as “usable” and it excludes woody material between 9.1 cm in diameter without bark and 9.1 cm with bark. The published literature clarifies the differences between volume variables. This product is available for territories (planning unit, private forest development agency or residual forest territory) with a LiDAR acquisition and affecting the bioclimatic domains of fir to yellow birch, fir to white birch and spruce moss. Product coverage is not complete and will evolve over the years based on the LiDAR acquisition. Note: It is possible to use the LiDAR dendrometric data preparation tool to study one or more sectors at a finer scale than that of the ecoforest map. The LiDAR dendrometric tool user guide presents the methodology for its application to meet the needs of operational forest harvest planning.**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  7. a

    LiDAR Tiles for Download

    • communautaire-esrica-apps.hub.arcgis.com
    • data.stalbert.ca
    • +1more
    Updated Jan 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of St. Albert (2021). LiDAR Tiles for Download [Dataset]. https://communautaire-esrica-apps.hub.arcgis.com/maps/2ef61a04908946dd997c973b28e8d813
    Explore at:
    Dataset updated
    Jan 1, 2021
    Dataset authored and provided by
    City of St. Albert
    License

    https://data.stalbert.ca/pages/licencehttps://data.stalbert.ca/pages/licence

    Area covered
    Description

    This webmap contains the tile polygons grid for the latest LiDAR flight (2021) in St. Albert. The Light Detection And Ranging (LiDAR) uses sensing technology to map the earths’ surface. Here you can find downloadable files for digital elevation models, infrastructure analysis and maps and many other applications.The Light Detection And Ranging (LiDAR) uses sensing technology to map the earths’ surface.

  8. U

    Lidar Point Clouds (LPCs), Digital Elevation Models (DEMs), and Snow Depth...

    • data.usgs.gov
    • catalog.data.gov
    Updated Jul 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mark Bauer; Matthew Burgess; Josip Adams; Graham Sexstone; John Fulton; William Mcdermott; Lance Brady (2024). Lidar Point Clouds (LPCs), Digital Elevation Models (DEMs), and Snow Depth Raster Maps Derived from Lidar Data Collected on Small, Uncrewed Aircraft Systems in the Upper Colorado River Basin, Colorado, 2020-22 [Dataset]. http://doi.org/10.5066/P9LF15AE
    Explore at:
    Dataset updated
    Jul 18, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Mark Bauer; Matthew Burgess; Josip Adams; Graham Sexstone; John Fulton; William Mcdermott; Lance Brady
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Jan 1, 2020 - Dec 1, 2022
    Area covered
    Colorado River
    Description

    This data release consists of three child items distinguishing the following types of data: light detection and ranging (lidar) point clouds (LPCs), digital elevation models (DEMs), and snow depth raster maps. These three data types are all derived from lidar data collected on small, uncrewed aircraft systems (sUAS) at study areas in the Upper Colorado River Basin, Colorado, from 2020 to 2022. These data were collected and generated as part of the U.S. Geological Survey's (USGS) Next Generation Water Observing Systems (NGWOS) Upper Colorado River Basin project.

  9. LiDAR Data in Hong Kong

    • opendata.esrichina.hk
    • data-esrihk.opendata.arcgis.com
    • +1more
    Updated Feb 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri China (Hong Kong) Ltd. (2024). LiDAR Data in Hong Kong [Dataset]. https://opendata.esrichina.hk/maps/ec5ca0b29aca4273b1b5703a6ed1d9b2
    Explore at:
    Dataset updated
    Feb 22, 2024
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri China (Hong Kong) Ltd.
    Area covered
    Description

    This layer shows LiDAR Data in Hong Kong. It is a set of data made available by the Civil Engineering and Development Department under the Government of Hong Kong Special Administrative Region (the "Government") at https://portal.csdi.gov.hk ("CSDI Portal"). The source data has been processed and converted into Esri File Geodatabase format and then uploaded to Esri’s ArcGIS Online platform for sharing and reference purpose. The objectives are to facilitate our Hong Kong ArcGIS Online users to use the data in a spatial ready format and save their data conversion effort.For details about the data, source format and terms of conditions of usage, please refer to the website of CSDI Portal at https://portal.csdi.gov.hk.

