Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Experimental analysis of ethnic differences in life expectancy in England and Wales based on 2011 Census and death registrations.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Period survival tables (per 5-year period) by sex and age for the population of the Netherlands. The table shows how many boys or girls out of a group of 100,000 newborns will reach the age of ½, 1½, 2½, etc. years. It is also possible to see how old these children will be on average. The following breakdowns are possible: - Mortality probability by sex and age; - Living (table population) by sex and age; - Deaths (table population) by sex and age; - Life expectancy by sex and age. Data available from the period 1861 to 1866 up to and including the period 2006 to 2011. Status of the figures: All figures included in the table are final. Changes as of March 31, 2016: None, this table has been discontinued. When will new numbers come out? Not applicable anymore. This table is followed by the Life expectancy table; sex, age (per year and per period of 5 years). See section 3.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.
Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
This dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
This comparison statistic shows the difference in life expectancy of household appliances in 2011 and 2022 in the United States. The life expectancy of all household appliances has either stayed the same or declined in the last decade.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This table contains figures on life expectancy and healthy life expectancy broken down by educational level. Healthy life expectancy is the number of years that people of a certain age can expect to live in good health, assuming that the chances of mortality and unhealth will remain the same in the future. The table provides four variants of healthy life expectancy: life expectancy in well-experienced health life expectancy without physical limitations life expectancy without chronic diseases life expectancy in good mental health
The table focuses on differences in (healthy) life expectancy by educational level and therefore provides figures across three levels of education: low, medium and high. The table also shows the mortality rates per level of education used in the calculations. The figures refer to four-year periods (2011/2014, 2013/2016, etc.). The reason for this is that the CBS Health Survey is used for the health characteristics. This survey is too small to be able to determine the figures on an annual basis.
Data available from: 2011/2014
Status of the figures: The figures in this table are final.
Changes as of 11 November 2020 None, this table has been discontinued
Changes as of 16 August 2019: The figures for 2015/2018 have been added.
When are new figures coming? No longer applicable. This table has been discontinued due to a revision of the method. New figures appear in the Healthy Life Expectancy table; gender, age and education level. See paragraph 3.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.
Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
There are two types of life tables –cohort/generational and current/period life tables. Cohort life tables are constructed using the mortality experience of the cohort and may not be useful for the cohort itself because every member of the cohort has to die before such a table can be constructed. A current or period life table uses current mortality experience applied to a cohort of births to compute the life table. On the basis of age intervals, life tables are classified as complete or abridged. A complete life table uses exact single years and an abridged life table uses age intervals. This report presents five-year age interval abridged current life tables. Computation of an abridged life table from which life expectancy is derived requires mainly population and death data by age and sex. In this report, population data consist of the 1990, 2000, and 2010 census counts of residents of each Illinois County and the city of Chicago. These data were aggregated into five-year age groups and by sex and used as denominators in computing mortality rates. The death data were received from the Illinois Center for Health Statistics (ICHS) of the Office of Health Informatics (OHI). ICHS receives these data from the Illinois Vital Records System (IVRS). Number of deaths by sex and specific age for each county were obtained from 1989 to 2011 and aggregated at county level by five-year age groups for each sex. Three-year averages were then computed for the periods 1989-1991, 1999-2001, and 2009-2011 and were used as numerators in computing mortality rates. The overall life tables were constructed using Chiang’s (1984) Method II. This method assumes a homogeneous population in which all individuals are subjected to the same force of mortality, and in which survival of an individual is independent of the survival of any other individual in the group. The method does not remove fluctuations in observed data; therefore, the 2 produced life tables exhibit more the factual mortality pattern in the actual data and less the underlying mortality picture of the populations. Margin of errors were computed to provide basis for evaluating the accuracy of the estimated life expectancies.
Over the period 2007-2011, life expectancy at birth was 78.5 years for the total population in New Mexico, 75.8 years for males, and 81.3 years for females.For comparison, in 2011, life expectancy at birth was 78.7 years for the total U.S. population, 76.3 years for males, and 81.1 years for females. (http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6335a8.htm?s_cid=mm6335a8_e )PLEASE NOTE: The data in this map corrects, updates and replaces life expectancy data included in the 2012 Bernalillo County Place Matters 'Community Health Equity Report'. Compare life expectancy in Europe and the USA - Map ImageNOTE: Changes in life expectancy (Increase, Decrease, No Change) over the periods 1999-2003 to 2007-2011 are tested for statistical significance using a rule of one standard deviation.
