Facebook
TwitterThis dataset explores the intriguing phenomenon of life expectancy disparity between genders across various countries spanning the years 1950 to 2020. Delving into the age-old statement that "women live longer than men," this dataset provides insights into the evolving trends in life expectancy and population dynamics worldwide.
Dataset Glossary (Column-wise):
Year: The year of observation (1950-2020).Female Life Expectancy: The average life expectancy at birth for females in a given year and country.Male Life Expectancy: The average life expectancy at birth for males in a given year and country.Population: The total population of the country in a given year.Life Expectancy Gap: The difference between female and male life expectancy, highlighting the disparity between genders.The dataset aims to facilitate comprehensive analyses regarding gender-based life expectancy disparities over time and across different nations. Researchers, policymakers, and analysts can utilize this dataset to explore patterns, identify contributing factors, and devise strategies to address gender-based health inequalities.
License - This Dataset falls under the Creative Commons Attribution 3.0 IGO License. You can check the Terms of Use of this Data. If you want to learn more, visit the Website.
Acknowledgement: Image :- Freepik
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 2394 series, with data for years 1991 - 1991 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (1 items: Canada ...), Population group (19 items: Entire cohort; Income adequacy quintile 1 (lowest);Income adequacy quintile 2;Income adequacy quintile 3 ...), Age (14 items: At 25 years; At 30 years; At 40 years; At 35 years ...), Sex (3 items: Both sexes; Females; Males ...), Characteristics (3 items: Life expectancy; High 95% confidence interval; life expectancy; Low 95% confidence interval; life expectancy ...).
Facebook
TwitterThe dataset presents life expectancy at birth estimates based on annual complete period life tables for each of the 50 states and the District of Columbia (D.C.) in 2021 for the total, male and female populations.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset contains information on various demographic and health indicators for different countries. It is organized into several columns, each providing essential information about these countries. Here's a description of each column:
1. Country: This column represents the names of different countries or regions included in the dataset. Each row corresponds to a specific country or region, and this column serves as the identifier for each entry.
2. Life Expectancy Males: This column contains data on the average life expectancy of males in each of the listed countries. Life expectancy is a crucial health indicator and provides an estimate of the average number of years a male can expect to live, given current mortality rates and health conditions.
3. Life Expectancy Females: Similar to the "Life Expectancy Males" column, this column provides data on the average life expectancy of females in the same countries. It reflects the average number of years a female can expect to live, considering the prevailing health and mortality conditions.
4. Birth Rate: The "Birth Rate" column contains information about the birth rate in each country. Birth rate is a demographic indicator that represents the number of live births per 1,000 people in a given population over a specific period, usually a year. It can provide insights into a country's population growth or decline.
5. Death Rate: This column presents data on the death rate in each of the listed countries. The death rate is another crucial demographic indicator and represents the number of deaths per 1,000 people in a population over a specific period, often a year. It helps gauge the overall health and mortality conditions within a country.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
PLEASE if you use or like this dataset UPVOTE 👁️
This dataset offers a detailed historical record of global life expectancy, covering data from 1960 to the present. It is meticulously curated to enable deep analysis of trends and gender disparities in life expectancy worldwide.
Dataset Structure & Key Columns:
Country Code (🔤): Unique identifier for each country.
Country Name (🌍): Official name of the country.
Region (🌐): Broad geographical area (e.g., Asia, Europe, Africa).
Sub-Region (🗺️): More specific regional classification within the broader region.
Intermediate Region (🔍): Additional granular geographical grouping when applicable.
Year (📅): The specific year to which the data pertains.
Life Expectancy for Women (👩⚕️): Average years a woman is expected to live in that country and year.
Life Expectancy for Men (👨⚕️): Average years a man is expected to live in that country and year.
Context & Use Cases:
This dataset is a rich resource for exploring long-term trends in global health and demography. By comparing life expectancy data over decades, researchers can:
Analyze Time Series Trends: Forecast future changes in life expectancy and evaluate the impact of health interventions over time.
Study Gender Disparities: Investigate the differences between life expectancy for women and men, providing insights into social, economic, and healthcare factors influencing these trends.
Regional & Sub-Regional Analysis: Compare and contrast life expectancy across various regions and sub-regions to understand geographical disparities and their underlying causes.
Support Public Policy Research: Inform policymakers by linking life expectancy trends with public health policies, socioeconomic developments, and other key indicators.
Educational & Data Science Applications: Serve as a comprehensive teaching tool for courses on public health, global development, and data analysis, as well as for Kaggle competitions and projects.
With its detailed, structured format and broad temporal coverage, this dataset is ideal for anyone looking to gain a nuanced understanding of global health trends and to drive impactful analyses in public health, social sciences, and beyond.
Feel free to ask for further customizations or additional details as needed!
