100+ datasets found
  1. d

    Hawaii Big Island Lidar Survey

    • dataone.org
    • portal.opentopography.org
    • +3more
    Updated Oct 18, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2023). Hawaii Big Island Lidar Survey [Dataset]. https://dataone.org/datasets/sha256%3A1ca4440808e30895b839c5b7c26206a482913dfcd2d8f1ececb6d24e1c8b80f1
    Explore at:
    Dataset updated
    Oct 18, 2023
    Dataset provided by
    OpenTopography
    Time period covered
    Jun 21, 2009 - Jun 27, 2009
    Area covered
    Description

    This survey covers portions of Hawaii Volcano National Park, Upper Waiakea Forest Reserve, and Mauna Loa Forest Reserve on the Big Island of Hawaii. The survey area covers 299 square kilometers. These data were collected by the National Center for Airborne Laser Mapping (NCALM) on behalf of Steve Martel (University of Hawaii), Scott Rowland (University of Hawaii), Adam Soule (Woods Hole Oceanographic Institution) and Kathy Cashman (U. Oregon / Bristol U.).


    Publications associated with this dataset can be found at NCALM's Data Tracking Center

  2. e

    LIDAR Ground Truth Surveys

    • data.europa.eu
    • environment.data.gov.uk
    unknown, word docx +1
    Updated Aug 2, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment Agency (2019). LIDAR Ground Truth Surveys [Dataset]. https://data.europa.eu/data/datasets/lidar-ground-truth-surveys
    Explore at:
    unknown, zip, word docxAvailable download formats
    Dataset updated
    Aug 2, 2019
    Dataset authored and provided by
    Environment Agency
    Description

    The Environment Agency LIDAR Ground Truth surveys dataset is an archive of elevation points and attribute information that have been independently surveyed to verify the accuracy of the EA's LIDAR timestamped surveys. Captured by various independent surveyors, a ground truth survey is a collection of a few hundred points captured on a flat, unambiguous surface such as a tarmac car park or tennis court using GPS. Each ground truth point has an accuracy of +/-3cm R.M.S.E and contains attribute information such as the date of survey, surface type, survey method and transformation and geoidal models used. A ground truth survey may potentially be used for multiple LIDAR surveys provided it is less than 5 years old, or 3 years for coastal projects.

    The LIDAR timestamped survey is compared against the ground truth survey to assess the Root Mean Square Error (R.M.S.E), standard deviation and random error of the LIDAR. All LIDAR surveys must report an error of less than +/-15cm RMSE and 10cm for standard deviation and random error to pass quality control. For the specific ground truth results for a LIDAR survey please contact us. Attribution statement: © Environment Agency copyright and/or database right 2015. All rights reserved.

  3. Open Topographic Lidar Data - Dataset - data.gov.ie

    • data.gov.ie
    Updated Oct 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.gov.ie (2021). Open Topographic Lidar Data - Dataset - data.gov.ie [Dataset]. https://data.gov.ie/dataset/open-topographic-lidar-data
    Explore at:
    Dataset updated
    Oct 22, 2021
    Dataset provided by
    data.gov.ie
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This data was collected by the Geological Survey Ireland, the Department of Culture, Heritage and the Gaeltacht, the Discovery Programme, the Heritage Council, Transport Infrastructure Ireland, New York University, the Office of Public Works and Westmeath County Council. All data formats are provided as GeoTIFF rasters but are at different resolutions. Data resolution varies depending on survey requirements. Resolutions for each organisation are as follows: GSI – 1m DCHG/DP/HC - 0.13m, 0.14m, 1m NY – 1m TII – 2m OPW – 2m WMCC - 0.25m Both a DTM and DSM are raster data. Raster data is another name for gridded data. Raster data stores information in pixels (grid cells). Each raster grid makes up a matrix of cells (or pixels) organised into rows and columns. The grid cell size varies depending on the organisation that collected it. GSI data has a grid cell size of 1 meter by 1 meter. This means that each cell (pixel) represents an area of 1 meter squared.