Life Expectancy at Birth, Small Areas, by Sex, 1999-2003 and 2007-2011 - LEBSASEX
Summary: Life Expectancy at Birth, Small Areas, by Sex, 1999-2003 and 2007-2011
Prepared by: NEW MEXICO COMMUNITY DATA COLLABORATIVE, http://nmcdc.maps.arcgis.com/home/index.html ; T Scharmen, thomas.scharmen@state.nm.us, 505-897-5700 x126,
Data Sources: New Mexico Death Certificate Database, Office of Vital Records and Statistics, New Mexico Department of Health; Population Estimates: University of New Mexico, Geospatial and Population Studies (GPS) Program, http://bber.unm.edu/bber_research_demPop.html. Retrieved Mon, 21 June 2014 from New Mexico Department of Health, Indicator-Based Information System for Public Health Web site: http://ibis.health.state.nm.us
Shapefile: http://nmcdc.maps.arcgis.com/home/item.html?id=1e97d2715d8640ab9023fa35fc7b2634
Feature: http://nmcdc.maps.arcgis.com/home/item.html?id=3104749c2c094044914abf9ba6953eab
Master File:
NM DATA VARIABLE DEFINITION
999 SANO Small Area Number
NEW MEXICO SANAME Small Area Name
9250534 PB9903 Population at Risk, Both Sexes, 1999-2003
77.7 LEB9903 Life Expectancy at Birth, Both Sexes, 1999-2003
77.7 CILB9903 Lower Confidence Interval for Life Expectancy at Birth, Both Sexes, 1999-2003
77.7 CIUB9903 Upper Confidence Interval for Life Expectancy at Birth, Both Sexes, 1999-2003
10188104 PB0711 Population at Risk, Both Sexes, 2007-2011
78.5 LEB0711 Life Expectancy at Birth, Both Sexes, 2007-2011
78.5 CILB0711 Lower Confidence Interval for Life Expectancy at Birth, Both Sexes, 2007-2011
78.5 CIUB0711 Upper Confidence Interval for Life Expectancy at Birth, Both Sexes, 2007-2011
0.8 LEBDIFF Difference in Life Expectancy, Both Sexes, 2007-2011 MINUS 1999-2003
INCREASE LEBSIG Trend of the Difference in Life Expectancy, Both Sexes, (1 standard deviation = 68.2% confidence interval)
4683013 PF9903 Population at Risk, Females, 1999-2003
80.6 LEF9903 Life Expectancy at Birth, Females, 1999-2003
80.6 CILF9903 Lower Confidence Interval for Life Expectancy at Birth, Females, 1999-2003
80.6 CIUF9903 Upper Confidence Interval for Life Expectancy at Birth, Females, 1999-2003
5155192 PF0711 Population at Risk, Females, 2007-2011
81.3 LEF0711 Life Expectancy at Birth, Females, 2007-2011
81.3 CILF0711 Lower Confidence Interval for Life Expectancy at Birth, Females, 2007-2011
81.3 CIUF0711 Upper Confidence Interval for Life Expectancy at Birth, Females, 2007-2011
0.7 LEFDIFF Difference in Life Expectancy, Females, 2007-2011 MINUS 1999-2003
INCREASE LEFSIG Trend of the Difference in Life Expectancy, Females, (1 standard deviation = 68.2% confidence interval)
4567521 PM9903 Population at Risk, Males, 1999-2003
74.8 LEM9903 Life Expectancy at Birth, Males, 1999-2003
74.8 CILM9903 Lower Confidence Interval for Life Expectancy at Birth, Males, 1999-2003
74.8 CIUM9903 Upper Confidence Interval for Life Expectancy at Birth, Males, 1999-2003
5032911 PM0711 Population at Risk, Males, 2007-2011
75.8 LEM0711 Life Expectancy at Birth, Males, 2007-2011
75.7 CILM0711 Lower Confidence Interval for Life Expectancy at Birth, Males, 2007-2011
75.8 CIUM0711 Upper Confidence Interval for Life Expectancy at Birth, Males, 2007-2011
1 LEMDIFF Difference in Life Expectancy, Males, 2007-2011 MINUS 1999-2003
INCREASE LEMSIG Trend of the Difference in Life Expectancy, Males, (1 standard deviation = 68.2% confidence interval)
1.077540107 FMRT9903 Female to Male Ratio of Life Expectancy, 1999-2003
1.072559367 FMRT0711 Female to Male Ratio of Life Expectancy, 2007-2011
5.8 FMDT9903 Female Life Expectancy MINUS Male Life Expectancy, 1999-2003
5.5 FMDT0711 Female Life Expectancy MINUS Male Life Expectancy, 2007-2011
-0.3 FMDTDIFF Difference in Female Life Expectancy MINUS Male Life Expectancy, over both time periods, in Years
This series has been discontinued.