Facebook
TwitterThe dataset presents life expectancy at birth estimates based on annual complete period life tables for each of the 50 states and the District of Columbia (D.C.) in 2020 for the total, male and female populations.
Facebook
TwitterThis table contains 2754 series, with data for years 2005/2007 - 2012/2014 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (153 items: Canada; Newfoundland and Labrador; Eastern Regional Integrated Health Authority, Newfoundland and Labrador; Central Regional Integrated Health Authority, Newfoundland and Labrador; ...); Age group (2 items: At birth; At age 65); Sex (3 items: Both sexes; Males; Females); Characteristics (3 items: Life expectancy; Low 95% confidence interval, life expectancy; High 95% confidence interval, life expectancy).
Facebook
TwitterDataset replaced by: http://data.europa.eu/euodp/data/dataset/CqVGoZOuX5iYMx8mHY0yw The indicator Healthy Life Years (HLY) at birth measures the number of years that a person at birth is still expected to live in a healthy condition. HLY is a health expectancy indicator which combines information on mortality and morbidity. The data required are the age-specific prevalence (proportions) of the population in healthy and unhealthy conditions and age-specific mortality information. A healthy condition is defined by the absence of limitations in functioning/disability. The indicator is calculated separately for males and females. The indicator is also called disability-free life expectancy (DFLE). Life expectancy at birth is defined as the mean number of years still to be lived by a person at birth -, if subjected throughout the rest of his or her life to the current mortality conditions.
Facebook
TwitterDataset replaced by: http://data.europa.eu/euodp/data/dataset/tHJ7RfJO3ZAXvnwP5Jm5kw The indicator Healthy Life Years (HLY) at age 65 measures the number of years that a person at age 65 is still expected to live in a healthy condition. HLY is a health expectancy indicator which combines information on mortality and morbidity. The data required are the age-specific prevalence (proportions) of the population in healthy and unhealthy conditions and age-specific mortality information. A healthy condition is defined by the absence of limitations in functioning/disability. The indicator is calculated separately for males and females. The indicator is also called disability-free life expectancy (DFLE). Life expectancy at age 65 is defined as the mean number of years still to be lived by a person at age 65, if subjected throughout the rest of his or her life to the current mortality conditions.
Facebook
TwitterLife expectancy at birth and at age 65, by sex, on a three-year average basis.
Facebook
TwitterLife Expectancy of the World Population
The dataset from Worldometer provides a ranked list of countries based on life expectancy at birth, which represents the average number of years a newborn is expected to live under current mortality rates. It includes global, regional, and country-specific life expectancy figures, with separate data for males and females. The dataset highlights disparities in longevity across nations, with countries like Hong Kong, Japan, and South Korea having the highest life expectancies. This data serves as a key indicator of public health, quality of life, and healthcare effectiveness, offering valuable insights for policymakers, researchers, and global health organizations.
Data Analysis & Machine Learning Approaches for Life Expectancy Data
Data Analysis Approaches Life expectancy data can be analyzed using descriptive statistics (mean, variance, distribution) and correlation analysis to identify relationships with factors like GDP, healthcare, and education. Time series analysis helps track longevity trends over time, while clustering techniques (e.g., K-Means) group countries with similar patterns. Additionally, geospatial analysis can visualize regional disparities in life expectancy.
Machine Learning Models For prediction, linear and multiple regression models estimate life expectancy based on socioeconomic indicators, while polynomial regression captures non-linear trends. Decision trees and Random Forests classify countries into high- and low-life expectancy groups. Deep learning techniques like neural networks (ANNs) can model complex relationships, while LSTMs are useful for time-series forecasting.
For pattern detection, K-Means clustering groups countries based on life expectancy trends, and DBSCAN identifies anomalies. Principal Component Analysis (PCA) helps in feature selection, improving model efficiency. These methods provide insights into longevity trends, helping policymakers and researchers improve public health strategies.
Life expectancy at birth. Data based on the latest United Nations Population Division estimates.
Source: https://www.worldometers.info/demographics/life-expectancy/#countries-ranked-by-life-expectancy
Facebook
TwitterThe dataset presents life expectancy at birth estimates based on annual complete period life tables for each of the 50 states and the District of Columbia (D.C.) in 2018 for the total, male and female populations.
Facebook
TwitterThe Health Inequality Project uses big data to measure differences in life expectancy by income across areas and identify strategies to improve health outcomes for low-income Americans.
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution. Both race-adjusted and unadjusted estimates are reported.
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution separately by year. Both race-adjusted and unadjusted estimates are reported.
