U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data collection of the 3D Elevation Program (3DEP) consists of Lidar Point Cloud (LPC) projects as provided to the USGS. These point cloud files contain all the original lidar points collected, with the original spatial reference and units preserved. These data may have been used as the source of updates to the 1/3-arcsecond, 1-arcsecond, and 2-arcsecond seamless 3DEP Digital Elevation Models (DEMs). The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Lidar (Light detection and ranging) discrete-return point cloud data are available in LAZ format. The LAZ format is a lossless compressed version of the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. Point Cloud data can be converted from LAZ to LAS or LAS to LAZ without the loss of any information. Either format stores 3-dimensional point cloud data and point ...
https://www.neonscience.org/data-samples/data-policies-citationhttps://www.neonscience.org/data-samples/data-policies-citation
Unclassified three-dimensional point cloud by flightline and classified point cloud by 1 km tile, provided in LAZ format. Classifications follow standard ASPRS definitions. All point coordinates are provided in meters. Horizontal coordinates are referenced in the appropriate UTM zone and the ITRF00 datum. Elevations are referenced to Geoid12A.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The LIDAR point cloud is an archive of hundreds of millions, or sometimes billions of highly accurate 3-dimensional x,y,z points and component attributes produced by the Environment Agency.
The environment agecy site specific LIDAR DSM and DTM Time Stamped Tiles gridded raster products are derived from the point cloud. The component attributes a point cloud contains can provide valuable additional information to supplement elevation and can enable the user to make bespoke raster products such as canopy height models or intensity rasters.
Site specific LIDAR surveys have been carried out across England since 1998, with certain areas, such as the coastal zone, being surveyed multiple times. The point cloud is available for surveys going back to 2006. Although the DSM and DTM Tile Stamped Tiles products are derived from the point cloud data there may not necessarily be a matching point cloud for each surface model due to historic data archiving processes.
During processing the point cloud classifies the laser returns in the 'ground' and 'surface objects'. Further manual editing undertkaen on the derived digital terrain model (DTM) means the classifed ground points in the point cloud data will not match the final derived DTM.
Data is available in 5km download zip files for each year of survey. Within each downloaded zip file are LAZ files aligned to the Ordinance Survey grid. The size of each tile is dependent upon the spatial resolution of the data.
Please refere to the coverage metadata files for the start and end date flown of a survey as well as additional component information the point cloud contains such as the average point density.
https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario
Many Ontario lidar point cloud datasets have been made available for direct download by the Government of Canada through the federal Open Government Portal under the LiDAR Point Clouds – CanElevation Series record. Instructions for bulk data download are available in the Download Instructions document linked from that page. To download individual tiles, zoom in on the map in GeoHub and click a tile for a pop-up containing a download link.
See the LIO Support - Large Data Ordering Instructions to obtain a copy of data for projects that are not yet available for direct download. Data can be requested by project area or a set of tiles. To determine which project contains your area of interest or to view single tiles, zoom in on the map above and click. For bulk tile orders follow the link in the Additional Documentation section below to download the tile index in shapefile format. Data sizes by project area are listed below.
The Ontario Point Cloud (Lidar-Derived) consists of points containing elevation and intensity information derived from returns collected by an airborne topographic lidar sensor. The minimum point cloud classes are Unclassified, Ground, Water, High and Low Noise. The data is structured into non-overlapping 1-km by 1-km tiles in LAZ format.
This dataset is a compilation of lidar data from multiple acquisition projects, as such specifications, parameters, accuracy and sensors may vary by project. Some project have additional classes, such as vegetation and buildings. See the detailed User Guide and contractor metadata reports linked below for additional information, including information about interpreting the index for placement of data orders.
Raster derivatives have been created from the point clouds. These products may meet your needs and are available for direct download. For a representation of bare earth, see the Ontario Digital Terrain Model (Lidar-Derived). For a model representing all surface features, see the Ontario Digital Surface Model (Lidar-Derived).
You can monitor the availability and status of lidar projects on the Ontario Lidar Coverage map on the Ontario Elevation Mapping Program hub page.