  4. LIDAR Composite Digital Terrain Model (DTM) - 1m

    • environment.data.gov.uk
    Updated Dec 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment Agency (2023). LIDAR Composite Digital Terrain Model (DTM) - 1m [Dataset]. https://environment.data.gov.uk/dataset/13787b9a-26a4-4775-8523-806d13af58fc
    Explore at:
    Dataset updated
    Dec 15, 2023
    Dataset authored and provided by
    Environment Agencyhttps://www.gov.uk/ea
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    The LIDAR Composite DTM (Digital Terrain Model) is a raster elevation model covering ~99% of England at 1m spatial resolution. The DTM (Digital Terrain Model) is produced from the last or only laser pulse returned to the sensor. We remove surface objects from the Digital Surface Model (DSM), using bespoke algorithms and manual editing of the data, to produce a terrain model of just the surface.

    Produced by the Environment Agency in 2022, the DTM is derived from a combination of our Time Stamped archive and National LIDAR Programme surveys, which have been merged and re-sampled to give the best possible coverage. Where repeat surveys have been undertaken the newest, best resolution data is used. Where data was resampled a bilinear interpolation was used before being merged.

    The 2022 LIDAR Composite contains surveys undertaken between 6th June 2000 and 2nd April 2022. Please refer to the metadata index catalgoues which show for any location which survey was used in the production of the LIDAR composite.

    The data is available to download as GeoTiff rasters in 5km tiles aligned to the OS National grid. The data is presented in metres, referenced to Ordinance Survey Newlyn and using the OSTN’15 transformation method. All individual LIDAR surveys going into the production of the composite had a vertical accuracy of +/-15cm RMSE.

  5. 2004 SWFWMD Citrus County Bare-Earth Lidar Survey

    • data.wu.ac.at
    • fisheries.noaa.gov
    • +1more
    Updated Feb 7, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Oceanic and Atmospheric Administration, Department of Commerce (2018). 2004 SWFWMD Citrus County Bare-Earth Lidar Survey [Dataset]. https://data.wu.ac.at/schema/data_gov/MzAyZTRlZGItM2VmZC00NjIxLTk3YWYtZTZlNjc5YjhhNGMz
    Explore at:
    Dataset updated
    Feb 7, 2018
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Area covered
    a3a0dc97cc7fd0ae4399279c6b89e7f5fd79e0cf
    Description

    This metadata record describes the ortho & LIDAR mapping of Citrus County, FL. The mapping consists of LIDAR data collection, contour generation, and production of natural color orthophotography with a 1ft pixel using imagery collected with a Wild RC-30 Aerial Camera.

  6. W

    Lidar Survey of Middle Usumacinta Region, Mexico

    • wifire-data.sdsc.edu
    • portal.opentopography.org
    • +4more
    laz
    Updated Aug 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2024). Lidar Survey of Middle Usumacinta Region, Mexico [Dataset]. https://wifire-data.sdsc.edu/lv/dataset/lidar-survey-of-middle-usumacinta-region-mexico
    Explore at:
    lazAvailable download formats
    Dataset updated
    Aug 16, 2024
    Dataset provided by
    OpenTopography
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Usumacinta River, Mexico
    Description

    This dataset is a lidar survey by the Middle Usumacinta Archaeological Project. It examines the distribution of archaeological sites in the Middle Usumacinta region in eastern Tabasco, Mexico. Data was collected for Dr. Takeshi Inomata at the University of Arizona. Publications associated with this dataset can be found at NCALM's Data Tracking Center

  7. d

    Lidar Point Cloud - USGS National Map 3DEP Downloadable Data Collection

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Mar 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Lidar Point Cloud - USGS National Map 3DEP Downloadable Data Collection [Dataset]. https://catalog.data.gov/dataset/lidar-point-cloud-usgs-national-map-3dep-downloadable-data-collection
    Explore at:
    Dataset updated
    Mar 11, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    This data collection of the 3D Elevation Program (3DEP) consists of Lidar Point Cloud (LPC) projects as provided to the USGS. These point cloud files contain all the original lidar points collected, with the original spatial reference and units preserved. These data may have been used as the source of updates to the 1/3-arcsecond, 1-arcsecond, and 2-arcsecond seamless 3DEP Digital Elevation Models (DEMs). The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Lidar (Light detection and ranging) discrete-return point cloud data are available in LAZ format. The LAZ format is a lossless compressed version of the American Society for Photogrammetry and Remote Sensing (ASPRS) LAS format. Point Cloud data can be converted from LAZ to LAS or LAS to LAZ without the loss of any information. Either format stores 3-dimensional point cloud data and point attributes along with header information and variable length records specific to the data. Millions of data points are stored as a 3-dimensional data cloud as a series of geo-referenced x, y coordinates and z (elevation), as well as other attributes for each point. Additonal information about the las file format can be found here: https://www.asprs.org/divisions-committees/lidar-division/laser-las-file-format-exchange-activities. All 3DEP products are public domain.

