Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LiDAR (Light Detection and Ranging) is a remote sensing technology, i.e. the technology is not in direct contact with what is being measured. From satellite, aeroplane or helicopter, a LiDAR system sends a light pulse to the ground. This pulse hits the ground and returns back to a sensor on the system. The time is recorded to measure how long it takes for this light to return. Knowing this time measurement scientists are able to create topography maps. LiDAR data are collected as points (X,Y,Z (x & y coordinates) and z (height)). The data is then converted into gridded (GeoTIFF) data to create a Digital Terrain Model and Digital Surface Model of the earth. An ordnance datum (OD) is a vertical datum used as the basis for deriving heights on maps. This data is referenced to the Malin Head Vertical Datum which is the mean sea level of the tide gauge at Malin Head, County Donegal. It was adopted as the national datum in 1970 from readings taken between 1960 and 1969 and all heights on national grid maps are measured above this datum. This LiDAR data was collected between 2015 and 2021. Digital Terrain Models (DTM) are bare earth models (no trees or buildings) of the Earth’s surface. Digital Surface Models (DSM) are earth models in its current state. For example, a DSM includes elevations from buildings, tree canopy, electrical power lines and other features. This data was collected by the Geological Survey Ireland, the Department of Culture, Heritage and the Gaeltacht, the Discovery Programme, the Heritage Council, Transport Infrastructure Ireland, New York University, the Office of Public Works and Westmeath County Council. All data formats are provided as GeoTIFF rasters but are at different resolutions. Data resolution varies depending on survey requirements. Resolutions for each organisation are as follows: GSI – 1m DCHG/DP/HC - 0.13m, 0.14m, 1m NY – 1m TII – 2m OPW – 2m WMCC - 0.25m Both a DTM and DSM are raster data. Raster data is another name for gridded data. Raster data stores information in pixels (grid cells). Each raster grid makes up a matrix of cells (or pixels) organised into rows and columns. The grid cell size varies depending on the organisation that collected it. GSI data has a grid cell size of 1 meter by 1 meter. This means that each cell (pixel) represents an area of 1 meter squared.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LiDAR (Light Detection and Ranging) is a remote sensing technology, i.e. the technology is not in direct contact with what is being measured. From satellite, aeroplane or helicopter, a LiDAR system sends a light pulse to the ground. This pulse hits the ground and returns back to a sensor on the system. The time is recorded to measure how long it takes for this light to return.Knowing this time measurement scientists are able to create topography maps.LiDAR data are collected as points (X,Y,Z (x & y coordinates) and z (height)). The data is then converted into gridded (GeoTIFF) data to create a Digital Terrain Model and Digital Surface Model of the earth. An ordnance datum (OD) is a vertical datum used as the basis for deriving heights on maps. This data is referenced to the Malin Head Vertical Datum which is the mean sea level of the tide gauge at Malin Head, County Donegal. It was adopted as the national datum in 1970 from readings taken between 1960 and 1969 and all heights on national grid maps are measured above this datum. Digital Terrain Models (DTM) are bare earth models (no trees or buildings) of the Earth’s surface.Digital Surface Models (DSM) are earth models in its current state. For example, a DSM includes elevations from buildings, tree canopy, electrical power lines and other features.Hillshading is a method which gives a 3D appearance to the terrain. It shows the shape of hills and mountains using shading (levels of grey) on a map, by the use of graded shadows that would be cast by high ground if light was shining from a chosen direction.This data was collected by several organisations. All raster data formats are provided as GeoTIFF rasters. Raster data is another name for gridded data. Raster data stores information in pixels (grid cells). Each raster grid makes up a matrix of cells (or pixels) organised into rows and columns. The data is available in different resolutions. For example some data has a grid cell size of 2 meter by 2 meter. This means that each cell (pixel) represents an area of 2 meter squared.This viewer provides access to download processed LiDAR data in raster format.This data was collected by the Geological Survey Ireland (GSI), the Department of Culture, Heritage and the Gaeltacht (DCHG), the Discovery Programme (DP), the Heritage Council (HC), Transport Infrastructure Ireland (TII), New York University (NYU), the Office of Public Works (OPW) and Westmeath County Council (WMCC). All data formats are provided as GeoTIFF rasters but are at different resolutions. Data resolution varies depending on survey requirements. Resolutions for each organisation are as follows:GSI – 1mDCHG/DP/HC - 0.13m, 0.14m, 1mNY – 1mTII – 2mOPW – 2mWMCC - 0.25m
LiDAR (Light Detection and Ranging) is a remote sensing technology, i.e. the technology is not in direct contact with what is being measured. From satellite, aeroplane or helicopter, a LiDAR system sends a light pulse to the ground. This pulse hits the ground and returns back to a sensor on the system. The time is recorded to measure how long it takes for this light to return. Knowing this time measurement scientists are able to create topography maps.
