Monaco had the highest life expectancy among both men and women worldwide as of 2024. That year, life expectancy for men and women was 84 and 89 years, respectively. The East Asian countries and regions Hong Kong, Japan, South Korea, and Macao followed. Many of the countries on the list are struggling with aging populations and a declining workforce as more people enter retirement age compared to people entering employment.
As of 2022, the countries with the highest life expectancy included Liechtenstein, Japan, and Switzerland. In Japan, a person could expect to live up to around 84 years. In general, the life expectancy for females is higher than that of males, with lifestyle choices and genetics the two major determining factors of life expectancy. Life expectancy worldwide The overall life expectancy worldwide has increased since the development of modern medicine and technology. In 2011, the global life expectancy was 70.53 years. By 2019, it had increased to 72.79 years. However, the years 2020 and 2021 saw a decline in global life expectancy due to the COVID-19 pandemic. Furthermore, not every country has seen a substantial increase in life expectancy. In Chad, for example, the life expectancy is only 53 years, almost 20 years shorter than the global average. In addition to Chad, the countries with the shortest life expectancy include Lesotho, Nigeria, and the Central African Republic. Life expectancy in the U.S. In the United States, life expectancy at birth is currently 77.43 years. Life expectancy in the U.S. generally increases every year, however, over the past decade, life expectancy has seen some surprising decreases. The major contributing factors to this drop have been the ongoing opioid epidemic, which claimed around 81,806 lives in 2022 alone, and the COVID-19 pandemic.
This dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex.
Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below).
Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm.
SOURCES
CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).
REFERENCES
National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm.
National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm.
Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf.
Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf.
National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
The average number of years a newborn can expect to live, assuming he or she experiences the currently prevailing rates of death through their lifespan. Source: Baltimore City Health Department Years Available: 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018
Life expectancy at birth is decomposed by selected causes of death, including certain types of cancers, infectious diseases, circulatory diseases, respiratory diseases, and external causes. External causes include drug poisoning deaths, falls and transportation accidents. Changes in mortality rates for a given cause of death change over time and contribute to the overall change in life expectancy.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.
For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.
ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Global life expactancy at birth has risen significantly since the mid-1900s, from roughly 46 years in 1950 to 73.5 years in 2025. Post-COVID-19 projections There was a drop of 1.7 years during the COVID-19 pandemic, between 2019 and 2021, however figures resumed upon their previous trajectory the following year due to the implementation of vaccination campaigns and the lower severity of later strains of the virus. By the end of the century it is believed that global life expectancy from birth will reach 82 years, although growth will slow in the coming decades as many of the more-populous Asian countries reach demographic maturity. However, there is still expected to be a wide gap between various regions at the end of the 2100s, with the Europe and North America expected to have life expectancies around 90 years, whereas Sub-Saharan Africa is predicted to be in the low-70s. The Great Leap Forward While a decrease of one year during the COVID-19 pandemic may appear insignificant, this is the largest decline in life expectancy since the "Great Leap Forward" in China in 1958, which caused global life expectancy to fall by almost four years between by 1960. The "Great Leap Forward" was a series of modernizing reforms, which sought to rapidly transition China's agrarian economy into an industrial economy, but mismanagement led to tens of millions of deaths through famine and disease.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Life expectancy at birth is decomposed by age specific death rates, which can change over time and contribute to the overall change in life expectancy.
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
Effect of suicide rates on life expectancy dataset
Abstract
In 2015, approximately 55 million people died worldwide, of which 8 million committed suicide. In the USA, one of the main causes of death is the aforementioned suicide, therefore, this experiment is dealing with the question of how much suicide rates affects the statistics of average life expectancy.
The experiment takes two datasets, one with the number of suicides and life expectancy in the second one and combine data into one dataset. Subsequently, I try to find any patterns and correlations among the variables and perform statistical test using simple regression to confirm my assumptions.
Data
The experiment uses two datasets - WHO Suicide Statistics[1] and WHO Life Expectancy[2], which were firstly appropriately preprocessed. The final merged dataset to the experiment has 13 variables, where country and year are used as index: Country, Year, Suicides number, Life expectancy, Adult Mortality, which is probability of dying between 15 and 60 years per 1000 population, Infant deaths, which is number of Infant Deaths per 1000 population, Alcohol, which is alcohol, recorded per capita (15+) consumption, Under-five deaths, which is number of under-five deaths per 1000 population, HIV/AIDS, which is deaths per 1 000 live births HIV/AIDS, GDP, which is Gross Domestic Product per capita, Population, Income composition of resources, which is Human Development Index in terms of income composition of resources, and Schooling, which is number of years of schooling.
LICENSE
THE EXPERIMENT USES TWO DATASET - WHO SUICIDE STATISTICS AND WHO LIFE EXPECTANCY, WHICH WERE COLLEECTED FROM WHO AND UNITED NATIONS WEBSITE. THEREFORE, ALL DATASETS ARE UNDER THE LICENSE ATTRIBUTION-NONCOMMERCIAL-SHAREALIKE 3.0 IGO (https://creativecommons.org/licenses/by-nc-sa/3.0/igo/).
[1] https://www.kaggle.com/szamil/who-suicide-statistics
[2] https://www.kaggle.com/kumarajarshi/life-expectancy-who
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
San Marino Life Expectancy at Birth: Male data was reported at 84.100 Year in 2012. San Marino Life Expectancy at Birth: Male data is updated yearly, averaging 84.100 Year from Dec 2012 (Median) to 2012, with 1 observations. San Marino Life Expectancy at Birth: Male data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s San Marino – Table SM.World Bank.WDI: Health Statistics. Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).
