100+ datasets found
  1. Life expectancy in the United States, 1860-2020

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Life expectancy in the United States, 1860-2020 [Dataset]. https://www.statista.com/statistics/1040079/life-expectancy-united-states-all-time/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    Over the past 160 years, life expectancy (from birth) in the United States has risen from 39.4 years in 1860, to 78.9 years in 2020. One of the major reasons for the overall increase of life expectancy in the last two centuries is the fact that the infant and child mortality rates have decreased by so much during this time. Medical advancements, fewer wars and improved living standards also mean that people are living longer than they did in previous centuries.

    Despite this overall increase, the life expectancy dropped three times since 1860; from 1865 to 1870 during the American Civil War, from 1915 to 1920 during the First World War and following Spanish Flu epidemic, and it has dropped again between 2015 and now. The reason for the most recent drop in life expectancy is not a result of any specific event, but has been attributed to negative societal trends, such as unbalanced diets and sedentary lifestyles, high medical costs, and increasing rates of suicide and drug use.

  2. M

    Life Expectancy Statistics 2025 By Health Progress

    • media.market.us
    Updated Jan 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market.us Media (2025). Life Expectancy Statistics 2025 By Health Progress [Dataset]. https://media.market.us/life-expectancy-statistics/
    Explore at:
    Dataset updated
    Jan 14, 2025
    Dataset authored and provided by
    Market.us Media
    License

    https://media.market.us/privacy-policyhttps://media.market.us/privacy-policy

    Time period covered
    2022 - 2032
    Area covered
    Global
    Description

    Introduction

    Life Expectancy Statistics: Life expectancy is the average number of years a person is expected to live based on current mortality rates in a specific population.

    It is influenced by healthcare quality, lifestyle choices, economic conditions, genetics, environmental factors, and social determinants like education and public health policies.

    Typically measured as life expectancy at birth, it reflects the average lifespan of a newborn. However, it can also be assessed for older ages, such as 65, to predict additional years of life.

    https://media.market.us/wp-content/uploads/2024/12/life-expectancy-statistics.png" alt="Life Expectancy Statistics" class="wp-image-27483">

  3. NCHS - Death rates and life expectancy at birth

    • catalog.data.gov
    • data.virginia.gov
    • +4more
    Updated Apr 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). NCHS - Death rates and life expectancy at birth [Dataset]. https://catalog.data.gov/dataset/nchs-death-rates-and-life-expectancy-at-birth
    Explore at:
    Dataset updated
    Apr 23, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This dataset of U.S. mortality trends since 1900 highlights the differences in age-adjusted death rates and life expectancy at birth by race and sex. Age-adjusted death rates (deaths per 100,000) after 1998 are calculated based on the 2000 U.S. standard population. Populations used for computing death rates for 2011–2017 are postcensal estimates based on the 2010 census, estimated as of July 1, 2010. Rates for census years are based on populations enumerated in the corresponding censuses. Rates for noncensus years between 2000 and 2010 are revised using updated intercensal population estimates and may differ from rates previously published. Data on age-adjusted death rates prior to 1999 are taken from historical data (see References below). Life expectancy data are available up to 2017. Due to changes in categories of race used in publications, data are not available for the black population consistently before 1968, and not at all before 1960. More information on historical data on age-adjusted death rates is available at https://www.cdc.gov/nchs/nvss/mortality/hist293.htm. SOURCES CDC/NCHS, National Vital Statistics System, historical data, 1900-1998 (see https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm); CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES National Center for Health Statistics, Data Warehouse. Comparability of cause-of-death between ICD revisions. 2008. Available from: http://www.cdc.gov/nchs/nvss/mortality/comparability_icd.htm. National Center for Health Statistics. Vital statistics data available. Mortality multiple cause files. Hyattsville, MD: National Center for Health Statistics. Available from: https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. Kochanek KD, Murphy SL, Xu JQ, Arias E. Deaths: Final data for 2017. National Vital Statistics Reports; vol 68 no 9. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_09-508.pdf. Arias E, Xu JQ. United States life tables, 2017. National Vital Statistics Reports; vol 68 no 7. Hyattsville, MD: National Center for Health Statistics. 2019. Available from: https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_07-508.pdf. National Center for Health Statistics. Historical Data, 1900-1998. 2009. Available from: https://www.cdc.gov/nchs/nvss/mortality_historical_data.htm.