LiDAR data are collected as points (X,Y,Z (x & y coordinates) and z (height)). The data is then converted into gridded (GeoTIFF) data to create a Digital Terrain Model and Digital Surface Model of the earth. This LiDAR data was collected between 2015 and 2020.
Digital Terrain Models (DTM) are bare earth models (no trees or buildings) of the Earth’s surface.
Digital Surface Models (DSM) are earth models in its current state. For example, a DSM includes elevations from buildings, tree canopy, electrical power lines and other features.
This data was collected by the Geological Survey Ireland, the Department of Culture, Heritage and the Gaeltacht, the Discovery Programme, the Heritage Council, Transport Infrastructure Ireland, New York University, the Office of Public Works and Westmeath County Council. All data formats are provided as GeoTIFF rasters but are at different resolutions. Data resolution varies depending on survey requirements. Resolutions for each organisation are as follows:
GSI – 1m
DCHG/DP/HC - 0.13m, 0.14m, 1m
NY – 1m
TII – 2m
OPW – 2m
WMCC - 0.25m
Both a DTM and DSM are raster data. Raster data is another name for gridded data. Raster data stores information in pixels (grid cells). Each raster grid makes up a matrix of cells (or pixels) organised into rows and columns. The grid cell size varies depending on the organisation that collected it. GSI data has a grid cell size of 1 meter by 1 meter. This means that each cell (pixel) represents an area of 1 meter squared.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LiDAR (Light Detection and Ranging) is a remote sensing technology, i.e. the technology is not in direct contact with what is being measured. From satellite, aeroplane or helicopter, a LiDAR system sends a light pulse to the ground. This pulse hits the ground and returns back to a sensor on the system. The time is recorded to measure how long it takes for this light to return. Knowing this time measurement scientists are able to create topography maps.LiDAR data are collected as points (X,Y,Z (x & y coordinates) and z (height)). The data is then converted into gridded (GeoTIFF) data to create a Digital Terrain Model and Digital Surface Model of the earth. This LiDAR data was collected between June and October 2018.This data shows the areas in Ireland for which you can download LiDAR data and contains links to download the data. This is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The LiDAR coverage is shown as polygons. Each polygon is 2000m by 2000m in size and holds information on: the location, county, data provider, owner, licence, published date, capture date, surveyor, RMS error, resolution and a link to download the LiDAR raster data in 2000m by 2000m sections.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LiDAR (Light Detection and Ranging) is a remote sensing technology, i.e. the technology is not in direct contact with what is being measured. From satellite, aeroplane or helicopter, a LiDAR system sends a light pulse to the ground. This pulse hits the ground and returns back to a sensor on the system. The time is recorded to measure how long it takes for this light to return.Knowing this time measurement scientists are able to create topography maps.LiDAR data are collected as points (X,Y,Z (x & y coordinates) and z (height)). The data is then converted into gridded (GeoTIFF) data to create a Digital Terrain Model and Digital Surface Model of the earth. This LiDAR data was collected between Oct.2006 and Jan. 2007. This data shows the areas in Ireland for which you can download LiDAR data and contains links to download the data. This is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The LiDAR coverage is shown as polygons. Each polygon is 2000m by 2000m in size and holds information on: the location, data provider, owner, licence, published date, capture date, surveyor, RMS error, resolution and a link to download the LiDAR raster data in 2000m by 2000m sections.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LiDAR (Light Detection and Ranging) is a remote sensing technology, i.e. the technology is not in direct contact with what is being measured. From satellite, aeroplane or helicopter, a LiDAR system sends a light pulse to the ground. This pulse hits the ground and returns back to a sensor on the system. The time is recorded to measure how long it takes for this light to return.Knowing this time measurement scientists are able to create topography maps.LiDAR data are collected as points (X,Y,Z (x & y coordinates) and z (height)). The data is then converted into gridded (GeoTIFF) data to create a Digital Terrain Model and Digital Surface Model of the earth. This LiDAR data was collected between Oct.2006 and Jan. 2007. This data shows the areas in Ireland for which you can download LiDAR data and contains links to download the data. This is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The LiDAR coverage is shown as polygons. Each polygon is 2000m by 2000m in size and holds information on: the location, data provider, owner, licence, published date, capture date, surveyor, RMS error, resolution and a link to download the LiDAR raster data in 2000m by 2000m sections.