This dataset was created on 2020-01-10 18:53:00.508 by merging multiple datasets together. The source datasets for this version were:
Commuting Zone Life Expectancy Estimates by year: CZ-level by-year life expectancy estimates for men and women, by income quartile
Commuting Zone Life Expectancy: Commuting zone (CZ)-level life expectancy estimates for men and women, by income quartile
Commuting Zone Life Expectancy Trends: CZ-level estimates of trends in life expectancy for men and women, by income quartile
Commuting Zone Characteristics: CZ-level characteristics
Commuting Zone Life Expectancy for larger populations: CZ-level life expectancy estimates for men and women, by income ventile
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by state of residence and year. Both race-adjusted and unadjusted estimates are reported.
This table reports US mortality rates by gender, age, year and household income percentile. Household incomes are measured two years prior to the mortality rate for mortality rates at ages 40-63, and at age 61 for mortality rates at ages 64-76. The “lag” variable indicates the number of years between measurement of income and mortality.
Observations with 1 or 2 deaths have been masked: all mortality rates that reflect only 1 or 2 deaths have been recoded to reflect 3 deaths
This table reports coefficients and standard errors from regressions of life expectancy estimates for men and women at age 40 for each quartile of the national income distribution on calendar year by commuting zone of residence. Only the slope coefficient, representing the average increase or decrease in life expectancy per year, is reported. Trend estimates for both race-adjusted and unadjusted life expectancies are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.
This table reports life expectancy estimates at age 40 for Males and Females for all countries. Source: World Health Organization, accessed at: http://apps.who.int/gho/athena/
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by county of residence. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for counties with populations larger than 25,000 only
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by commuting zone of residence and year. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.
This table reports US population and death counts by age, year, and sex from various sources. Counts labelled “dm1” are derived from the Social Security Administration Data Master 1 file. Counts labelled “irs” are derived from tax data. Counts labelled “cdc” are derived from NCHS life tables.
This table reports numerous county characteristics, compiled from various sources. These characteristics are described in the county life expectancy table.
Two variables constructed by the Cen
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Life expectancy, healthy life expectancy and disability-free life expectancy – at birth and age 65 by sex for local areas in the UK, 2016 to 2018.
Facebook
TwitterInternational estimates of mean life expectancy at age 40, by country for men and women
Facebook
TwitterNational life expectancy estimates (pooling 2001-14) for men and women, by income percentile.
Facebook
TwitterNational by-year life expectancy estimates for men and women, by income percentile
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 1: Table A1. Age- and cause-specific contributions to gap in life expectancy between Iran and the neighbour countries in males. Table A2. Age- and cause-specific contributions to gap in life expectancy between Iran and the neighbour countries in females. Table A3. Age- and cause-specific contributions to gap in lifespan inequality between Iran and the neighbour countries in males. Table A4. Age- and cause-specific contributions to gap in lifespan inequality between Iran and the neighbour countries in females. Table A5. Age- and cause-specific contributions to gap in life expectancy and lifespan inequality between Iran and the neighbour countries in males based on the life table from the institute for health metrics and evaluation. Table A6. Age- and cause-specific contributions to gap in life expectancy and lifespan inequality between Iran and the neighbour countries in females based on the life table from the institute for health metrics and evaluation. Table A7. Age- and cause-specific contributions to gap in life expectancy and lifespan inequality between Iran and the neighbour countries in males based on the life table from the United Nations. Table A8. Age- and cause-specific contributions to gap in life expectancy and lifespan inequality between Iran and the neighbour countries in females based on the life table from the United Nations. Table A9. Age- and cause-specific contributions to gap in life expectancy and lifespan inequality between Iran and the neighbour countries in males based on the life table from the world health organization. Table A10. Age- and cause-specific contributions to gap in life expectancy and lifespan inequality between Iran and the neighbour countries in females based on the life table from the world health organization.
Facebook
TwitterThe differences between males and females in life expectancy at birth are decomposed by selected causes of death. Changes in mortality rates for a given cause of death change over time and contribute to the overall change in life expectancy.
Facebook
TwitterState-level by-year life expectancy estimates for men and women, by income quartile
Facebook
TwitterThis dataset explores the intriguing phenomenon of life expectancy disparity between genders across various countries spanning the years 1950 to 2020. Delving into the age-old statement that "women live longer than men," this dataset provides insights into the evolving trends in life expectancy and population dynamics worldwide.
Dataset Glossary (Column-wise):
Year: The year of observation (1950-2020).Female Life Expectancy: The average life expectancy at birth for females in a given year and country.Male Life Expectancy: The average life expectancy at birth for males in a given year and country.Population: The total population of the country in a given year.Life Expectancy Gap: The difference between female and male life expectancy, highlighting the disparity between genders.The dataset aims to facilitate comprehensive analyses regarding gender-based life expectancy disparities over time and across different nations. Researchers, policymakers, and analysts can utilize this dataset to explore patterns, identify contributing factors, and devise strategies to address gender-based health inequalities.
License - This Dataset falls under the Creative Commons Attribution 3.0 IGO License. You can check the Terms of Use of this Data. If you want to learn more, visit the Website.
Acknowledgement: Image :- Freepik