  10. D

    Detroit Street View Terrestrial LiDAR (2020-2022)

    • detroitdata.org
    • data.detroitmi.gov
    • +1more
    Updated Apr 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Detroit (2023). Detroit Street View Terrestrial LiDAR (2020-2022) [Dataset]. https://detroitdata.org/dataset/detroit-street-view-terrestrial-lidar-2020-2022
    Explore at:
    geojson, html, gpkg, gdb, zip, kml, txt, xlsx, arcgis geoservices rest api, csvAvailable download formats
    Dataset updated
    Apr 18, 2023
    Dataset provided by
    City of Detroit
    Area covered
    Detroit
    Description

    Detroit Street View (DSV) is an urban remote sensing program run by the Enterprise Geographic Information Systems (EGIS) Team within the Department of Innovation and Technology at the City of Detroit. The mission of Detroit Street View is ‘To continuously observe and document Detroit’s changing physical environment through remote sensing, resulting in freely available foundational data that empowers effective city operations, informed decision making, awareness, and innovation.’ LiDAR (as well as panoramic imagery) is collected using a vehicle-mounted mobile mapping system.

    Due to variations in processing, index lines are not currently available for all existing LiDAR datasets, including all data collected before September 2020. Index lines represent the approximate path of the vehicle within the time extent of the given LiDAR file. The actual geographic extent of the LiDAR point cloud varies dependent on line-of-sight.

    Compressed (LAZ format) point cloud files may be requested by emailing gis@detroitmi.gov with a description of the desired geographic area, any specific dates/file names, and an explanation of interest and/or intended use. Requests will be filled at the discretion and availability of the Enterprise GIS Team. Deliverable file size limitations may apply and requestors may be asked to provide their own online location or physical media for transfer.

    LiDAR was collected using an uncalibrated Trimble MX2 mobile mapping system. The data is not quality controlled, and no accuracy assessment is provided or implied. Results are known to vary significantly. Users should exercise caution and conduct their own comprehensive suitability assessments before requesting and applying this data.

    Sample Dataset: https://detroitmi.maps.arcgis.com/home/item.html?id=69853441d944442f9e79199b57f26fe3

    DSV Logo

  11. v

    Virginia LiDAR Download

    • vgin.vdem.virginia.gov
    Updated Nov 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virginia Geographic Information Network (2023). Virginia LiDAR Download [Dataset]. https://vgin.vdem.virginia.gov/maps/9bb678dd241f4c4781d9774e0657a2c4
    Explore at:
    Dataset updated
    Nov 14, 2023
    Dataset authored and provided by
    Virginia Geographic Information Network
    Area covered
    Description

    The Virginia LiDAR Inventory web map provides access to LiDAR point cloud and individual project metadata collected in the Commonwealth of Virginia according to the USGS 3DEP specification. Data is obtained from NOAA and USGS data portals. LiDAR Point Clouds are compressed for file storage and transfer. This map shows the spatial extents and status of LiDAR acquisition projects in Virginia. Metadata, Point Cloud, and DEMs (where hosted) are available via inventory polygons and a download tile grid which appears when zoomed in.Contact:For questions about the data that is downloaded please contact USGS

