Over the past 160 years, life expectancy (from birth) in the United States has risen from 39.4 years in 1860, to 78.9 years in 2020. One of the major reasons for the overall increase of life expectancy in the last two centuries is the fact that the infant and child mortality rates have decreased by so much during this time. Medical advancements, fewer wars and improved living standards also mean that people are living longer than they did in previous centuries.
Despite this overall increase, the life expectancy dropped three times since 1860; from 1865 to 1870 during the American Civil War, from 1915 to 1920 during the First World War and following Spanish Flu epidemic, and it has dropped again between 2015 and now. The reason for the most recent drop in life expectancy is not a result of any specific event, but has been attributed to negative societal trends, such as unbalanced diets and sedentary lifestyles, high medical costs, and increasing rates of suicide and drug use.
A global phenomenon, known as the demographic transition, has seen life expectancy from birth increase rapidly over the past two centuries. In pre-industrial societies, the average life expectancy was around 24 years, and it is believed that this was the case throughout most of history, and in all regions. The demographic transition then began in the industrial societies of Europe, North America, and the West Pacific around the turn of the 19th century, and life expectancy rose accordingly. Latin America was the next region to follow, before Africa and most Asian populations saw their life expectancy rise throughout the 20th century.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Life Expectancy at Birth, Total for the United States (SPDYNLE00INUSA) from 1960 to 2023 about life expectancy, life, birth, and USA.
The total life expectancy at birth in the United States saw no significant changes in 2023 in comparison to the previous year 2022 and remained at around 78.39 years. However, 2023 marked the second consecutive increase of the life expectancy at birth. These figures refer to the expected lifespan of the average newborn in a given country or region, providing that mortality patterns at the time of birth remain constant thereafter.Find more statistics on other topics about the United States with key insights such as crude birth rate, life expectancy of women at birth, and life expectancy of men at birth.
This dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Life expectancy at birth, total (years) in United States was reported at 78.39 years in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Life expectancy at birth, total (years) - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
The life expectancy of men at birth in the United States saw no significant changes in 2023 in comparison to the previous year 2022 and remained at around 75.8 years. However, 2023 marked the second consecutive increase of the life expectancy. Life expectancy at birth refers to the number of years the average newborn is expected to live, providing that mortality patterns at the time of birth do not change thereafter.Find more statistics on other topics about the United States with key insights such as total fertility rate, infant mortality rate, and total life expectancy at birth.
The life expectancy for men aged 65 years in the U.S. has gradually increased since the 1960s. Now men in the United States aged 65 can expect to live 17 more years on average. Women aged 65 years can expect to live around 19.7 more years on average.
Life expectancy in the U.S.
As of 2021, the average life expectancy at birth in the United States was 76.33 years. Life expectancy in the U.S. had steadily increased for many years but has recently dropped slightly. Women consistently have a higher life expectancy than men but have also seen a slight decrease. As of 2019, a woman in the U.S. could be expected to live up to 79.3 years.
Leading causes of death
The leading causes of death in the United States include heart disease, cancer, unintentional injuries, chronic lower respiratory diseases and cerebrovascular diseases. However, heart disease and cancer account for around 38 percent of all deaths. Although heart disease and cancer are the leading causes of death for both men and women, there are slight variations in the leading causes of death. For example, unintentional injury and suicide account for a larger portion of deaths among men than they do among women.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Life expectancy at birth, female (years) in United States was reported at 81.1 years in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Life expectancy at birth, female (years) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Life Expectancy at Birth data was reported at 84.700 Year in 2050. This records an increase from the previous number of 84.600 Year for 2049. United States US: Life Expectancy at Birth data is updated yearly, averaging 82.400 Year from Jun 2014 (Median) to 2050, with 37 observations. The data reached an all-time high of 84.700 Year in 2050 and a record low of 79.500 Year in 2014. United States US: Life Expectancy at Birth data remains active status in CEIC and is reported by US Census Bureau. The data is categorized under Global Database’s United States – Table US.US Census Bureau: Demographic Projection.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Life expectancy at birth, male (years) in United States was reported at 75.8 years in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Life expectancy at birth, male (years) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
In 2021, a woman in the United States aged 65 years could expect to live another 19.7 years on average. This number decreased in the years 2020 and 2021, after reaching a high of 20.8 years in 2019. Nevertheless, the life expectancy of a woman aged 65 years in the United States is still higher than that of a man of that age. In 2021, a man aged 65 years could be expected to live another 17 years on average.
Why has the life expectancy in the U.S. declined? Overall, life expectancy in the United States has declined in recent years. In 2019, the life expectancy for U.S. women was 81.4 years, but by 2021 it had decreased to 79.3 years. Likewise, the life expectancy for men decreased from 76.3 years to 73.5 years in the same period. The biggest contributors to this decline in life expectancy are the COVID-19 pandemic and the opioid epidemic. Although deaths from the COVID-19 pandemic have decreased significantly since 2022, deaths from opioid overdose continue to increase, reaching all-time highs in 2021.