  8. W

    LiDAR Survey of the Black Hills Experimental Forest, South Dakota

    • wifire-data.sdsc.edu
    • portal.opentopography.org
    • +4more
    laz
    Updated Aug 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2024). LiDAR Survey of the Black Hills Experimental Forest, South Dakota [Dataset]. https://wifire-data.sdsc.edu/dataset/lidar-survey-of-the-black-hills-experimental-forest-south-dakota1
    Explore at:
    lazAvailable download formats
    Dataset updated
    Aug 16, 2024
    Dataset provided by
    OpenTopography
    Area covered
    Black Hills, South Dakota
    Description

    The surveyed area covers 28.5 square kilometers of the Black Hills Experimental Forest, South Dakota. These LAS and associated files were collected by Horizon's Inc. of Rapid City, SD and processed by the USDA Forest Service in Moscow, ID. The purpose of the data collection is to use Lidar in support of natural resource research and management applications.

  9. 2006 MDEQ Camp Shelby, MS Lidar Survey

    • fisheries.noaa.gov
    • catalog.data.gov
    html
    Updated Sep 23, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OCM Partners (2013). 2006 MDEQ Camp Shelby, MS Lidar Survey [Dataset]. https://www.fisheries.noaa.gov/inport/item/49816
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 23, 2013
    Dataset provided by
    OCM Partners
    Time period covered
    Mar 26, 2006 - Mar 27, 2006
    Area covered
    Description

    This metadata record describes the acquisition and processing of bare earth lidar data, raw point cloud lidar data, lidar intensity data, and floodmap breaklines consisting of a total of 280 sheets for Camp Shelby, MS. The post-spacing for this project is 3-meter. This project was broken into 3 parts, Acquisition, Part A Processing, and Part B Processing. Acquisition was tasked by Mississippi...

  10. c

    Geodatabase containing bathymetric and LiDAR data for Blue Mountain Lake,...

    • s.cnmilf.com
    • data.usgs.gov
    • +3more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Geodatabase containing bathymetric and LiDAR data for Blue Mountain Lake, Arkansas. [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/geodatabase-containing-bathymetric-and-lidar-data-for-blue-mountain-lake-arkansas
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Blue Mountain Lake, Arkansas
    Description

    A bathymetric survey of Blue Mountain Lake, Arkansas, was conducted in May 2017 by the Lower Mississippi-Gulf Water Science Center of the U.S. Geological Survey (USGS) using methodologies for sonar surveys similar to those described by Wilson and Richards (2006). Point data from the bathymetric survey were merged with point data from an aerial LiDAR survey conducted in December 2010, for the U.S. Army Corps of Engineers (USACE), Little Rock District. From the combined point data, a terrain dataset (a type of triangulated irregular network, or TIN, model) was created in Esri ArcGIS for the lakebed within the extent of pool elevation 420 feet above the North American Vertical Datum of 1988 (NAVD88). This Esri file geodatabase contains the following products: 1) point data from the bathymetric and LiDAR surveys; 2) a terrain dataset; 3) a digital elevation model (DEM) in Esri GRID format with a 3-ft cell size; 4) a feature class of bathymetric contours at 4-ft intervals; and 5) a table of storage capacity (volume) of the lake at 1-ft increments in water-surface elevation from 350-420 ft NAVD88 and seasonal conservation and flood pool elevations.