  12. Navigation Map Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AMA Research & Media LLP (2025). Navigation Map Report [Dataset]. https://www.archivemarketresearch.com/reports/navigation-map-48824
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 6, 2025
    Dataset provided by
    AMA Research & Media
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global navigation map market is experiencing robust growth, driven by increasing adoption of location-based services across various sectors. Our analysis projects a market size of $15 billion in 2025, exhibiting a Compound Annual Growth Rate (CAGR) of 12% from 2025 to 2033. This significant expansion is fueled by several key factors. The automotive industry's reliance on advanced driver-assistance systems (ADAS) and autonomous vehicles is a primary driver, demanding high-precision and regularly updated map data. Furthermore, the proliferation of mobile devices with integrated GPS and mapping applications continues to stimulate market growth. The burgeoning enterprise solutions segment, utilizing navigation maps for logistics, fleet management, and delivery optimization, contributes significantly to overall market value. Government and public sector initiatives promoting smart cities and infrastructure development further fuel demand. Technological advancements, such as the integration of LiDAR and improved GIS data, enhance map accuracy and functionality, attracting more users and driving market expansion. The market segmentation reveals substantial contributions from various application areas. The automotive segment is projected to maintain its dominance throughout the forecast period, followed closely by the mobile devices and enterprise solutions segments. Within the type segment, GIS data holds a significant market share due to its versatility and application across various sectors. However, LiDAR data is experiencing rapid growth, driven by its high precision and suitability for autonomous driving applications. Geographic regional analysis indicates strong market presence in North America and Europe, primarily driven by advanced technological infrastructure and high adoption rates. However, the Asia-Pacific region is poised for substantial growth, fueled by rapid urbanization, increasing smartphone penetration, and government investments in infrastructure development. Competitive landscape analysis reveals a blend of established players and emerging technology companies, signifying an increasingly dynamic and innovative market environment.

  13. H

    Texas Basemap - Lidar Elevation Data (DEM)

    • hydroshare.org
    • beta.hydroshare.org
    • +2more
    zip
    Updated Nov 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Texas Basemap - Lidar Elevation Data (DEM) [Dataset]. https://www.hydroshare.org/resource/af6ae321e2ad40a1bc6d0b695370fbfc/
    Explore at:
    zip(5.5 GB)Available download formats
    Dataset updated
    Nov 3, 2023
    Dataset provided by
    HydroShare
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Texas
    Description

    This resource contains Lidar-DEM collection status shapefiles from the Texas Natural Resources Information System (TNRIS) [http://tnris.org]. November 2023 updates: this year, TNRIS changed its name to Texas Geographic Information Office (TxGIO). The domain name hasn't changed yet, but the data hub is continually evolving. See [1], [2] for current downloadable data.

    For purposes of Hurricane Harvey studies, the 1-m DEM for Harris County (2008) has also been uploaded here as a set of 4 zipfiles containing the DEM in tiff files. See [1] for a link to the current elevation status map and downloadable DEMs.
    Project name: H-GAC 2008 1m Datasets: 1m Point Cloud, 1M Hydro-Enforced DEM, 3D Breaklines, 1ft and 5ft Contours Points per sq meter: 1 Total area: 3678.56 sq miles Source: Houston-Galveston Area Council (H-GAC) Acquired by: Merrick, QA/QC: Merrick Catalog: houston-galveston-area-council-h-gac-2008-lidar

    References: [1] TNRIS/TxGIO StratMap elevation data [https://tnris.org/stratmap/elevation-lidar/] [2] TNRIS/TxGIO DataHub [https://data.tnris.org/]

  14. a

    Elevation from Lidar (Image Service)

    • hub.arcgis.com
    • gis.data.mass.gov
    • +4more
    Updated Jul 23, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MassGIS - Bureau of Geographic Information (2020). Elevation from Lidar (Image Service) [Dataset]. https://hub.arcgis.com/datasets/49cbba6636fa4c41a5ea162ccf1e41bc
    Explore at:
    Dataset updated
    Jul 23, 2020
    Dataset authored and provided by
    MassGIS - Bureau of Geographic Information
    Area covered
    Description