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Orthophotography is aerial imagery that has been geometrically corrected. An orthophoto is an image that is free of distortion, and which is characterised by a uniform scale over its entire surface - it has been ortho-rectified.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The Historic Environment Division (HED) acquired LIDAR over a six year period from 2008 to 2014 to assist with the interpretation and protection of archaeological landscapes in Northern Ireland. A total area of approximately 130km2 was surveyed during this period across 39 sites. The data is provided “as is” under an Open Government Licence and is not supported. LIDAR Airborne LIDAR (Light Detection and Ranging), also known as Airborne Laser Scanning (ALS) is a landscape survey technique that uses a laser beam transmitted in rapid pulses from an aircraft in order to accurately measure the distance between the aircraft and the ground. The laser pulses allow measurements to be taken in the order of 100,000 times per second with a vertical accuracy of 0.5cm which produces a dense cloud of points which can then be interpolated to produce an accurate three dimensional model of the landscape below. In this instance surveys are supplied as either digital surface model (DSM) or as a digital terrain model (DTM). For the DTM, buildings and vegetation have been removed and only ground returns have used to produce the model. The technique can be particularly valuable for archaeological survey as it allows large areas to be surveyed accurately enough for the subtle topographic traces of archaeological features to be identified. The data below was collected in 2014, the attached PDF coverage map shows the areas surveyed in that year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LiDAR (Light Detection and Ranging) is a remote sensing technology, i.e. the technology is not in direct contact with what is being measured. From satellite, aeroplane or helicopter, a LiDAR system sends a light pulse to the ground. This pulse hits the ground and returns back to a sensor on the system. The time is recorded to measure how long it takes for this light to return. Knowing this time measurement scientists are able to create topography maps.LiDAR data are collected as points (X,Y,Z (x & y coordinates) and z (height)). The data is then converted into gridded (GeoTIFF) data to create a Digital Terrain Model and Digital Surface Model of the earth. This LiDAR data was collected between Jan. 2007 and Oct. 2017. This data shows the areas in Ireland for which you can download LiDAR data and contains links to download the data. This is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The LiDAR coverage is shown as polygons. Each polygon is 2000m by 2000m in size and holds information on: the location, county, data provider, owner, licence, published date, capture date, surveyor, RMS error, resolution and a link to download the LiDAR raster data in 2000m by 2000m sections.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Terrain (DTM) & Surface (DSM) elevation models of river basins derived from airborne LIDAR survey systems. A Digital Terrain Model (DTM) is a digital file consisting of a grid of regularly spaced points of known height which, when used with other digital data such as maps or orthophotographs, can provide a 3D image of the land surface. This data is typically provided in tiles of 1km x 1km, each containing elevations in a 1m x 1m grid. Tiles are grouped and can be downloaded by area as shown on the index ‘River Basin LIDAR-Coverage Map’. Data acquired in 2009 & 2010 also contains Point Cloud files, a closely spaced (0.2m) irregular grid of elevations from which the 1m x1m grids were derived. By download or use of this dataset you agree to abide by the Open Government Data Licence. This data is not a supported LPS product, supporting documentation has been provided to assist / offer guidance on the data itself.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The LIDAR Composite DTM (Digital Terrain Model) is a raster elevation model covering ~99% of England at 1m spatial resolution. The DTM (Digital Terrain Model) is produced from the last or only laser pulse returned to the sensor. We remove surface objects from the Digital Surface Model (DSM), using bespoke algorithms and manual editing of the data, to produce a terrain model of just the surface.