  11. d

    Jemez River Basin Snow-off Lidar Survey

    • datasets.ai
    • portal.opentopography.org
    • +3more
    0, 21
    Updated Aug 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2024). Jemez River Basin Snow-off Lidar Survey [Dataset]. https://datasets.ai/datasets/jemez-river-basin-snow-off-lidar-survey
    Explore at:
    0, 21Available download formats
    Dataset updated
    Aug 29, 2024
    Dataset authored and provided by
    OpenTopography
    Area covered
    Jemez River
    Description

    High-resolution Lidar survey covers the area of 722 km2 which includes the Valles Caldera (upper part of the Jemez River basin) and Frijoles Canyon, New Mexico. The data collection was jointly funded by the National Science Foundation (NSF), Valles Caldera National Preserve (VCNP), Bandelier National Monument/National Park Service (BNM/NPS) and United States Geological Survey (USGS) and performed by the National Center for Airborne Laser Mapping (NCALM) during a snow-off season (June and July 2010). The dataset contains point cloud tiles in LAS format, 1 m Digital Surface Model (DSM) derived using first-stop points, 1 m Digital Elevation Model (DEM) derived using ground-class points and 1 m hill shade dataset derived from DEM. This dataset, together with the snow-on Lidar survey performed in March and April 2010, are being used to estimate snowpack, vegetation biomass and distribution, and bare earth elevations to help better understand and quantify ecosystem structure, geomorphology, and landscape processes within the Critical Zone Observatory.

  12. d

    2019 Eastern Iowa Topographic Lidar Validation – USGS Field Survey Data

    • catalog.data.gov
    • data.usgs.gov
    • +2more
    Updated Jul 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). 2019 Eastern Iowa Topographic Lidar Validation – USGS Field Survey Data [Dataset]. https://catalog.data.gov/dataset/2019-eastern-iowa-topographic-lidar-validation-usgs-field-survey-data
    Explore at:
    Dataset updated
    Jul 20, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Iowa
    Description

    U.S. Geological Survey (USGS) scientists conducted field data collection efforts between October 25th and 31st, 2020 at several sites in eastern Iowa using high accuracy surveying technologies. The work was initiated as an effort to validate commercially acquired topographic light detection and ranging (lidar) data that was collected between December 7th, 2019 and November 19th, 2020 using wide area mapping lidar systems for the USGS 3D Elevation Program (3DEP). The goal was to compare and validate the airborne lidar data to topographic, structural, and infrastructural data collected through more traditional means (e.g., Global Navigational Satellite System (GNSS) surveying). Evaluating these data will provide valuable information on the performance of wide area topographic lidar mapping capabilities that are becoming more widely used in 3DEP. The airborne lidar was collected to support the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) High Resolution Elevation Enterprise Program and the Iowa Department of Agriculture and Land Stewardship Iowa Flood Plain Program, in addition to the 3DEP mission. The data contained within this particular release are comprised of conventional survey (i.e. total station and GNSS) and ground based lidar data.

  13. n

    Utah Geological Survey LiDAR - Dataset - CKAN

    • nationaldataplatform.org
    Updated Feb 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Utah Geological Survey LiDAR - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/utah-geological-survey-lidar
    Explore at:
    Dataset updated
    Feb 28, 2024
    Area covered
    Utah
    Description

    The Utah Geological Survey (UGS) as part of its mission to provide timely scientific information about Utah's geologic environment, resources, and hazards, acquires Lidar data with its partners in support of various geologic mapping and research projects. In 2011, the UGS and partners acquired approximately 4927 square kilometers of 1 meter Lidar data over the Cedar/Parowan Valley, Great Salt Lake shoreline/wetlands, Hurricane fault zone, Lowry Water, Ogden Valley, and North Ogden areas of Utah. The datasets include raw LAS, LAS, DEM, DSM, and metadata (includes XML metadata, project tile indexes, and area completion reports) files. The datasets acquired by the UGS and its partners are in the public domain and can be freely distributed with proper credit to the UGS and its partners. These datasets were funded by the Utah Geological Survey, with the exception of the Great Salt Lake area, which was funded by the U.S. Environmental Protection Agency (grant no. CD-96811101-0) and the UGS, and the North Ogden area, which was funded by the Utah Division of Emergency Management, Floodplain Management Program.