    This is a seamless bare earth digital elevation model (DEM) created from lidar terrain elevation data for the Commonwealth of Massachusetts. It represents the elevation of the surface with vegetation and structures removed. The spatial resolution of the map is 1 meter. The elevation of each 1-meter square cell was linearly interpolated from classified lidar-derived point data.This version of the DEM stores the elevation values as integers. The native VALUE field represents the elevation above/below sea level in meters. MassGIS added a FEET field to the VAT (value attribute table) to store the elevation in feet as calculated by multiplying VALUE x 3.28084.Dates of lidar data used in this DEM range from 2010-2015. The overlapping lidar projects were adjusted to the same projection and datum and then mosaicked, with the most recent data replacing any older data. Several very small gaps between the project areas were patched with older lidar data where necessary or with models from recent aerial photo acquisitions. See https://www.mass.gov/doc/lidar-project-areas-original/download for an index map.This DEM is referenced to the WGS_1984_Web_Mercator_Auxiliary_Sphere spatial reference.See the MassGIS datalayer page to download the data as a file geodatabase raster dataset.View this service in the Massachusetts Elevation Finder.

  15. n

    Data from: LiDAR Derived Forest Aboveground Biomass Maps, Northwestern USA,...

    • nationaldataplatform.org
    • gimi9.com
    • +5more
    Updated Feb 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). LiDAR Derived Forest Aboveground Biomass Maps, Northwestern USA, 2002-2016 [Dataset]. https://nationaldataplatform.org/catalog/dataset/lidar-derived-forest-aboveground-biomass-maps-northwestern-usa-2002-2016
    Explore at:
    Dataset updated
    Feb 28, 2024
    Area covered
    Northwestern United States, United States
    Description

    This dataset provides maps of aboveground forest biomass (AGB) of living trees and standing dead trees in Mg/ha across portions of Northwestern United States, including Washington, Oregon, Idaho, and Montana, at a spatial resolution of 30 m. Forest inventory data were compiled from 29 stakeholders that had overlapping lidar imagery. The collection totaled 3805 field plots with lidar imagery for 176 collections acquired between 2002 and 2016. Plot-level AGB estimates were calculated from tree measurements using the default allometric equations found in the Fire Fuels Extension (FFE) of the Forest Vegetation Simulator (FVS). The random forest algorithm was used to model AGB from lidar height and density metrics that were generated from the lidar returns within fixed-radius field plot footprints, gridded climate metrics obtained from the Climate-FVS Ready Data Server, and topographic estimates extracted from Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global elevation rasters. AGB was then mapped from the same lidar metrics gridded across the extent of the lidar collections at 30-m resolution. The standard deviation of estimated AGB of the terminal nodes from the random forest predictions was also mapped to show pixel-level model uncertainty. Note that the AGB estimates are, for the most part, a single snapshot in time and that the forest conditions are not necessarily representative of the larger study area.

  16. 2016 FEMA Michigan Lidar: Part 1 (Muskegon County)

    • fisheries.noaa.gov
    las/laz - laser
    Updated Jan 1, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    2016 FEMA Michigan Lidar: Part 1 (Muskegon County) [Dataset]. https://www.fisheries.noaa.gov/inport/item/56271
    Explore at:
    las/laz - laserAvailable download formats
    Dataset updated
    Jan 1, 2016
    Dataset provided by
    OCM Partners
    Time period covered
    Apr 14, 2016 - Apr 16, 2016
    Area covered
    Description

    The State of Michigan (DTMB) contracted with Sanborn to provide LiDAR mapping services for 10 counties in the State of Michigan. These counties include Clare, Lake, Mecosta, Missaukee, Montcalm, Muskegon, Newaygo, Osceola, Roscommon, and Wexford. Utilizing multi-return systems, Light Detection and Ranging (LiDAR) data in the form of 3-dimensional positions of a dense set of mass points was coll...