Additional Documentation
Ontario Classified Point Cloud (Lidar-Derived) - User Guide (DOCX)
OMAFRA Lidar 2016-18 - Cochrane - Additional Metadata (PDF) OMAFRA Lidar 2016-18 - Peterborough - Additional Metadata (PDF) OMAFRA Lidar 2016-18 - Lake Erie - Additional Metadata (PDF) CLOCA Lidar 2018 - Additional Contractor Metadata (PDF) South Nation Lidar 2018-19 - Additional Contractor Metadata (PDF) OMAFRA Lidar 2022 - Lake Huron - Additional Metadata (PDF) OMAFRA Lidar 2022 - Lake Simcoe - Additional Metadata (PDF) Huron-Georgian Bay Lidar 2022-23 - Additional Metadata (Word) Kawartha Lakes Lidar 2023 - Additional Metadata (Word) Sault Ste Marie Lidar 2023-24 - Additional Metadata (Word) Thunder Bay Lidar 2023-24 - Additional Metadata (Word) Timmins Lidar 2024 - Additional Metadata (Word)
OMAFRA Lidar Point Cloud 2016-18 - Cochrane - Lift Metadata (SHP) OMAFRA Lidar Point Cloud 2016-18- Peterborough - Lift Metadata (SHP) OMAFRA Lidar Point Cloud 2016-18 - Lake Erie - Lift Metadata (SHP) CLOCA Lidar Point Cloud 2018 - Lift Metadata (SHP) South Nation Lidar Point Cloud 2018-19 - Lift Metadata (SHP) York-Lake Simcoe Lidar Point Cloud 2019 - Lift Metadata (SHP) Ottawa River Lidar Point Cloud 2019-20 - Lift Metadata (SHP) OMAFRA Lidar Point Cloud 2022 - Lake Huron - Lift Metadata (SHP) OMAFRA Lidar Point Cloud 2022 - Lake Simcoe - Lift Metadata (SHP) Eastern Ontario Lidar Point Cloud 2021-22 - Lift Medatadata (SHP) DEDSFM Huron-Georgian Bay Lidar Point Cloud 2022-23 - Lift Metadata (SHP) DEDSFM Kawartha Lakes Lidar Point Cloud 2023 - Lift Metadata (SHP) DEDSFM Sault Ste Marie Lidar Point Cloud 2023-24 - Lift Metadata (SHP) DEDSFM Sudbury Lidar Point Cloud 2023-24 - Lift Metadata (SHP) DEDSFM Thunder Bay Lidar Point Cloud 2023-24 - Lift Metadata (SHP) DEDSFM Timmins Lidar Point Cloud 2024 - Lift Metadata (SHP) GTA 2023 - Lift Metadata (SHP)
Ontario Classified Point Cloud (Lidar-Derived) - Tile Index (SHP)
Ontario Lidar Project Extents (SHP)
Data Package Sizes
LEAP 2009 - 22.9 GB
OMAFRA Lidar 2016-18 - Cochrane - 442 GB OMAFRA Lidar 2016-18 - Lake Erie - 1.22 TB OMAFRA Lidar 2016-18 - Peterborough - 443 GB
GTA 2014 - 57.6 GB GTA 2015 - 63.4 GB Brampton 2015 - 5.9 GB Peel 2016 - 49.2 GB Milton 2017 - 15.3 GB Halton 2018 - 73 GB
CLOCA 2018 - 36.2 GB
South Nation 2018-19 - 72.4 GB
York Region-Lake Simcoe Watershed 2019 - 75 GB
Ottawa River 2019-20 - 836 GB
Lake Nipissing 2020 - 700 GB
Ottawa-Gatineau 2019-20 - 551 GB
Hamilton-Niagara 2021 - 660 GB
OMAFRA Lidar 2022 - Lake Huron - 204 GB OMAFRA Lidar 2022 - Lake Simcoe - 154 GB
Belleville 2022 - 1.09 TB
Eastern Ontario 2021-22 - 1.5 TB
Huron Shores 2021 - 35.5 GB
Muskoka 2018 - 72.1 GB Muskoka 2021 - 74.2 GB Muskoka 2023 - 532 GB The Muskoka lidar projects are available in the CGVD2013 or CGVD28 vertical datums. Please specifify which datum is needed when ordering data.
Digital Elevation Data to Support Flood Mapping 2022-26:
Huron-Georgian Bay 2022 - 1.37 TB Huron-Georgian Bay 2023 - 257 GB Huron-Georgian Bay 2023 Bruce - 95.2 GB Kawartha Lakes 2023 - 385 GB Sault Ste Marie 2023-24 - 1.15 TB Sudbury 2023-24 - 741 GB Thunder Bay 2023-24 - 654 GB Timmins 2024 - 318 GB
GTA 2023 - 985 GB
Status On going: Data is continually being updated
Maintenance and Update Frequency As needed: Data is updated as deemed necessary
Contact Ontario Ministry of Natural Resources - Geospatial Ontario, geospatial@ontario.ca
These light detection and ranging (lidar) point clouds (LPCs) were generated from lidar data collected during multiple field campaigns in three study areas near Winter Park, Colorado. Small, uncrewed aircraft systems (sUAS) collected lidar datasets to represent snow-covered and snow-free periods. More information regarding the sUAS used and data collection methods can be found in the Supplemental Information and process step sections of each study area metadata file.