  14. d

    Loma Mar, CA: Lidar survey of the San Jose Mountains

    • datasets.ai
    • portal.opentopography.org
    • +5more
    0
    Updated Sep 18, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OpenTopography (2012). Loma Mar, CA: Lidar survey of the San Jose Mountains [Dataset]. https://datasets.ai/datasets/loma-mar-ca-lidar-survey-of-the-san-jose-mountains
    Explore at:
    0Available download formats
    Dataset updated
    Sep 18, 2012
    Dataset authored and provided by
    OpenTopography
    Area covered
    Loma Mar, California
    Description

    NCALM Seed. PI: Jill Marshall, San Francisco State University. The project area covers portions of the San Jose Mountains and consists of two polygons totaling approximately 50 square kilometers. The area of interest is located 30 kilometers west of San Jose, CA and was flown on Wednesday and Thursday, December 6-7, 2006.

  15. D

    Mapping Lidar Laser Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Mapping Lidar Laser Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/mapping-lidar-laser-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Mapping Lidar Laser Market Outlook



    The global market size for Mapping Lidar Laser in 2023 is estimated to be around USD 2.3 billion, and it is projected to reach approximately USD 7.1 billion by 2032, growing at a CAGR of 13.2% during the forecast period. This growth trajectory is driven by the expanding adoption of Lidar technology in various industries such as construction, transportation, and environmental monitoring, as well as technological advancements and the increasing need for precise geospatial measurements.



    One of the primary growth factors in the Mapping Lidar Laser market is the rise in infrastructure development activities globally. Governments and private sectors are heavily investing in smart city projects, which require advanced mapping technologies for urban planning and development. Lidar technology, with its high accuracy and rapid data collection capabilities, is becoming indispensable for creating detailed 3D maps and models. Additionally, the increasing demand for autonomous vehicles, which rely heavily on Lidar systems for navigation and safety, is further propelling the market growth.



    Furthermore, the need for efficient corridor mapping and aerial surveying has been driving the market. Lidar technology offers precise topographical data, which is crucial for planning transportation routes, such as highways and railway lines. This technology is also being extensively adopted in the forestry and agriculture sectors for vegetation analysis and land use planning. The ability of Lidar to penetrate through foliage and provide detailed ground surface models makes it a valuable tool in these industries.



    Technological advancements in Lidar systems are also contributing significantly to market growth. The development of compact, lightweight, and cost-effective Lidar sensors has made the technology more accessible to a broader range of applications. Innovations such as solid-state Lidar and advancements in data processing algorithms have improved the performance and reduced the costs of Lidar systems, making them an attractive option for various industries. This continuous evolution in technology is expected to sustain the market's growth momentum over the forecast period.



    Light Detection and Ranging Devices, commonly known as Lidar, have revolutionized the way we perceive and interact with our environment. These devices utilize laser pulses to measure distances with high precision, creating detailed three-dimensional maps of the surroundings. The ability of Lidar to provide accurate and real-time data has made it an essential tool in various industries, from urban planning to autonomous vehicles. As the technology continues to advance, the integration of Lidar into everyday applications is becoming more seamless, enhancing our ability to monitor and manage complex systems. The growing demand for such devices underscores their critical role in driving innovation and efficiency across multiple sectors.



    Regionally, North America is expected to dominate the Mapping Lidar Laser market due to the early adoption of advanced technologies and significant investments in infrastructure projects. The presence of major Lidar system manufacturers and the increasing use of Lidar in autonomous vehicles and environmental monitoring are driving the market in this region. Meanwhile, the Asia Pacific region is projected to witness the highest growth rate due to rapid urbanization, infrastructure development, and the adoption of smart city initiatives by countries such as China and India.



    Component Analysis



    The Mapping Lidar Laser market by component is segmented into hardware, software, and services. The hardware segment includes Lidar sensors, GPS systems, and IMUs (Inertial Measurement Units). This segment currently holds the largest market share due to the essential role of hardware components in Lidar systems. Continuous innovations in sensor technology, such as the development of solid-state Lidar, are enhancing the performance and reducing the costs of these systems, thereby driving market growth.