Life expectancy at birth and age 65 by sex and ward, London borough, region, 1999/03 - 2010/14.
The population data used is revised 2002-2010 ONS mid year estimates (MYE) - revised post 2011 Census. Revised population estimates by single year of age for wards can also be found on the ONS website for 2002-2010, 2011, 2012, and 2013. These figures are consistent with the published revised mid-2002 to mid-2010 local authority estimates.
Rolling 5-year combined life expectancies are used for wards to reduce the effects of the variability in number of deaths in each year. The same method is applied to higher geographies to enable meaningful comparisons. However, 3-year combined expectancies are published separately on the Datastore for geographical areas that are local authority and above.
If the GLA publish revised 2002-2010 population data for wards then these life expectancy figures will also be revised to reflect them.
The ONS vital statistics mortality data breaks deaths into 10 year age bands. 5 year age band deaths were modelled using this data.
Vital Statistics: Population and Health Reference Tables are available on the ONS website http://www.ons.gov.uk/ons/rel/vsob1/vital-statistics--population-and-health-reference-tables/index.html">here.
The tool for calculating life expectancy is available from Public Health England.
The highest age band in the calculator is currently 85+. If the tool is updated with a higher upper age band (ie 90+), this data will be revised to reflect this change.
Healthy life expectancy and disability-free life expectancy (1999-2003) at birth have been calculated for wards in England and Wales. These can be found on the ONS website.
This data is also presented in the GLA ward profiles.
Official statistics are produced impartially and free from political influence.
Over the period 2007-2011, life expectancy at birth was 78.5 years for the total population in New Mexico, 75.8 years for males, and 81.3 years for females.For comparison, in 2011, life expectancy at birth was 78.7 years for the total U.S. population, 76.3 years for males, and 81.1 years for females. (http://www.cdc.gov/mmwr/preview/mmwrhtml/mm6335a8.htm?s_cid=mm6335a8_e )PLEASE NOTE: The data in this map corrects, updates and replaces life expectancy data included in the 2012 Bernalillo County Place Matters 'Community Health Equity Report'. Compare life expectancy in Europe and the USA - Map ImageNOTE: Changes in life expectancy (Increase, Decrease, No Change) over the periods 1999-2003 to 2007-2011 are tested for statistical significance using a rule of one standard deviation.
Life Expectancy at Birth, Small Areas, by Sex, 1999-2003 and 2007-2011 - LEBSASEX
Summary: Life Expectancy at Birth, Small Areas, by Sex, 1999-2003 and 2007-2011
Prepared by: NEW MEXICO COMMUNITY DATA COLLABORATIVE, http://nmcdc.maps.arcgis.com/home/index.html ; T Scharmen, thomas.scharmen@state.nm.us, 505-897-5700 x126,
Data Sources: New Mexico Death Certificate Database, Office of Vital Records and Statistics, New Mexico Department of Health; Population Estimates: University of New Mexico, Geospatial and Population Studies (GPS) Program, http://bber.unm.edu/bber_research_demPop.html. Retrieved Mon, 21 June 2014 from New Mexico Department of Health, Indicator-Based Information System for Public Health Web site: http://ibis.health.state.nm.us
Shapefile: http://nmcdc.maps.arcgis.com/home/item.html?id=1e97d2715d8640ab9023fa35fc7b2634
Feature: http://nmcdc.maps.arcgis.com/home/item.html?id=3104749c2c094044914abf9ba6953eab
Master File:
NM DATA VARIABLE DEFINITION
999 SANO Small Area Number
NEW MEXICO SANAME Small Area Name
9250534 PB9903 Population at Risk, Both Sexes, 1999-2003
77.7 LEB9903 Life Expectancy at Birth, Both Sexes, 1999-2003
77.7 CILB9903 Lower Confidence Interval for Life Expectancy at Birth, Both Sexes, 1999-2003
77.7 CIUB9903 Upper Confidence Interval for Life Expectancy at Birth, Both Sexes, 1999-2003
10188104 PB0711 Population at Risk, Both Sexes, 2007-2011
78.5 LEB0711 Life Expectancy at Birth, Both Sexes, 2007-2011
78.5 CILB0711 Lower Confidence Interval for Life Expectancy at Birth, Both Sexes, 2007-2011
78.5 CIUB0711 Upper Confidence Interval for Life Expectancy at Birth, Both Sexes, 2007-2011
0.8 LEBDIFF Difference in Life Expectancy, Both Sexes, 2007-2011 MINUS 1999-2003
INCREASE LEBSIG Trend of the Difference in Life Expectancy, Both Sexes, (1 standard deviation = 68.2% confidence interval)
4683013 PF9903 Population at Risk, Females, 1999-2003
80.6 LEF9903 Life Expectancy at Birth, Females, 1999-2003
80.6 CILF9903 Lower Confidence Interval for Life Expectancy at Birth, Females, 1999-2003
80.6 CIUF9903 Upper Confidence Interval for Life Expectancy at Birth, Females, 1999-2003
5155192 PF0711 Population at Risk, Females, 2007-2011
81.3 LEF0711 Life Expectancy at Birth, Females, 2007-2011