The goal of the USGS 3D Elevation Program (3DEP) is to collect elevation data in the form of light detection and ranging (LiDAR) data over the conterminous United States, Hawaii, and the U.S. territories, with data acquired over an 8-year period. This dataset provides two realizations of the 3DEP point cloud data. The first resource is a public access organization provided in Entwine Point Tiles format, which a lossless, full-density, streamable octree based on LASzip (LAZ) encoding. The second resource is a Requester Pays of the original, Raw LAZ (Compressed LAS) 1.4 3DEP format, and more complete in coverage, as sources with incomplete or missing CRS, will not have an ETP tile generated. Resource names in both buckets correspond to the USGS project names.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Point-wise annotation was conducted on input point clouds to prepare a labeled dataset for segmenting different sorghum plant-organ. Each sorghum plant's leaf, stem, and panicle were manually labeled in 0, 1, and 2, respectively, using the segment module of the CloudCompare software.
In support of U.S. Geological Survey (USGS) Southwest Biological Science Center researchers, and in coordination with the Bureau of Land Management (BLM) and National Ecological Observatory Network (NEON), the USGS National Uncrewed Systems Office (NUSO) conducted uncrewed aircraft systems (UAS) remote sensing flights over two BLM Assessment, Inventory, and Monitoring (AIM) plots at the NEON Moab site in Utah for multi-scale carbon sequestration research on public lands. The UAS data collected include natural color, multispectral, and hyperspectral imagery, and lidar to capture diverse information about vegetation and soils on drylands. The first site (“site 1”) features intact sagebrush and was mapped on May 3, 2023. The second site (“site 7”) is located on a grazed rangeland environment and was mapped on May 5, 2023. These UAS surveys were conducted in early May 2023 to coincide spatially and temporally with ground-based BLM AIM sampling and airplane-based remote sensing surveys by NEON. This portion of the data release presents discrete lidar point clouds from low-altitude UAS flights at two dryland sites approximately 40 km south of Moab, Utah. A YellowScan Vx20-100 scanner (laser wavelength 905 nm) was flown at an altitude of 31 meters above ground level on a DJI Matrice 600 Pro UAS with approved government edition firmware. The lidar point clouds were post-processed kinematic (PPK) corrected to a concurrently operating Trimble R8s GNSS base station and each point was assigned Red, Gren, Blue (RGB) image values using corresponding natural color orthomosaics at each site. The point clouds were also point classified using a bare-ground classification scheme (0-Created, never classified; 2-Ground) and exported in .las format.
This web map allows for the download of KyFromAbove LiDAR data by 5k tile in LAZ format. This point cloud data was acquired during the typical leaf-off acquisition period (winter-spring) over a period of several years and may be provided as LAS version 1.1, 1.2, or 1.4 depending upon the acquisition period. Users will need to download the LAZIP.exe in order to decompress each tile. LiDAR data specifications adopted by the KyFromAbove Technical Advisory Committee can be found here. This is the source data used to create the Commonwealth's 5 foot digital elevation model (DEM) and its associated derivatives. More information regarding this data resource can be found on the KyGeoPortal.
LiDAR point cloud data for Washington, DC is available for anyone to use on Amazon S3. This dataset, managed by the Office of the Chief Technology Officer (OCTO), through the direction of the District of Columbia GIS program, contains tiled point cloud data for the entire District along with associated metadata.
https://data.linz.govt.nz/license/attribution-4-0-international/https://data.linz.govt.nz/license/attribution-4-0-international/
This layer contains the Point Cloud for LiDAR data in the Northland region, captured between 18 April 2024 - 28 June 2024.
The DEM is available as layer Northland LiDAR 1m DEM (2024).
The DSM is available as layer Northland LiDAR 1m DSM (2024).
The Index Tiles are available as layer Northland LiDAR Index Tiles (2024).
LiDAR was captured for Regional Software Holdings Ltd by Landpro Ltd from 18 April to 28 June 2024. The dataset was generated by Landpro and their subcontractors. Data management and distribution is by Toitū Te Whenua Land Information New Zealand.
Data comprises:
DEM: tif or asc tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout
DSM: tif or asc tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout
Point cloud: las tiles in NZTM2000 projection, tiled into a 1:1,000 tile layout
Pulse density specification is at a minimum of 8 pulses/square metre.