The leading causes of death among U.S. women The leading causes of death among women in the United States in 2020 were heart disease, cancer, and COVID-19. That year heart disease and cancer accounted for a combined 37 percent of all deaths among women, while around 10 percent of deaths were due to COVID-19. The overall leading causes of death in the United States generally reflect the leading causes among women with some slight variations. For example, Alzheimer’s disease is the fourth leading cause of death among women, but the seventh leading cause of death overall in the United States.
This dataset contains replication files for "The Association Between Income and Life Expectancy in the United States, 2001-2014" by Augustin Bergeron, Raj Chetty, David Cutler, Benjamin Scuderi, Michael Stepner, and Nicholas Turner. For more information, see https://opportunityinsights.org/paper/lifeexpectancy/. A summary of the related publication follows. How can we reduce socioeconomic disparities in health outcomes? Although it is well known that there are significant differences in health and longevity between income groups, debate remains about the magnitudes and determinants of these differences. We use new data from 1.4 billion anonymous earnings and mortality records to construct more precise estimates of the relationship between income and life expectancy at the national level than was feasible in prior work. We then construct new local area (county and metro area) estimates of life expectancy by income group and identify factors that are associated with higher levels of life expectancy for low-income individuals. Our findings show that disparities in life expectancy are not inevitable. There are cities throughout America — from New York to San Francisco to Birmingham, AL — where gaps in life expectancy are relatively small or are narrowing over time. Replicating these successes more broadly will require targeted local efforts, focusing on improving health behaviors among the poor in cities such as Las Vegas and Detroit. Our findings also imply that federal programs such as Social Security and Medicare are less redistributive than they might appear because low-income individuals obtain these benefits for significantly fewer years than high-income individuals, especially in cities like Detroit. Going forward, the challenge is to understand the mechanisms that lead to better health and longevity for low-income individuals in some parts of the U.S. To facilitate future research and monitor local progress, we have posted annual statistics on life expectancy by income group and geographic area (state, CZ, and county) at The Health Inequality Project website. Using these data, researchers will be able to study why certain places have high or improving levels of life expectancy and ultimately apply these lessons to reduce health disparities in other parts of the country.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
U.S. Census Bureau: Decennial Census ZCTA Population (2000-2010) http://factfinder.census.gov
U.S. Census Bureau: American Community Survey 5-Year Population Estimates (2013) http://factfinder.census.gov
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population that can be compared across time and populations. More information about the determinants of life expectancy that may lead to differences in life expectancy between neighborhoods can be found in the Bay Area Regional Health Inequities Initiative (BARHII) Health Inequities in the Bay Area report at http://www.barhii.org/wp-content/uploads/2015/09/barhii_hiba.pdf. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and ZIP Codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential ZIP Code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality.
For the ZIP Code-level life expectancy calculation, it is assumed that postal ZIP Codes share the same boundaries as ZIP Code Census Tabulation Areas (ZCTAs). More information on the relationship between ZIP Codes and ZCTAs can be found at http://www.census.gov/geo/reference/zctas.html. ZIP Code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 ZIP Code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for ZIP Codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest ZIP Code with population. ZIP Code population for 2000 estimates comes from the Decennial Census. ZIP Code population for 2013 estimates are from the American Community Survey (5-Year Average). ACS estimates are adjusted using Decennial Census data for more accurate population estimates. An adjustment factor was calculated using the ratio between the 2010 Decennial Census population estimates and the 2012 ACS 5-Year (with middle year 2010) population estimates. This adjustment factor is particularly important for ZCTAs with high homeless population (not living in group quarters) where the ACS may underestimate the ZCTA population and therefore underestimate the life expectancy. The ACS provides ZIP Code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to ZIP Codes based on majority land-area.