81.3 CILF0711 Lower Confidence Interval for Life Expectancy at Birth, Females, 2007-2011
81.3 CIUF0711 Upper Confidence Interval for Life Expectancy at Birth, Females, 2007-2011
0.7 LEFDIFF Difference in Life Expectancy, Females, 2007-2011 MINUS 1999-2003
INCREASE LEFSIG Trend of the Difference in Life Expectancy, Females, (1 standard deviation = 68.2% confidence interval)
4567521 PM9903 Population at Risk, Males, 1999-2003
74.8 LEM9903 Life Expectancy at Birth, Males, 1999-2003
74.8 CILM9903 Lower Confidence Interval for Life Expectancy at Birth, Males, 1999-2003
74.8 CIUM9903 Upper Confidence Interval for Life Expectancy at Birth, Males, 1999-2003
5032911 PM0711 Population at Risk, Males, 2007-2011
75.8 LEM0711 Life Expectancy at Birth, Males, 2007-2011
75.7 CILM0711 Lower Confidence Interval for Life Expectancy at Birth, Males, 2007-2011
75.8 CIUM0711 Upper Confidence Interval for Life Expectancy at Birth, Males, 2007-2011
1 LEMDIFF Difference in Life Expectancy, Males, 2007-2011 MINUS 1999-2003
INCREASE LEMSIG Trend of the Difference in Life Expectancy, Males, (1 standard deviation = 68.2% confidence interval)
1.077540107 FMRT9903 Female to Male Ratio of Life Expectancy, 1999-2003
1.072559367 FMRT0711 Female to Male Ratio of Life Expectancy, 2007-2011
5.8 FMDT9903 Female Life Expectancy MINUS Male Life Expectancy, 1999-2003
5.5 FMDT0711 Female Life Expectancy MINUS Male Life Expectancy, 2007-2011
-0.3 FMDTDIFF Difference in Female Life Expectancy MINUS Male Life Expectancy, over both time periods, in Years
These data contain lifetables derived from the ONS Longitudinal study dataset, and according to age, sex and individual socio-economic status measured with education, occupation or wage in England and Wales in 2011. Life table according to age, sex and individual’s education, or occupation or wage for the England & Wales population in 2011 The data contained in these files are aggregated data from the ONS Longitudinal Study (ONS LS). The ONS LS is a long-term census-based multi-cohort study. It uses four annual birthdates as random selection criteria, giving a 1% sample of the England and Wales population (10.1093/ije/dyy243). The initial sample was drawn from the 1971 Census, and study members’ census records have been linked every 10 years up to the 2011 Census. New members enter the study through birth or immigration, and existing members leave through death or emigration. Vital life events information (births, deaths and cancer registrations) are also linked to sample members’ records. File lifetab_2011_educ.csv Life table according to age, sex and education level for the England & Wales population in 2011 age x: attained age (years) from 20 to 100 sex: 2 categories: male (m) and female (f) educ: 6 categories of highest educational attainment: A: no qualifications; B: 1-4 GCSEs/O levels; C: 5+ GCSEs/O levels, D: Apprenticeships/Vocational qualifications, E: A/AS levels, F: Degree/Higher Degree mx: mortality rate for 1 person-year qx: annual probability of death ( = 1 - exp(-mx) ) ex: life-expectancy (years) File lifetab_2011_inc.csv Life table from age 20 onwards and according to age, sex and income level for the England & Wales population in 2011 age x: attained age (years) from 20 to 100 sex: 2 categories: male (m); female (f) inc: 5 categories of income: Least deprived; 4; 3; 2; Most deprived mx: mortality rate for 1 person-year qx: annual probability of death ( = 1 - exp(-mx) ) ex: life-expectancy (years) File lifetab_2011_occ.csv Life table from age 20 onwards and according to age, sex and occupation for the England & Wales population in 2011 age x: attained age (years) from 20 to 100 sex: 2 categories: male (m); female (f) occ: 3 categories of occupation: C: Technical/Routine; B: Intermediate; A: Managerial/Administrative/Professional mx: mortality rate for 1 person-year qx: annual probability of death ( = 1 - exp(-mx) ) ex: life-expectancy (years) File lifetab_2011_overall.csv Life table from age 20 onwards and according to age and sex for the England & Wales population in 2011 age x: attained age (years) from 20 to 100 sex: 2 categories: male (m); female (f) mx: mortality rate for 1 person-year qx: annual probability of death ( = 1 - exp(-mx) ) ex: life-expectancy (years) More details can be found in the following paper: Ingleby F, Woods L, Atherton I, Baker M, Elliss-Brookes L, Belot A. (2021). Describing socio-economic variation in life expectancy according to an individual's education, occupation and wage in England and Wales: An analysis of the ONS Longitudinal Study. SSM - Population Health, doi: 10.1016/j.ssmph.2021.100815