    Software components are also crucial for the efficient processing and analysis of Lidar data. This segment is expected to grow significantly due to the increasing need for sophisticated data processing algorithms and visualization tools. Software advancements are enabling more accurate and faster data interpretation, which is essential for applications like urban planning and environme

  16. A

    Central South Dakota Airborne Lidar Validation - Field Survey Data

    • data.amerigeoss.org
    • data.usgs.gov
    • +2more
    xml
    Updated Aug 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). Central South Dakota Airborne Lidar Validation - Field Survey Data [Dataset]. https://data.amerigeoss.org/dataset/central-south-dakota-airborne-lidar-validation-field-survey-data-625e2
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Aug 24, 2022
    Dataset provided by
    United States
    Area covered
    Central City
    Description

    U.S. Geological Survey (USGS) scientists conducted field data collection efforts during the time periods of April 25 - 26, 2017, October 24 - 28, 2017, and July 25 - 26, 2018, using a combination of surveying technologies to map and validate topography, structures, and other features at five sites in central South Dakota. The five sites included the Chamberlain Explorers Athletic Complex and the Chamberlain High School in Chamberlain, SD, Hanson Lake State Public Shooting Area near Corsica, SD, the State Capital Grounds in Pierre, SD, and Platte Creek State Recreation Area near Platte, SD. The work was initiated as an effort to evaluate airborne Geiger-Mode and Single Photon light detection and ranging (lidar) data that were collected over parts of central South Dakota. Both Single Photon and Geiger-Mode lidar offer the promise of being able to map areas at high altitudes, thus requiring less time than traditional airborne lidar collections, while acquiring higher point densities. Real Time Kinematic Global Navigational Satellite System (RTK-GNSS), total station, and ground-based lidar (GBL) data were collected to evaluate data collected by the Geiger-Mode and Single Photon systems.

  17. 2018 - 2020 NOAA USGS Lidar: Hawaii, HI

    • fisheries.noaa.gov
    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • +1more
    las/laz - laser
    Updated Dec 29, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office for Coastal Management (2020). 2018 - 2020 NOAA USGS Lidar: Hawaii, HI [Dataset]. https://www.fisheries.noaa.gov/inport/item/68082
    Explore at:
    las/laz - laserAvailable download formats
    Dataset updated
    Dec 29, 2020
    Dataset provided by
    Office for Coastal Management
    Time period covered
    Jan 30, 2018 - Jan 6, 2020
    Area covered
    Description

    Product: Processed, classified lidar point cloud data tiles in LAS 1.4 format. Geographic Extent: Approximately 4,028 square miles encompassing the Big Island of Hawaii. Dataset Description: The HI Hawaii Island Lidar NOAA 2017 B17 lidar project called for the planning, acquisition, processing, and production of derivative products of lidar data to be collected at a nominal pulse spacing (NPS...

  18. 2012 NRCS-USGS Tupelo, MS Lidar Survey

    • fisheries.noaa.gov
    • datadiscoverystudio.org
    html
    Updated Sep 6, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    OCM Partners (2013). 2012 NRCS-USGS Tupelo, MS Lidar Survey [Dataset]. https://www.fisheries.noaa.gov/inport/item/49823
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 6, 2013
    Dataset provided by
    OCM Partners, LLC
    Time period covered
    Feb 7, 2012
    Area covered
    Description

    LiDAR data is a remotely sensed high resolution elevation data collected by an airborne platform. The LiDAR sensor uses a combination of laser range finding, GPS positioning, and inertial measurement technologies. The LiDAR systems collect data point clouds that are used to produce highly detailed Digital Elevation Models (DEMs) of the earth's terrain, man-made structures and vegetation. The ta...

  19. 2021 NI 3D Coastal Survey - Topographic LiDAR - LiDAR Point Cloud

    • opendata-daerani.hub.arcgis.com
    Updated Mar 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS Online | DAERA (2023). 2021 NI 3D Coastal Survey - Topographic LiDAR - LiDAR Point Cloud [Dataset]. https://opendata-daerani.hub.arcgis.com/maps/a8cc7cc1603443139e41b9c6ef5b67f1
    Explore at:
    Dataset updated
    Mar 27, 2023
    Authors
    ArcGIS Online | DAERA
    Area covered
    Description

    In 2021, a complete airborne LiDAR survey of the Northern Ireland coastline was captured as part of the NI 3D Coastal Survey, providing precise and accurate data of the current coastal morphology.The survey included the intertidal area and extended approximately 200 meters landward of the high-water mark.This is the LiDAR Point Cloud created from the LiDAR data.