  17. d

    Topobathymetric LiDAR Data (2017)

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Nov 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). Topobathymetric LiDAR Data (2017) [Dataset]. https://catalog.data.gov/dataset/topobathymetric-lidar-data-2017
    Explore at:
    Dataset updated
    Nov 1, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    Topographic and bathymetric LiDAR data was collected for New York City in 2017. Topographic data was collected for the entire city, plus an additional 100 meter buffer, using a Leica ALS80 sensor equipped to capture at least 8 pulse/m2. Dates of capture for topographic data were between 05/03/2017 and 05/17/2017 during 50% leaf-off conditions. Bathymetric data was collected in select areas of the city (where bathymetric data capture was expected) using a Riegl VQ-880-G sensor equipped to capture approximately 15 pulses/m2 (1.5 Secchi depths). Dates of capture for bathymetric were between 07/04/2017 - 07/26/2017. LiDAR data was tidally-coordinated and captured between mean lower low water (+30% of mean tide) ranges. The horizontal datum for all datasets is NAD83, the vertical datum is NAVD88, Geoid 12B, and the data is projected in New York State Plane - Long Island. Units are in US Survey Feet. To learn more about these datasets, visit the interactive “Understanding the 2017 New York City LiDAR Capture” Story Map -- https://maps.nyc.gov/lidar/2017/ Please see the following link for additional documentation on this dataset -- https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_LiDAR_Summary.md The following datasets are available for download via the New York State GIS Clearinghouse. The following links direct to the New York State website which includes links to download. Users may use the statewide interactive DEM download application to download specific areas of interest (hydroflattened DEM and classified point clouds only). Tile index for DEMs on the application correspond to tile indexes for hydro-enforced and digital surface models.

  18. Ontario Digital Terrain Model (Lidar-Derived)

    • geohub.lio.gov.on.ca
    • hub.arcgis.com
    • +1more
    Updated Aug 23, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ontario Ministry of Natural Resources and Forestry (2019). Ontario Digital Terrain Model (Lidar-Derived) [Dataset]. https://geohub.lio.gov.on.ca/maps/776819a7a0de42f3b75e40527cc36a0a
    Explore at:
    Dataset updated
    Aug 23, 2019
    Dataset provided by
    Ministry of Natural Resourceshttp://www.ontario.ca/page/ministry-natural-resources
    Authors
    Ontario Ministry of Natural Resources and Forestry
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Area covered
    Description

    Zoom in on the map above and click your area of interest or use the Tile Index linked below to determine which package(s) you require for download. The DTM data is available in the form of 1-km by 1-km non-overlapping tiles grouped into packages for download.This dataset is a compilation of lidar data from multiple acquisition projects, as such specifications, parameters and sensors may vary by project. See the detailed User Guide linked below for additional information.

    You can monitor the availability and status of lidar projects on the Ontario Lidar Coverage map on the Ontario Elevation Mapping Program hub page.

    Now also available through a web service which exposes the data for visualization, geoprocessing and limited download. The service is best accessed through the ArcGIS REST API, either directly or by setting up an ArcGIS server connection using the REST endpoint URL. The service draws using the Web Mercator projection.

    For more information on what functionality is available and how to work with the service, read the Ontario Web Raster Services User Guide. If you have questions about how to use the service, email Geospatial Ontario (GEO) at geospatial@ontario.ca.

    Service Endpoints

    https://ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Elevation/Ontario_DTM_LidarDerived/ImageServer https://intra.ws.geoservices.lrc.gov.on.ca/arcgis5/rest/services/Elevation/Ontario_DTM_LidarDerived/ImageServer (Government of Ontario Internal Users)

    Additional Documentation

    Ontario DTM (Lidar-Derived) - User Guide (DOCX)