  4. r

    Life Expectancy Trends

    • redivis.com
    Updated Jan 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Life Expectancy Trends [Dataset]. https://redivis.com/datasets/w5kt-6wb4cxdnz
    Explore at:
    Dataset updated
    Jan 10, 2020
    Dataset authored and provided by
    Stanford Center for Population Health Sciences
    Time period covered
    2001 - 2014
    Description

    CZ-level estimates of trends in life expectancy for men and women, by income quartile.

  5. Life expectancy in North America 2022

    • statista.com
    Updated Jul 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Life expectancy in North America 2022 [Dataset]. https://www.statista.com/statistics/274513/life-expectancy-in-north-america/
    Explore at:
    Dataset updated
    Jul 5, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    North America
    Description

    This statistic shows the average life expectancy in North America for those born in 2022, by gender and region. In Canada, the average life expectancy was 80 years for males and 84 years for females.

    Life expectancy in North America

    Of those considered in this statistic, the life expectancy of female Canadian infants born in 2021 was the longest, at 84 years. Female infants born in America that year had a similarly high life expectancy of 81 years. Male infants, meanwhile, had lower life expectancies of 80 years (Canada) and 76 years (USA).

    Compare this to the worldwide life expectancy for babies born in 2021: 75 years for women and 71 years for men. Of continents worldwide, North America ranks equal first in terms of life expectancy of (77 years for men and 81 years for women). Life expectancy is lowest in Africa at just 63 years and 66 years for males and females respectively. Japan is the country with the highest life expectancy worldwide for babies born in 2020.

    Life expectancy is calculated according to current mortality rates of the population in question. Global variations in life expectancy are caused by differences in medical care, public health and diet, and reflect global inequalities in economic circumstances. Africa’s low life expectancy, for example, can be attributed in part to the AIDS epidemic. In 2019, around 72,000 people died of AIDS in South Africa, the largest amount worldwide. Nigeria, Tanzania and India were also high on the list of countries ranked by AIDS deaths that year. Likewise, Africa has by far the highest rate of mortality by communicable disease (i.e. AIDS, neglected tropics diseases, malaria and tuberculosis).

  6. d

    Public Health Statistics - Life Expectancy By Community Area - Historical

    • catalog.data.gov
    • data.cityofchicago.org
    • +1more
    Updated Jan 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2024). Public Health Statistics - Life Expectancy By Community Area - Historical [Dataset]. https://catalog.data.gov/dataset/public-health-statistics-life-expectancy-by-community-area
    Explore at:
    Dataset updated
    Jan 12, 2024
    Dataset provided by
    data.cityofchicago.org
    Description

    Note: This dataset is historical only and there are not corresponding datasets for more recent time periods. For that more-recent information, please visit the Chicago Health Atlas at https://chicagohealthatlas.org. This dataset gives the average life expectancy and corresponding confidence intervals for each Chicago community area for the years 1990, 2000 and 2010. See the full description at: https://data.cityofchicago.org/api/views/qjr3-bm53/files/AAu4x8SCRz_bnQb8SVUyAXdd913TMObSYj6V40cR6p8?download=true&filename=P:\EPI\OEPHI\MATERIALS\REFERENCES\Life Expectancy\Dataset description - LE by community area.pdf

  7. Life expectancy by continent and gender 2024

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Life expectancy by continent and gender 2024 [Dataset]. https://www.statista.com/statistics/270861/life-expectancy-by-continent/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Worldwide
    Description

    In 2024, the average life expectancy in the world was 71 years for men and 76 years for women. The lowest life expectancies were found in Africa, while Oceania and Europe had the highest. What is life expectancy?Life expectancy is defined as a statistical measure of how long a person may live, based on demographic factors such as gender, current age, and most importantly the year of their birth. The most commonly used measure of life expectancy is life expectancy at birth or at age zero. The calculation is based on the assumption that mortality rates at each age were to remain constant in the future. Life expectancy has changed drastically over time, especially during the past 200 years. In the early 20th century, the average life expectancy at birth in the developed world stood at 31 years. It has grown to an average of 70 and 75 years for males and females respectively, and is expected to keep on growing with advances in medical treatment and living standards continuing. Highest and lowest life expectancy worldwide Life expectancy still varies greatly between different regions and countries of the world. The biggest impact on life expectancy is the quality of public health, medical care, and diet. As of 2022, the countries with the highest life expectancy were Japan, Liechtenstein, Switzerland, and Australia, all at 84–83 years. Most of the countries with the lowest life expectancy are mostly African countries. The ranking was led by the Chad, Nigeria, and Lesotho with 53–54 years.