  20. A

    Lower Rio Puerco 2005 aerial LiDAR survey data

    • data.amerigeoss.org
    • data.usgs.gov
    • +1more
    xml
    Updated Aug 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    United States (2022). Lower Rio Puerco 2005 aerial LiDAR survey data [Dataset]. https://data.amerigeoss.org/sk/dataset/activity/lower-rio-puerco-2005-aerial-lidar-survey-data-f7a25
    Explore at:
    xmlAvailable download formats
    Dataset updated
    Aug 24, 2022
    Dataset provided by
    United States
    Area covered
    Rio Puerco
    Description

    An aerial LiDAR survey of the lower Rio Puerco was conducted in April and July 2005 by Spectrum Mapping, LLC, under contract with the USGS (Contract #14040050). The surveyed reach extends from the NM Highway 6 crossing 55 km downvalley to the old Highway 85 bridge near the USGS streamgage near Bernardo, NM. Survey procedures, equipment and products are described in the Rio Puerco Project Report (Spectrum Mapping, LLC, Aug. 1, 2005), provided with this data set. The survey data include breaklines (shapefiles) used to process the elevation data, bare-earth Digital Terrain Models (DTMs) with 2-m cell size in the ArcGrid format, LAS-formatted files, and the original random xyz data. Results from analyses using these data were published in the following articles: Vincent, K.R., Friedman, J.M., and Griffin, E.R., 2009, Erosional consequence of saltcedar control, Environmental Management, 44, 218-227. doi: 10.1007/s00267-009-9314-8 Griffin, E.R., Smith, J.D., Friedman, J.M., and Vincent, K.R., 2010, Progression of streambank erosion during a large flood, Rio Puerco arroyo, New Mexico, Proceedings of the 2nd Joint Federal Interagency Conference, Las Vegas, NV, June 27 – July 1, 2010, 12 p. Perignon, M.C., Tucker, G.E., Griffin, E.R., and Friedman, J.M., 2013, Effects of riparian vegetation on topographic change during a large flood event, Rio Puerco, New Mexico, USA, Journal of Geophysical Research: Earth Surface, 118, 1193-1209. doi: 10.1002/jgrf.20073 Griffin, E.R., Perignon, M.C., Friedman, J.M., and Tucker, G.E., 2014, Effects of woody vegetation on overbank sand transport during a large flood, Rio Puerco, New Mexico, Geomorphology, 207, 30-50. doi: 10.1016/j.geomorph.2013.10.025 Friedman, J.M., Vincent, K.R., Griffin, E.R., Scott, M.L., Shafroth, P.B., and Auble, G.T., 2015, Processes of arroyo filling in northern New Mexico, USA, GSA Bulletin, 127(3/4), 621-640. doi: 10.1130/B31046.1

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
OpenTopography (2023). Hawaii Big Island Lidar Survey [Dataset]. https://dataone.org/datasets/sha256%3A1ca4440808e30895b839c5b7c26206a482913dfcd2d8f1ececb6d24e1c8b80f1

Hawaii Big Island Lidar Survey

Explore at:
3 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Oct 18, 2023
Dataset provided by
OpenTopography
Time period covered
Jun 21, 2009 - Jun 27, 2009
Area covered
Description

This survey covers portions of Hawaii Volcano National Park, Upper Waiakea Forest Reserve, and Mauna Loa Forest Reserve on the Big Island of Hawaii. The survey area covers 299 square kilometers. These data were collected by the National Center for Airborne Laser Mapping (NCALM) on behalf of Steve Martel (University of Hawaii), Scott Rowland (University of Hawaii), Adam Soule (Woods Hole Oceanographic Institution) and Kathy Cashman (U. Oregon / Bristol U.).


Publications associated with this dataset can be found at NCALM's Data Tracking Center

Search
Clear search
Close search
Google apps
Main menu