    OMAFRA Lidar 2016-2018 -Cochrane-Additional Contractor Metadata (PDF) OMAFRA Lidar 2016-2018 -Peterborough-AdditionalContractorMetadata (PDF) OMAFRA Lidar 2016-2018 -Lake Erie-AdditionalContractorMetadata (PDF) CLOCA Lidar 2018 - Additional Contractor Metadata (PDF) South Nation Lidar 2018-19 - Additional Contractor Metadata (PDF) OMAFRA Lidar 2022 - Lake Huron - Additional Contractor Metadata (PDF) OMAFRA Lidar 2022 - Lake Simcoe - Additional Contractor Metadata (PDF) Huron-Georgian Lidar 2022-23 - Additional Contractor Metadata (Word) Kawartha Lakes Lidar 2023 - Additional Contractor Metadata (Word) Sault Ste Marie Lidar 2023-24 - Additional Contractor Metadata (Word) Thunder Bay Lidar 2023-24 - Additional Contractor Metadata (Word) Timmins Lidar 2024 - Additional Contractor Metadata (Word)

    Ontario DTM (Lidar-Derived) - Tile Index (SHP) Ontario Lidar Project Extents (SHP)

    OMAFRA Lidar DTM 2016-2018 -Cochrane- Breaklines (SHP) OMAFRA Lidar DTM 2016-2018 -Peterborough-Breaklines (SHP) OMAFRA Lidar DTM 2016-2018 -Lake Erie-Breaklines (SHP) CLOCA Lidar DTM 2018-Breaklines (SHP) South Nation Lidar DTM 2018-19-Breaklines (SHP) Ottawa-Gatineau Lidar DTM 2019-20 - Breaklines (SHP) OMAFRA Lidar DTM 2022 - Lake Huron - Breaklines (SHP) OMAFRA Lidar DTM 2022 - Lake Simcoe - Breaklines (SHP) Eastern Ontario Lidar DTM 2021-22 - Breaklines (SHP) Muskoka Lidar DTM 2018 - Breaklines CGVD2013 (SHP) / CGVD28 (SHP) Muskoka Lidar DTM 2021 - Breaklines CGVD2013 (SHP) / CGVD28 (SHP) Muskoka Lidar DTM 2023 - Breaklines CGVD2013 (SHP) / CGVD28 (SHP) DEDSFM Huron-Georgian Bay 2022-23 - Breaklines (SHP) DEDSFM Kawartha Lakes 2023 - Breaklines (SHP) DEDSFM Sault Ste Marie 2023-24- UTM16 - Breaklines (SHP) DEDSFM Sault Ste Marie 2023-24- UTM17 - Breaklines (SHP) DEDSFM Sudbury 2023-24 - Breaklines (SHP) DEDSFM Thunder Bay 2023-24 - Breaklines (SHP) DEDSFM Timmins 2024 - Breaklines (SHP)

    Product PackagesDownload links for the Ontario DTM (Lidar-Derived) (Word) Projects: LEAP 2009 GTA 2014-18 OMAFRA 2016-18 CLOCA 2018 South Nation CA 2018-19 Muskoka 2018-23 York-Lake Simcoe 2019 Ottawa River 2019-20 Ottawa-Gatineau 2019-20 Lake Nipissing 2020 Hamilton-Niagara 2021 Huron Shores 2021 Eastern Ontario 2021-22 OMAFRA Lake Huron 2022 OMAFRA Lake Simcoe 2022 Belleville 2022 Digital Elevation Data to Support Flood Mapping 2022-26

    Huron-Georgian Bay 2022-23 Kawartha Lakes 2023 Sault Ste Marie 2023-24 Sudbury 2023-24 Thunder Bay 2023-24 Timmins 2024

    Greater Toronto Area Lidar 2023

    Status On going: Data is continually being updated

    Maintenance and Update Frequency As needed: Data is updated as deemed necessary

    Contact Ontario Ministry of Natural Resources - Geospatial Ontario,geospatial@ontario.ca

  19. G

    Lidar - Digital models (terrain, canopy, slope, level curve)