ZIP Codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, ZIP Codes with populations of less than 5,000 were aggregated with neighboring ZIP Codes until the merged areas had a population of more than 5,000. ZIP Code 94103, representing Treasure Island, was dropped from the dataset due to its small population and having no bordering ZIP Codes. In this way, the original 305 Bay Area ZIP Codes were reduced to 217 ZIP Code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Life Expectancy at Birth: Total data was reported at 78.690 Year in 2016. This stayed constant from the previous number of 78.690 Year for 2015. United States US: Life Expectancy at Birth: Total data is updated yearly, averaging 74.766 Year from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 78.841 Year in 2014 and a record low of 69.771 Year in 1960. United States US: Life Expectancy at Birth: Total data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision, or derived from male and female life expectancy at birth from sources such as: (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;
We used individual-level death data to estimate county-level life expectancy at 25 (e25) for Whites, Black, AIAN and Asian in the contiguous US for 2000-2005. Race-sex-stratified models were used to examine the associations among e25, rurality and specific race proportion, adjusted for socioeconomic variables. Individual death data from the National Center for Health Statistics were aggregated as death counts into five-year age groups by county and race-sex groups for the contiguous US for years 2000-2005 (National Center for Health Statistics 2000-2005). We used bridged-race population estimates to calculate five-year mortality rates. The bridged population data mapped 31 race categories, as specified in the 1997 Office of Management and Budget standards for the collection of data on race and ethnicity, to the four race categories specified under the 1977 standards (the same as race categories in mortality registration) (Ingram et al. 2003). The urban-rural gradient was represented by the 2003 Rural Urban Continuum Codes (RUCC), which distinguished metropolitan counties by population size, and nonmetropolitan counties by degree of urbanization and adjacency to a metro area (United States Department of Agriculture 2016). We obtained county-level sociodemographic data for 2000-2005 from the US Census Bureau. These included median household income, percent of population attaining greater than high school education (high school%), and percent of county occupied rental units (rent%). We obtained county violent crime from Uniform Crime Reports and used it to calculate mean number of violent crimes per capita (Federal Bureau of Investigation 2010). This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Request to author. Format: Data are stored as csv files. This dataset is associated with the following publication: Jian, Y., L. Neas, L. Messer, C. Gray, J. Jagai, K. Rappazzo, and D. Lobdell. Divergent trends in life expectancy across the rural-urban gradient among races in the contiguous United States. International Journal of Public Health. Springer Basel AG, Basel, SWITZERLAND, 64(9): 1367-1374, (2019).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The USA: Life expectancy, in years, female: The latest value from 2022 is 80.2 years, an increase from 79.3 years in 2021. In comparison, the world average is 74.94 years, based on data from 192 countries. Historically, the average for the USA from 1960 to 2022 is 78.15 years. The minimum value, 73.1 years, was reached in 1960 while the maximum of 81.4 years was recorded in 2019.
This dataset includes estimates of U.S. life expectancy at birth by state and census tract for the period 2010-2015 (1). Estimates were produced for 65,662 census tracts, covering the District of Columbia (D.C.) and all states, excluding Maine and Wisconsin, representing 88.7% of all U.S. census tracts (see notes). These estimates are the result of the collaborative project, “U.S. Small-area Life Expectancy Estimates Project (USALEEP),” between the National Center for Health Statistics (NCHS), the National Association for Public Health Statistics and Information Systems (NAPHSIS), and the Robert Wood Johnson Foundation (RWJF) (2).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2022 based on 24 countries was 77.36 years. The highest value was in Bermuda: 84.51 years and the lowest value was in Haiti: 66.7 years. The indicator is available from 1960 to 2022. Below is a chart for all countries where data are available.
For most of the world, throughout most of human history, the average life expectancy from birth was around 24. This figure fluctuated greatly depending on the time or region, and was higher than 24 in most individual years, but factors such as pandemics, famines, and conflicts caused regular spikes in mortality and reduced life expectancy. Child mortality The most significant difference between historical mortality rates and modern figures is that child and infant mortality was so high in pre-industrial times; before the introduction of vaccination, water treatment, and other medical knowledge or technologies, women would have around seven children throughout their lifetime, but around half of these would not make it to adulthood. Accurate, historical figures for infant mortality are difficult to ascertain, as it was so prevalent, it took place in the home, and was rarely recorded in censuses; however, figures from this source suggest that the rate was around 300 deaths per 1,000 live births in some years, meaning that almost one in three infants did not make it to their first birthday in certain periods. For those who survived to adolescence, they could expect to live into their forties or fifties on average. Modern figures It was not until the eradication of plague and improvements in housing and infrastructure in recent centuries where life expectancy began to rise in some parts of Europe, before industrialization and medical advances led to the onset of the demographic transition across the world. Today, global life expectancy from birth is roughly three times higher than in pre-industrial times, at almost 73 years. It is higher still in more demographically and economically developed countries; life expectancy is over 82 years in the three European countries shown, and over 84 in Japan. For the least developed countries, mostly found in Sub-Saharan Africa, life expectancy from birth can be as low as 53 years.
Over the past 160 years, life expectancy (from birth) in the United States has risen from 39.4 years in 1860, to 78.9 years in 2020. One of the major reasons for the overall increase of life expectancy in the last two centuries is the fact that the infant and child mortality rates have decreased by so much during this time. Medical advancements, fewer wars and improved living standards also mean that people are living longer than they did in previous centuries.
Despite this overall increase, the life expectancy dropped three times since 1860; from 1865 to 1870 during the American Civil War, from 1915 to 1920 during the First World War and following Spanish Flu epidemic, and it has dropped again between 2015 and now. The reason for the most recent drop in life expectancy is not a result of any specific event, but has been attributed to negative societal trends, such as unbalanced diets and sedentary lifestyles, high medical costs, and increasing rates of suicide and drug use.