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Pivot table for healthy life expectancy by sex and area type, divided by three-year intervals starting from 2011 to 2013.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset presents the footprint of the average number of years a person is expected to live at birth by sex, assuming that the current age-specific death rates are experienced throughout their life. The data spans the years of 2011-2016 and is aggregated to 2015 Department of Health Primary Health Network (PHN) areas, based on the 2011 Australian Statistical Geography Standard (ASGS). The data is based on the Australian Institute of Health and Welfare (AIHW) analysis of life expectancy estimates as provided by the Australian Bureau of Statistics (ABS). Life expectancies at birth were calculated with reference to state/territory and Australian life tables (where appropriate) for a three year period. The disaggregation used for reporting life expectancy at birth is PHN area. These values are provided by the ABS. For further information about this dataset, visit the data source: Australian Institute of Health and Welfare - Life Expectancy and Potentially Avoidable Deaths 2014-2016 Data Tables. Please note:
AURIN has spatially enabled the original data using the Department of Health - PHN Areas.
Life expectancy for 2014-2016 are based on the average number of deaths over three years, 2014-2016, and the estimated resident population (ERP) as at 30 Jun 2015.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains the number of deaths and the average age at death for all deaths in a ZIP Code between 2011 and 2015. The data were obtained by special request from Texas Department of State Health Services Vital Statistics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Grenada: Life expectancy, in years, male: The latest value from 2022 is 72.59 years, an increase from 72.21 years in 2021. In comparison, the world average is 69.65 years, based on data from 192 countries. Historically, the average for Grenada from 1960 to 2022 is 67.73 years. The minimum value, 58.12 years, was reached in 1983 while the maximum of 72.69 years was recorded in 2011.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset presents the life tables for males and females for the reference period 2008-2015. It contains life expectancy at birth estimates for males, females and persons for Statistical Area Level 4 (SA4). Boundaries are based on ABS ASGS 2011. For further information please visit the Australian Bureau of Statistics AURIN has spatially enabled the original data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectivesUnder the prevailing conditions of imbalanced life table and historic gender discrimination in India, our study examines crossover between life expectancies at ages zero, one and five years for India and quantifies the relative share of infant and under-five mortality towards this crossover.MethodsWe estimate threshold levels of infant and under-five mortality required for crossover using age specific death rates during 1981–2009 for 16 Indian states by sex (comprising of India’s 90% population in 2011). Kitagawa decomposition equations were used to analyse relative share of infant and under-five mortality towards crossover.FindingsIndia experienced crossover between life expectancies at ages zero and five in 2004 for menand in 2009 for women; eleven and nine Indian states have experienced this crossover for men and women, respectively. Men usually experienced crossover four years earlier than the women. Improvements in mortality below ages five have mostly contributed towards this crossover. Life expectancy at age one exceeds that at age zero for both men and women in India except for Kerala (the only state to experience this crossover in 2000 for men and 1999 for women).ConclusionsFor India, using life expectancy at age zero and under-five mortality rate together may be more meaningful to measure overall health of its people until the crossover. Delayed crossover for women, despite higher life expectancy at birth than for men reiterates that Indian women are still disadvantaged and hence use of life expectancies at ages zero, one and five become important for India. Greater programmatic efforts to control leading causes of death during the first month and 1–59 months in high child mortality areas can help India to attain this crossover early.
This map displays data from the Selected Social and Economic Indicators dataset (tables DP02 and DP03) from the American Community Survey 5-Yr Estimates, U.S. Census Bureau. Economic and education measures are from 2010, while race/ethnicity estimates are from 2011, these data are presented at the census tract level. Life expectancy is presented at the small area level, as defined by NMDOH, and is based on birth/mortality records for the period 2007-2011.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Experimental analysis of ethnic differences in life expectancy in England and Wales based on 2011 Census and death registrations.