Produced by the Environment Agency in 2022, the DTM is derived from a combination of our Time Stamped archive and National LIDAR Programme surveys, which have been merged and re-sampled to give the best possible coverage. Where repeat surveys have been undertaken the newest, best resolution data is used. Where data was resampled a bilinear interpolation was used before being merged.
The 2022 LIDAR Composite contains surveys undertaken between 6th June 2000 and 2nd April 2022. Please refer to the metadata index catalgoues which show for any location which survey was used in the production of the LIDAR composite.
The data is available to download as GeoTiff rasters in 5km tiles aligned to the OS National grid. The data is presented in metres, referenced to Ordinance Survey Newlyn and using the OSTN’15 transformation method. All individual LIDAR surveys going into the production of the composite had a vertical accuracy of +/-15cm RMSE.
LiDAR (Light Detection and range) on kaukokartoitustekniikka, eli tekniikka ei ole suorassa kosketuksessa siihen, mitä mitataan. Satelliitista, lentokoneesta tai helikopterista LIDAR-järjestelmä lähettää kevyen pulssin maahan. Tämä pulssi osuu maahan ja palaa takaisin järjestelmän anturiin. Aika kirjataan mittaamaan, kuinka kauan tämän valon palaaminen kestää. Tämän ajan mittaustieteilijät osaavat luoda topografiakarttoja.
LiDAR-tiedot kerätään pisteinä (X,Y,Z (x & y koordinaatit) ja z (korkeus)). Tämän jälkeen data muunnetaan GeoTIFF-dataksi, jolla luodaan maan digitaalinen maastomalli ja digitaalinen pintamalli. Nämä LIDAR-tiedot kerättiin vuosina 2015–2020.
Digitaaliset maastomallit (DTM) ovat maan pinnan paljaita maamalleja (ei puita tai rakennuksia).
Digitaaliset pintamallit (DSM) ovat maamalleja nykytilassaan. Esimerkiksi DSM sisältää korotuksia rakennuksista, puukatosta, sähköjohtoista ja muista ominaisuuksista.
Nämä tiedot keräsivät Geological Survey Ireland, Department of Culture, Heritage and the Gaeltacht, Discovery Programme, Heritage Council, Transport Infrastructure Ireland, New York University, Office of Public Works ja Westmeath County Council. Kaikki tietomuodot toimitetaan GeoTIFF-rastereista, mutta ne ovat eri resoluutioilla. Tietojen resoluutio vaihtelee kyselyvaatimusten mukaan. Kutakin organisaatiota koskevat päätöslauselmat ovat seuraavat:
GSI – 1 m
DCHG/DP/HC – 0,13 m, 0,14 m, 1 m
NY – 1 m
TII – 2 m
OPW – 2 m
WMCC – 0,25 m
Booth a DTM ja DSM ovat rasteritietoja. Rasteridata on toinen nimi ruudustetulle tiedolle. Rasteridata tallentaa tietoja Pixelsiin. Jokainen rasteriruudukko muodostaa matriisin soluista (tai pikseleistä), jotka on järjestetty riveihin ja sarakkeisiin. Ruudukon koko vaihtelee sen kerääneen organisaation mukaan. GSI-datan ruudukkosolukoko on 1 metriä 1 metri. Tämä tarkoittaa, että jokainen solu (pikseli) edustaa 1 metrin neliön pinta-alaa.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Fugro were commissioned to undertake a post-storm LiDAR survey of the soft sedimentary areas along the north coast of Northern Ireland in March 2022 This survey was to cover the following areas: Curran Strand, Portrush East Strand, Portstewart Strand and Downhill Beach to Magilligan.This project was commissioned following the successive storm events during February and March 2022 (Storm Dudley, Storm Eunice and Storm Franklin) which did considerable damage to the sandy beaches along the North Coast. The objective of this survey was to ascertain change which has occurred along these soft sediment coastlines at the north coast since the baseline survey, which was acquired in 2021.Data was provided in the same format as the topographic LiDAR data collected in the Northern Ireland 3-Dimensional Coastal Survey to allow changes between these two datasets to be ascertained.This is the Digital Terrain Model created from the post-storm LiDAR data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LiDAR (Light Detection and Ranging) is a remote sensing technology, i.e. the technology is not in direct contact with what is being measured. From satellite, aeroplane or helicopter, a LiDAR system sends a light pulse to the ground. This pulse hits the ground and returns back to a sensor on the system. The time is recorded to measure how long it takes for this light to return. Knowing this