    • open.canada.ca
    • catalogue.arctic-sdi.org
    • +2more
    csv, html, lyr, pdf +2
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government and Municipalities of Québec (2025). Lidar - Digital models (terrain, canopy, slope, level curve) [Dataset]. https://open.canada.ca/data/en/dataset/5e5d2750-d129-4952-b9fc-f824c5e480b4
    Explore at:
    pdf, csv, html, zip, shp, lyrAvailable download formats
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Government and Municipalities of Québec
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    The link: * Access the data directory* is available in the section*Dataset description sheets; Additional information*. Products derived from lidar (Light Detection and Ranging) are generated as part of the provincial lidar sensor data acquisition project. It is therefore to facilitate the use of raw lidar data and optimize its benefits that the Ministry of Natural Resources and Forests (MRNF) generated and made available products derived from lidar in a user-friendly format. Lidar technology makes it possible to accurately provide information such as ground altitude, forest cover height (canopy), slopes, and contour lines. Here is the list of the five derived products: + Digital terrain model (spatial resolution: 1 m) + Digital terrain model in shaded relief (spatial resolution: 2 m) + Canopy height model (spatial resolution: 1 m) + Slopes (spatial resolution: 2 m) + Slopes (spatial resolution: 2 m) + Level curve (interval of: 1 m) This data covers almost the entire territory of Quebec south of the 52nd parallel. This map is distributed by map sheet at a scale of 1/20,000. Note 1: The resolution of the following products (digital terrain model, digital terrain model in shaded relief, canopy height model and slopes) has been slightly degraded in visualization in the interactive map to ensure efficient display. Note 2: The planimetric and altimetric accuracy of the curves is variable, but inevitably lower than that of the lidar surveys used to generate them. Moreover, it is recommended to use these level curves only for visual representations, and not for quantitative analyses.**This third party metadata element was translated using an automated translation tool (Amazon Translate).**

  20. a

    Kentucky LiDAR Point Cloud Data

    • hub.arcgis.com
    • kyfromabove.ky.gov
    • +2more
    Updated Aug 30, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KyGovMaps (2016). Kentucky LiDAR Point Cloud Data [Dataset]. https://hub.arcgis.com/maps/b5ff91df6309491090c20333c8f58f52
    Explore at:
    Dataset updated
    Aug 30, 2016
    Dataset authored and provided by
    KyGovMaps
    Area covered
    Description

    This web map allows for the download of KyFromAbove LiDAR data by 5k tile in LAZ format. This point cloud data was acquired during the typical leaf-off acquisition period (winter-spring) over a period of several years and may be provided as LAS version 1.1, 1.2, or 1.4 depending upon the acquisition period. Users will need to download the LAZIP.exe in order to decompress each tile. LiDAR data specifications adopted by the KyFromAbove Technical Advisory Committee can be found here. This is the source data used to create the Commonwealth's 5 foot digital elevation model (DEM) and its associated derivatives. More information regarding this data resource can be found on the KyGeoPortal.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2025). Lidar Point Cloud - USGS National Map 3DEP Downloadable Data Collection [Dataset]. https://catalog.data.gov/dataset/lidar-point-cloud-usgs-national-map-3dep-downloadable-data-collection

Lidar Point Cloud - USGS National Map 3DEP Downloadable Data Collection

Explore at:
Dataset updated
Mar 11, 2025
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Description

This data collection of the 3D Elevation Program (3DEP) consists of Lidar Point Cloud (LPC) projects as provided to the USGS. These point cloud files contain all the original lidar points collected, with the original spatial reference and units preserved. These data may have been used as the source of updates to the 1/3-arcsecond, 1-arcsecond, and 2-arcsecond seamless 3DEP Digital Elevation Models (DEMs). The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Lidar (Light detection and ranging) discrete-return point cloud data are available in LAZ format. The LAZ format is a lossless compressed version of the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. Point Cloud data can be converted from LAZ to LAS or LAS to LAZ without the loss of any information. Either format stores 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of geo-referenced x, y coordinates and z (elevation), as well as other attributes for each point. Additonal information about the las file format can be found here: https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities. All 3DEP products are public domain.

Search
Clear search
Close search
Google apps
Main menu