Vertical Accuracy Specification is +/- 0.2m (95%) Horizontal Accuracy Specification is +/- 1.0m (95%)
Vertical datum is NZVD2016.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This public data repository (https://public.spider.surfsara.nl/project/lidarac/MAMBO/) provides the LiDAR point cloud datasets which were clipped using the boundary polygons (shapefiles) of the MAMBO demonstration sites. The raw LiDAR point cloud tiles were first downloaded from the national repository in the respective country based on the approximate location of each demonstration site. The data repository uses the storage services from the Dutch IT infrastructure SURF (https://www.surf.nl/en). The code for downloading, clipping and uploading the LiDAR point cloud datasets is available on GitHub (https://github.com/Jinhu-Wang/Retile_Clip_LAZ).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Colorized point cloud data were derived from discrete return airborne lidar data and orthophotography that were collected simultaneously on August 1st, 2013 at five discrete areas near Toolik Field Station in northern Alaska. The lidar sensor was a Riegl VQ-480i operated at a nominal altitude of 366 m AGL and +/-60 kn. Vertical accuracy was estimated at 8-10 cm. Nominal collection density was 13.5 points per square meter with ~60% sidelap to yield an aggregate density of ~27-30 points per square meter. Imagery sensor was a Leica RCD30 60MP medium format digital camera collecting 4-band RGBN data. Imagery pixel resolution was 0.052 m. Data projections are: NAD83 UTM Zone 6N (horizontal, meters); NAVD88 Geoid 12A (vertical, meters).
This dataset contains geolocated airborne LiDAR point cloud measurements from the Sub-Mesoscale Ocean Dynamics Experiment (S-MODE) conducted approximately 300 km offshore of San Francisco during a pilot campaign over two weeks in October 2021, and two intensive operating periods (IOPs) in Fall 2022 and Spring 2023. S-MODE aims to understand how ocean dynamics acting on short spatial scales influence the vertical exchange of physical and biological variables in the ocean. The Modular Aerial Sensing System (MASS) is an airborne instrument package that is mounted on the DHC-6 Twin Otter aircraft which flies long duration detailed surveys of the field _domain during deployments. MASS includes a high resolution LiDAR, used to characterize the properties of ocean surface topography. The sensor has a maximum pulse repetition rate of 400 kHz, with a +/- 30° cross-heading raster scan rate of 200 Hz. Level 1 LiDAR point clouds are available in .laz format.
A novel benchmark dataset that includes a manually annotated point cloud for over 260 million laser scanning points into 100'000 (approx.) assets from Dublin LiDAR point cloud [12] in 2015. Objects are labelled into 13 classes using hierarchical levels of detail from large (i.e., building, vegetation and ground) to refined (i.e., window, door and tree) elements.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
The dataset includes 6 3D point cloud files collected with Velodyne VLP-16 mobile LiDAR (*.las) belonging to 4 cultural and natural heritage structures located in Cappadocia, Türkiye. The structures are:
1- St. Theodore Church (Interior & Exterior): The Church of St. Theodore is located in Yeşilöz Village in Ürgüp district of Nevşehir. Formerly known as Tagar, now known as Yesiloz Village is approximately 16 km from the center of Urgup district and is a settlement area built on the slope of the valley. The church was carved into a large rock mass on the hill northwest of the village. As a result of excavations near the village, a monastery with a courtyard on three sides was discovered. It is thought that the church belonged to this monastery. The church is called both St. Theodore and Tagar Church. Although it is not known where the name Theodore comes from, it is estimated that this name may have been given because the church was built in the name of St. Theodore.
2- Mustafa Efendi Mosque (Interior & Exterior): The masonry Mustafa Efendi Mosque in Bahçeli Village of Ürgüp District of Nevşehir Province is the oldest of the 3 mosques built in the village. It is estimated that it was built about 50 years before the Osman Efendi Mosque, which was presented as a proposed building within the scope of the project, with a construction date of 1746. Although it is known to have a small inscription with the date of construction, this inscription was not found during the survey. According to this information, Mustafa Efendi Mosque is estimated to be a 17th-18th century work.
3- Fairy Chimney: The distance between Bahçeli Village where the fairy chimney is located and Urgup district is 15 kilometers and the formations between these two areas are generally natural formations without caps and in the late fairy chimney period. It shows that the fairy chimney is a natural formation without a cap and in the late fairy chimney period. The fairy chimney is in the 1st degree natural protected area.