time measurement scientists are able to create topography maps.LiDAR data are collected as points (X,Y,Z (x & y coordinates) and z (height)). The data is then converted into gridded (GeoTIFF) data to create a Digital Terrain Model and Digital Surface Model of the earth. This LiDAR data was collected between June and October 2018.An ordnance datum (OD) is a vertical datum used as the basis for deriving heights on maps. This data is referenced to the Malin Head Vertical Datum which is the mean sea level of the tide gauge at Malin Head, County Donegal. It was adopted as the national datum in 1970 from readings taken between 1960 and 1969 and all heights on national grid maps are measured above this datum. Digital Terrain Models (DTM) are bare earth models (no trees or buildings) of the Earth’s surface.Digital Surface Models (DSM) are earth models in its current state. For example, a DSM includes elevations from buildings, tree canopy, electrical power lines and other features.Hillshading is a method which gives a 3D appearance to the terrain. It shows the shape of hills and mountains using shading (levels of grey) on a map, by the use of graded shadows that would be cast by high ground if light was shining from a chosen direction.This data shows the hillshade of the DTM.This data was collected by BlueSky and GeoAeroSpace and provided to the Geological Survey Ireland. All data formats are provided as GeoTIFF rasters but are at different resolutions. Data resolution is 1m.Both a DTM and DSM are raster data. Raster data is another name for gridded data. Raster data stores information in pixels (grid cells). Each raster grid makes up a matrix of cells (or pixels) organised into rows and columns. This data has a grid cell size of 1 meter by 1 meter. This means that each cell (pixel) represents an area of 1 meter squared.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LiDAR (Light Detection and Ranging) is a remote sensing technology, i.e. the technology is not in direct contact with what is being measured. From satellite, aeroplane or helicopter, a LiDAR system sends a light pulse to the ground. This pulse hits the ground and returns back to a sensor on the system. The time is recorded to measure how long it takes for this light to return. Knowing this time measurement scientists are able to create topography maps.LiDAR data are collected as points (X,Y,Z (x & y coordinates) and z (height)). The data is then converted into gridded (GeoTIFF) data to create a Digital Terrain Model and Digital Surface Model of the earth. This LiDAR data was collected in 2011.An ordnance datum (OD) is a vertical datum used as the basis for deriving heights on maps. This data is referenced to the Malin Head Vertical Datum which is the mean sea level of the tide gauge at Malin Head, County Donegal. It was adopted as the national datum in 1970 from readings taken between 1960 and 1969 and all heights on national grid maps are measured above this datum. Digital Terrain Models (DTM) are bare earth models (no trees or buildings) of the Earth’s surface.Digital Surface Models (DSM) are earth models in its current state. For example, a DSM includes elevations from buildings, tree canopy, electrical power lines and other features.Hillshading is a method which gives a 3D appearance to the terrain. It shows the shape of hills and mountains using shading (levels of grey) on a map, by the use of graded shadows that would be cast by high ground if light was shining from a chosen direction.This data shows the hillshade of the DSM.This data was collected by the Office of Public Works. All data formats are provided as GeoTIFF rasters. Raster data is another name for gridded data. Raster data stores information in pixels (grid cells). Each raster grid makes up a matrix of cells (or pixels) organised into rows and columns. OPW data has a grid cell size of 2 meter by 2 meter. This means that each cell (pixel) represents an area of 2 meter squared.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Fugro were commissioned to undertake a post-storm LiDAR survey of the soft sedimentary areas along the north coast of Northern Ireland in March 2022 This survey was to cover the following areas: Curran Strand, Portrush East Strand, Portstewart Strand and Downhill Beach to Magilligan.