Over the past 160 years, life expectancy (from birth) in the United States has risen from 39.4 years in 1860, to 78.9 years in 2020. One of the major reasons for the overall increase of life expectancy in the last two centuries is the fact that the infant and child mortality rates have decreased by so much during this time. Medical advancements, fewer wars and improved living standards also mean that people are living longer than they did in previous centuries.
Despite this overall increase, the life expectancy dropped three times since 1860; from 1865 to 1870 during the American Civil War, from 1915 to 1920 during the First World War and following Spanish Flu epidemic, and it has dropped again between 2015 and now. The reason for the most recent drop in life expectancy is not a result of any specific event, but has been attributed to negative societal trends, such as unbalanced diets and sedentary lifestyles, high medical costs, and increasing rates of suicide and drug use.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Moderately high life expectancy variant projection for the UK - population by age group, components of change and summary statistics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table represents five variants of health expectancies: -life expectancy in perceived good health. -life expectancy without physical limitations. -life expectancy without chronic morbidity. -without psychological complaints (until 2023) -life expectancy without GALI-limitations In addition, figures of 'normal' life expectancy are included, so the figures of health expectancy can be related to them. In the table, the data on health expectancy can be split into the following characteristics: -sex (starting from the data of 2018, the category ‘total, men + women’ is added). -age.
Using this table one can see the developments over time of health expectancies. For example it can be seen that morbidity free life expectancy of women shortened during the eighties and nineties. In the same period the life expectancy free of moderate and severe limitations of men increased.
Data available from: 1981
Status of the figures: The figures in this table are definitive.
Changes as of November 1, 2024: The 2023 figures on life expectancy without psychological complaints were missing standard errors for ages 0, 1 and 5. These have now been added. It is further explained that no new figures will be published about life expectancy without psychological complaints.
When will new figures be published? The figures for 2024 will be published in the third quarter of 2025. The figures on 'Life expectancy without psychological complaints' will no longer be supplemented from statistical year 2024 (see Sources and Methods).
This dataset includes estimates of U.S. life expectancy at birth by state and census tract for the period 2010-2015 (1). Estimates were produced for 65,662 census tracts, covering the District of Columbia (D.C.) and all states, excluding Maine and Wisconsin, representing 88.7% of all U.S. census tracts (see notes). These estimates are the result of the collaborative project, “U.S. Small-area Life Expectancy Estimates Project (USALEEP),” between the National Center for Health Statistics (NCHS), the National Association for Public Health Statistics and Information Systems (NAPHSIS), and the Robert Wood Johnson Foundation (RWJF) (2).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sweden SE: Life Expectancy at Birth: Female data was reported at 84.100 Year in 2016. This stayed constant from the previous number of 84.100 Year for 2015. Sweden SE: Life Expectancy at Birth: Female data is updated yearly, averaging 80.150 Year from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 84.200 Year in 2014 and a record low of 74.870 Year in 1960. Sweden SE: Life Expectancy at Birth: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Sweden – Table SE.World Bank: Health Statistics. Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Life expectancy at 1 year, females of Río Negro remained constant at 76.30 years over the last 1 years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains the period survival tables (per period of 1 year and 5 years) by sex and age for the population of the Netherlands. The table shows how many boys or girls from a group of 100,000 newborns will reach the age of 0, 1, 2, etc. on December 31 of the year of observation. It is also possible to see how old these children will be on average. The following breakdowns are possible: - Mortality probability by sex and age; - Living (table population) by sex and age; - Deaths (table population) by sex and age; - Life expectancy by sex and age. Data available from: - one-year periods: from 1950 - five-year periods: from 1861 to 1866. Status of the figures: All figures included in the table are final. Changes as of June 16, 2023: Final figures for 2022 have been added. When will new numbers come out? The figures for 2023 will be published in the second quarter of 2024.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Spain ES: Life Expectancy at Birth: Total data was reported at 82.832 Year in 2016. This stayed constant from the previous number of 82.832 Year for 2015. Spain ES: Life Expectancy at Birth: Total data is updated yearly, averaging 76.747 Year from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 83.229 Year in 2014 and a record low of 69.109 Year in 1960. Spain ES: Life Expectancy at Birth: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Spain – Table ES.World Bank: Health Statistics. Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision, or derived from male and female life expectancy at birth from sources such as: (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
Life expectancy at birth is the average number of years a group of infants would live if they were to experience, throughout their lives, the age-specific death rates prevailing during a specified period. Life expectancy at birth estimates were calculated using abridged period life tables according to the Chiang method. Estimates are based on provisional data and subject to change. Unstable estimates are excluded and are defined as having confidence intervals greater than 6 years, i.e., +/-3.0 years. The average life expectancy of a population is one of the most basic and important measures of the health of a community. Life expectancy is heavily driven by the social determinants of health, including social, economic, and environmental conditions, with Black and low-income individuals experiencing much lower life expectancies compared to White and more affluent individuals.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
Monaco had the highest life expectancy among both men and women worldwide as of 2024. That year, life expectancy for men and women was 84 and 89 years, respectively. The East Asian countries and regions Hong Kong, Japan, South Korea, and Macao followed. Many of the countries on the list are struggling with aging populations and a declining workforce as more people enter retirement age compared to people entering employment.