  8. r

    State Life Expectancy Trends

    • redivis.com
    Updated Jan 10, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). State Life Expectancy Trends [Dataset]. https://redivis.com/datasets/w5kt-6wb4cxdnz
    Explore at:
    Dataset updated
    Jan 10, 2020
    Dataset authored and provided by
    Stanford Center for Population Health Sciences
    Time period covered
    2001 - 2014
    Description

    State-level estimates of trends in life expectancy for men and women, by income quartile

  9. Life expectancy at birth worldwide 1950-2100

    • statista.com
    • ai-chatbox.pro
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Life expectancy at birth worldwide 1950-2100 [Dataset]. https://www.statista.com/statistics/805060/life-expectancy-at-birth-worldwide/
    Explore at:
    Dataset updated
    Mar 26, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Global life expectancy at birth has risen significantly since the mid-1900s, from roughly 46 years in 1950 to 73.2 years in 2023. Post-COVID-19 projections There was a drop of 1.7 years during the COVID-19 pandemic, between 2019 and 2021, however, figures resumed upon their previous trajectory the following year due to the implementation of vaccination campaigns and the lower severity of later strains of the virus. By the end of the century it is believed that global life expectancy from birth will reach 82 years, although growth will slow in the coming decades as many of the more-populous Asian countries reach demographic maturity. However, there is still expected to be a wide gap between various regions at the end of the 2100s, with the Europe and North America expected to have life expectancies around 90 years, whereas Sub-Saharan Africa is predicted to be in the low-70s. The Great Leap Forward While a decrease of one year during the COVID-19 pandemic may appear insignificant, this is the largest decline in life expectancy since the "Great Leap Forward" in China in 1958, which caused global life expectancy to fall by almost four years between by 1960. The "Great Leap Forward" was a series of modernizing reforms, which sought to rapidly transition China's agrarian economy into an industrial economy, but mismanagement led to tens of millions of deaths through famine and disease.

  10. d

    Public Health Statistics - Life Expectancy By Race Ethnicity - Historical

    • catalog.data.gov
    • data.cityofchicago.org
    • +2more
    Updated Dec 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofchicago.org (2023). Public Health Statistics - Life Expectancy By Race Ethnicity - Historical [Dataset]. https://catalog.data.gov/dataset/public-health-statistics-life-expectancy-by-race-ethnicity
    Explore at:
    Dataset updated
    Dec 2, 2023
    Dataset provided by
    data.cityofchicago.org
    Description

    Note: This dataset is historical only and there are not corresponding datasets for more recent time periods. For that more-recent information, please visit the Chicago Health Atlas at https://chicagohealthatlas.org. This dataset gives the average life expectancy and corresponding confidence intervals for sex and racial-ethnic groups in Chicago for the years 1990, 2000 and 2010. See the full description at: https://data.cityofchicago.org/api/views/3qdj-cqb8/files/pJ3PVVyubnsS2SpGO5P5IOPtNgCJZTE3LNOeLagC3mw?download=true&filename=P:\EPI\OEPHI\MATERIALS\REFERENCES\Life Expectancy\Dataset description_LE_ Sex_Race_Ethnicity.pdf

  11. Life expectancy in Europe 2024

    • statista.com
    • ai-chatbox.pro
    Updated Nov 28, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Life expectancy in Europe 2024 [Dataset]. https://www.statista.com/statistics/274514/life-expectancy-in-europe/
    Explore at:
    Dataset updated
    Nov 28, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2024
    Area covered
    Europe
    Description

    This statistic shows the average life expectancy in Europe for those born in 2024, by gender and region. The average life expectancy in Western Europe was 79 years for males and 84 years for females in 2024. Additional information on European life expectancy The difference in life expectancy seen between men and women across all European regions is in line with the global trends of women outliving men, on average. The average life expectancy at birth worldwide by income group shows that the gender life expectancy gap is not only a consistent trend across countries, but also income groups. Moreover, the higher life expectancy for those in high income groups may help to explain the lower average life expectancy for those born in Eastern Europe where average incomes are generally lower than other European regions. Although income and length of life are not directly correlated, higher income individuals are generally able to afford access to superior nutrition and healthcare as well as having leisure time for exercise. That said, current trends in the increases in life expectancy worldwide by country between 1970 and 2017 suggest economic growth will lead to larger increases in life expectancy. Those increases are less likely to occur to such a degree in the more developed regions of Europe where Italy, Spain, France, Switzerland, Iceland and Austria all rank in the top 20 countries with the highest life expectancy.