This project was commissioned following the successive storm events during February and March 2022 (Storm Dudley, Storm Eunice and Storm Franklin) which caused considerable damage to the sandy beaches along the North Coast. The objective of this survey was to ascertain change which has occurred along these soft sediment coastlines at the north coast since the baseline survey, which was acquired in 2021.
Data was provided in the same format as the topographic LiDAR data collected in the Northern Ireland 3-Dimensional Coastal Survey to allow changes between these two datasets to be ascertained.
This is the Natural Colour Orthophotography dataset that was captured as part of the survey.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LiDAR (Light Detection and Ranging) is a remote sensing technology, i.e. the technology is not in direct contact with what is being measured. From satellite, aeroplane or helicopter, a LiDAR system sends a light pulse to the ground. This pulse hits the ground and returns back to a sensor on the system. The time is recorded to measure how long it takes for this light to return.Knowing this time measurement scientists are able to create topography maps.LiDAR data are collected as points (X,Y,Z (x & y coordinates) and z (height)). The data is then converted into gridded (GeoTIFF) data to create a Digital Terrain Model and Digital Surface Model of the earth. This LiDAR data was collected between May 2010 and May 2011.This data shows the areas in Ireland for which you can download LiDAR data and contains links to download the data. This is a vector dataset. Vector data portray the world using points, lines, and polygons (areas).The LiDAR coverage is shown as polygons. Each polygon is 2000m by 2000m in size and holds information on: the location, data provider, owner, licence, published date, capture date, surveyor, RMS error, resolution and a link to download the LiDAR raster data in 2000m by 2000m sections.
🇬🇧 영국 English Fugro were commissioned to undertake a post-storm LiDAR survey of the soft sedimentary areas along the north coast of Northern Ireland in March 2022 This survey was to cover the following areas: Curran Strand, Portrush East Strand, Portstewart Strand and Downhill Beach to Magilligan.This project was commissioned following the successive storm events during February and March 2022 (Storm Dudley, Storm Eunice and Storm Franklin) which did considerable damage to the sandy beaches along the North Coast. The objective of this survey was to ascertain change which has occurred along these soft sediment coastlines at the north coast since the baseline survey, which was acquired in 2021.Data was provided in the same format as the topographic LiDAR data collected in the Northern Ireland 3-Dimensional Coastal Survey to allow changes between these two datasets to be ascertained.This is the Digital Terrain Model created from the post-storm LiDAR data.
https://artefacts.ceda.ac.uk/licences/specific_licences/ukmo_agreement.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ukmo_agreement.pdf
https://artefacts.ceda.ac.uk/licences/specific_licences/ukmo_agreement_gov.pdfhttps://artefacts.ceda.ac.uk/licences/specific_licences/ukmo_agreement_gov.pdf
Range corrected lidar signal and volume depolarisation ratio data from the Met Office's Raymetrics LR111-D300 lidar located at the Met Office observations enclosure near Portglenone, County Antrim, Northern Ireland. Data available from June 2018 onwards, though the instrument is only operated sporadically (see below for further details).
This instrument is one of a suite of 10 Raman lidars deployed by the Met Office around the UK to complement a wider network of ceilometers within the "LIDARNET" upper air monitoring network. Returns from these instruments form a range of products for use in forecasting and hazard detection. The backscatter profiles can allow detection of aerosol species such as volcanic ash where suitable instrumentation is deployed.