4- Masonry House: Bahçeli Village, where the building examined within the scope of the project is located, is 15 km away from Ürgüp district and is a mixed settlement type. There are approximately 200 cove-carved and masonry historical buildings in the village. A large part of the village, including the structures examined in the village, is a 3rd degree natural protected area. The masonry-rock-carved civil architecture dwelling in Bahçeli Village, Ürgüp District, Nevşehir has not been in use since the 1980s and some of the spaces have been completely lost.
The creation of this dataset was funded by the Scientific and Technological Research Council of Türkiye (TUBITAK) 1001 program under Project no. 122Y017.
The objective of the Mapa 3D Digital da Cidade (M3DC) of the São Paulo City Hall is to publish LiDAR point cloud data. The initial data was acquired in 2017 by aerial surveying and future data will be added. This publicly accessible dataset is provided in the Entwine Point Tiles format as a lossless octree, full density, based on LASzip (LAZ) encoding.
Click here to access the data directly from the Illinois State Geospatial Data Clearinghouse. These lidar data are processed Classified LAS 1.4 files, formatted to 2,117 individual 2500 ft x 2500 ft tiles; used to create Reflectance Images, 3D breaklines and hydro-flattened DEMs as necessary. Geographic Extent: Lake county, Illinois covering approximately 466 square miles. Dataset Description: WI Kenosha-Racine Counties and IL 4 County QL1 Lidar project called for the Planning, Acquisition, processing and derivative products of lidar data to be collected at a derived nominal pulse spacing (NPS) of 1 point every 0.35 meters. Project specifications are based on the U.S. Geological Survey National Geospatial Program Base Lidar Specification, Version 1.2. The data was developed based on a horizontal projection/datum of NAD83 (2011), State Plane, U.S Survey Feet and vertical datum of NAVD88 (GEOID12B), U.S. Survey Feet. Lidar data was delivered as processed Classified LAS 1.4 files, formatted to 2,117 individual 2500 ft x 2500 ft tiles, as tiled Reflectance Imagery, and as tiled bare earth DEMs; all tiled to the same 2500 ft x 2500 ft schema. Ground Conditions: Lidar was collected April-May 2017, while no snow was on the ground and rivers were at or below normal levels. In order to post process the lidar data to meet task order specifications and meet ASPRS vertical accuracy guidelines, Ayers established a total of 66 ground control points that were used to calibrate the lidar to known ground locations established throughout the WI Kenosha-Racine Counties and IL 4 County QL1 project area. An additional 195 independent accuracy checkpoints, 116 in Bare Earth and Urban landcovers (116 NVA points), 79 in Tall Grass and Brushland/Low Trees categories (79 VVA points), were used to assess the vertical accuracy of the data. These checkpoints were not used to calibrate or post process the data. Users should be aware that temporal changes may have occurred since this dataset was collected and that some parts of these data may no longer represent actual surface conditions. Users should not use these data for critical applications without a full awareness of its limitations. Acknowledgement of the U.S. Geological Survey would be appreciated for products derived from these data. These LAS data files include all data points collected. No points have been removed or excluded. A visual qualitative assessment was performed to ensure data completeness. No void areas or missing data exist. The raw point cloud is of good quality and data passes Non-Vegetated Vertical Accuracy specifications.Link Source: Illinois Geospatial Data Clearinghouse
LiDAR data obtained from the USGS National Map: https://apps.nationalmap.gov/downloader/. Point cloud resolution is approximately 0.7m NPS. Data was collected January and February of 2020.Elevation is in International Feet.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This .las file contains sample LiDAR point cloud data collected by National Ecological Observatory Network's Airborne Observation Platform. The .las file format is a commonly used file format to store LIDAR point cloud data.This teaching data set is used for several tutorials on the NEON website (neonscience.org). The dataset is for educational purposes, data for research purposes can be obtained from the NEON Data Portal (data.neonscience.org).
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This data collection of the 3D Elevation Program (3DEP) consists of Lidar Point Cloud (LPC) projects as provided to the USGS. These point cloud files contain all the original lidar points collected, with the original spatial reference and units preserved. These data may have been used as the source of updates to the 1/3-arcsecond, 1-arcsecond, and 2-arcsecond seamless 3DEP Digital Elevation Models (DEMs). The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Lidar (Light detection and ranging) discrete-return point cloud data are available in LAZ format. The LAZ format is a lossless compressed version of the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. Point Cloud data can be converted from LAZ to LAS or LAS to LAZ without the loss of any information. Either format stores 3-dimensional point cloud data and point ...