  12. Health Inequality Project

    • redivis.com
    application/jsonl +7
    Updated Jan 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). Health Inequality Project [Dataset]. http://doi.org/10.57761/7wg0-e126
    Explore at:
    parquet, arrow, avro, spss, csv, stata, sas, application/jsonlAvailable download formats
    Dataset updated
    Jan 17, 2020
    Dataset provided by
    Redivis Inc.
    Authors
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 1, 2001 - Dec 31, 2014
    Description

    Abstract

    The Health Inequality Project uses big data to measure differences in life expectancy by income across areas and identify strategies to improve health outcomes for low-income Americans.

    Section 7

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 13

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution separately by year. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 6

    This dataset was created on 2020-01-10 18:53:00.508 by merging multiple datasets together. The source datasets for this version were:

    Commuting Zone Life Expectancy Estimates by year: CZ-level by-year life expectancy estimates for men and women, by income quartile

    Commuting Zone Life Expectancy: Commuting zone (CZ)-level life expectancy estimates for men and women, by income quartile

    Commuting Zone Life Expectancy Trends: CZ-level estimates of trends in life expectancy for men and women, by income quartile

    Commuting Zone Characteristics: CZ-level characteristics

    Commuting Zone Life Expectancy for larger populations: CZ-level life expectancy estimates for men and women, by income ventile

    Section 15

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by state of residence and year. Both race-adjusted and unadjusted estimates are reported.

    Source

    Section 11

    This table reports US mortality rates by gender, age, year and household income percentile. Household incomes are measured two years prior to the mortality rate for mortality rates at ages 40-63, and at age 61 for mortality rates at ages 64-76. The “lag” variable indicates the number of years between measurement of income and mortality.

    Observations with 1 or 2 deaths have been masked: all mortality rates that reflect only 1 or 2 deaths have been recoded to reflect 3 deaths

    Source

    Section 3

    This table reports coefficients and standard errors from regressions of life expectancy estimates for men and women at age 40 for each quartile of the national income distribution on calendar year by commuting zone of residence. Only the slope coefficient, representing the average increase or decrease in life expectancy per year, is reported. Trend estimates for both race-adjusted and unadjusted life expectancies are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.

    Source

    Section 9

    This table reports life expectancy estimates at age 40 for Males and Females for all countries. Source: World Health Organization, accessed at: http://apps.who.int/gho/athena/

    Source

    Section 10

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by county of residence. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for counties with populations larger than 25,000 only

    Source

    Section 2

    This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by commuting zone of residence and year. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.

    Source

    Section 8

    This table reports US population and death counts by age, year, and sex from various sources. Counts labelled “dm1” are derived from the Social Security Administration Data Master 1 file. Counts labelled “irs” are derived from tax data. Counts labelled “cdc” are derived from NCHS life tables.

    Source

    Section 12

    This table reports numerous county characteristics, compiled from various sources. These characteristics are described in the county life expectancy table.

    Two variables constructed by the Cen

  13. Divergent trends in life expectancy across the rural-urban gradient and...

    • catalog.data.gov
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Divergent trends in life expectancy across the rural-urban gradient and association with specific racial proportions in the contiguous United States 2000-2005 [Dataset]. https://catalog.data.gov/dataset/divergent-trends-in-life-expectancy-across-the-rural-urban-gradient-and-association-w-2000
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Area covered
    Contiguous United States, United States
    Description

    We used individual-level death data to estimate county-level life expectancy at 25 (e25) for Whites, Black, AIAN and Asian in the contiguous US for 2000-2005. Race-sex-stratified models were used to examine the associations among e25, rurality and specific race proportion, adjusted for socioeconomic variables. Individual death data from the National Center for Health Statistics were aggregated as death counts into five-year age groups by county and race-sex groups for the contiguous US for years 2000-2005 (National Center for Health Statistics 2000-2005). We used bridged-race population estimates to calculate five-year mortality rates. The bridged population data mapped 31 race categories, as specified in the 1997 Office of Management and Budget standards for the collection of data on race and ethnicity, to the four race categories specified under the 1977 standards (the same as race categories in mortality registration) (Ingram et al. 2003). The urban-rural gradient was represented by the 2003 Rural Urban Continuum Codes (RUCC), which distinguished metropolitan counties by population size, and nonmetropolitan counties by degree of urbanization and adjacency to a metro area (United States Department of Agriculture 2016). We obtained county-level sociodemographic data for 2000-2005 from the US Census Bureau. These included median household income, percent of population attaining greater than high school education (high school%), and percent of county occupied rental units (rent%). We obtained county violent crime from Uniform Crime Reports and used it to calculate mean number of violent crimes per capita (Federal Bureau of Investigation 2010). This dataset is not publicly accessible because: EPA cannot release personally identifiable information regarding living individuals, according to the Privacy Act and the Freedom of Information Act (FOIA). This dataset contains information about human research subjects. Because there is potential to identify individual participants and disclose personal information, either alone or in combination with other datasets, individual level data are not appropriate to post for public access. Restricted access may be granted to authorized persons by contacting the party listed. It can be accessed through the following means: Request to author. Format: Data are stored as csv files. This dataset is associated with the following publication: Jian, Y., L. Neas, L. Messer, C. Gray, J. Jagai, K. Rappazzo, and D. Lobdell. Divergent trends in life expectancy across the rural-urban gradient among races in the contiguous United States. International Journal of Public Health. Springer Basel AG, Basel, SWITZERLAND, 64(9): 1367-1374, (2019).