The primary aim of the Raman lidar network is the detection and quantification of volcanic ash aerosols during a volcanic event, and the network is only test fired only for a few hours each week. Outside of these times the lidars may be fired if there is a mineral dust outbreak or other such aerosol event of interest. The lidars will not fire if any precipitation is detected.
Raman channel data are not presently available from this instrument in the CEDA archives.
🇬🇧 영국 English Fugro were commissioned to undertake a post storm LiDAR survey of the soft sedimentary areas along the north coast of Northern Ireland in March 2022. This survey was to cover the following areas: Curran Strand, Portrush East Strand, Portstewart Strand and Downhill Beach to Magilligan.This project was commissioned following the successive storm events during February and March 2022 (Storm Dudley, Storm Eunice and Storm Franklin) which did considerable damage to the sandy beaches along the North Coast. The objective of this survey was to ascertain change which has occurred along these soft sediment coastlines at the north coast since the baseline survey, which was acquired in 2021.Data was provided in the same format as the topographic LiDAR data collected in the Northern Ireland 3-Dimensional Coastal Survey to allow changes between these two datasets to be ascertained.Later in the year Fugro were commissioned to undertake a second LiDAR survey of the north coast from White Rocks to Magilligan in September 2022. The aim of this repeat survey was to ascertain the levels of recovery along the soft sediment coastlines since March 2022.As with the initial survey undertaken by Fugro this topographic LiDAR survey collected data from the intertidal area to 10m inland for the same soft sediment areas along the north coast, with data being acquired at 0.5m resolution. The survey was quite restrictive when it could be flown: it had to be 2 hours either side of Low Water, during clear conditions below 6000ft, sun had to be at a suitable angle to capture imagery and as photography was being captured the survey could only be flown during day light hours. All data collected was to be directly comparable with the data collected in the initial post storm Survey undertaken, as this would help us to understand and accurately quantify how our soft, sedimentary coastlines respond and recover from extreme storm events.This is the Digital Surface Model that was collected as part of the post-storm recovery survey.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
LiDAR (Light Detection and Ranging) is a remote sensing technology, i.e. the technology is not in direct contact with what is being measured. From satellite, aeroplane or helicopter, a LiDAR system sends a light pulse to the ground. This pulse hits the ground and returns back to a sensor on the system. The time is recorded to measure how long it takes for this light to return. Knowing this time measurement scientists are able to create topography maps. LiDAR data are collected as points (X,Y,Z (x & y coordinates) and z (height)). The data is then converted into gridded (GeoTIFF) data to create a Digital Terrain Model and Digital Surface Model of the earth. An ordnance datum (OD) is a vertical datum used as the basis for deriving heights on maps. This data is referenced to the Malin Head Vertical Datum which is the mean sea level of the tide gauge at Malin Head, County Donegal. It was adopted as the national datum in 1970 from readings taken between 1960 and 1969 and all heights on national grid maps are measured above this datum. This LiDAR data was collected between 2015 and 2021. Digital Terrain Models (DTM) are bare earth models (no trees or buildings) of the Earth’s surface. Digital Surface Models (DSM) are earth models in its current state. For example, a DSM includes elevations from buildings, tree canopy, electrical power lines and other features. This data was collected by the Geological Survey Ireland, the Department of Culture, Heritage and the Gaeltacht, the Discovery Programme, the Heritage Council, Transport Infrastructure Ireland, New York University, the Office of Public Works and Westmeath County Council. All data formats are provided as GeoTIFF rasters but are at different resolutions. Data resolution varies depending on survey requirements. Resolutions for each organisation are as follows: GSI – 1m DCHG/DP/HC - 0.13m, 0.14m, 1m NY – 1m TII – 2m OPW – 2m WMCC - 0.25m Both a DTM and DSM are raster data. Raster data is another name for gridded data. Raster data stores information in pixels (grid cells). Each raster grid makes up a matrix of cells (or pixels) organised into rows and columns. The grid cell size varies depending on the organisation that collected it. GSI data has a grid cell size of 1 meter by 1 meter. This means that each cell (pixel) represents an area of 1 meter squared.