  14. US Life Expectancy by Age and Sex

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). US Life Expectancy by Age and Sex [Dataset]. https://www.johnsnowlabs.com/marketplace/us-life-expectancy-by-age-and-sex/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Time period covered
    2000 - 2015
    Area covered
    United States
    Description

    The dataset contains the life expectancy of US population across all ages from 2000 to 2015. Data is based on official estimates of life expectancy. The age pattern of mortality is based on life tables from the Human Mortality Database.

  15. Data from: Age-Adjusted Death Rates

    • kaggle.com
    Updated Jan 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Devastator (2023). Age-Adjusted Death Rates [Dataset]. https://www.kaggle.com/datasets/thedevastator/age-adjusted-death-rates/suggestions?status=pending
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 23, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    The Devastator
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Age-Adjusted Death Rates

    Death Rates and Life Expectancy in the United States, 2011-2013

    By Health [source]

    About this dataset

    More Datasets

    For more datasets, click here.

    Featured Notebooks

    • 🚨 Your notebook can be here! 🚨!

    How to use the dataset

    In order to use this dataset, start by selecting a particular set of variables to investigate. You can choose from Measure Names (e.g., Death Rates or Life Expectancy), Race (e.g., All Races), Sex (Male/Female) and Year (2011-2013). Once you have selected your desired variables, you can begin analyzing the data by looking at mortality rates and life expectancy averages amongst different populations in the United States over time.

    You may also wish to perform more detailed analyses such as identifying trends or examining correlations between features, regional disparities in mortality rates or changes in average life expectancies over time. If so, you can do so by creating line graphs plotted against one or more independent variables such as Race and Sex to see how demographics impact these statistics overall and on a yearly basis using the Year variable computed from July 1st 2010 estimates

    Research Ideas

    • Analyzing mortality and life expectancy trends among certain races and sexes over time.
    • Examining the effects of different socioeconomic factors on death rates and life expectancies.
    • Making predictions about future mortality rates and average life expectancies with machine learning algorithms

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. Data Source

    License

    License: Open Database License (ODbL) v1.0 - You are free to: - Share - copy and redistribute the material in any medium or format. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices. - No Derivatives - If you remix, transform, or build upon the material, you may not distribute the modified material. - No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

    Columns

    File: rows.csv | Column name | Description | |:----------------------------|:----------------------------------------------------------------------| | Measure Names | The type of measure being reported. (String) | | Race | The race of the population being reported. (String) | | Sex | The gender of the population being reported. (String) | | Year | The year the data was collected. (Integer) | | Average Life Expectancy | The average life expectancy of the population being reported. (Float) | | Mortality | The mortality rate of the population being reported. (Float) |

    Acknowledgements

    If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Health.

  16. M

    China Life Expectancy 1950-2025

    • macrotrends.net
    csv
    Updated May 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MACROTRENDS (2025). China Life Expectancy 1950-2025 [Dataset]. https://www.macrotrends.net/global-metrics/countries/chn/china/life-expectancy
    Explore at:
    csvAvailable download formats
    Dataset updated
    May 31, 2025
    Dataset authored and provided by
    MACROTRENDS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1950 - Jun 2, 2025
    Area covered
    China
    Description
    China life expectancy for 2025 is 77.81, a 0.22% increase from 2024.
    <ul style='margin-top:20px;'>
    
    <li>China life expectancy for 2024 was <strong>77.64</strong>, a <strong>0.22% increase</strong> from 2023.</li>
    <li>China life expectancy for 2023 was <strong>77.47</strong>, a <strong>0.22% increase</strong> from 2022.</li>
    <li>China life expectancy for 2022 was <strong>77.30</strong>, a <strong>0.22% increase</strong> from 2021.</li>
    </ul>Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.
    
  17. f

    The setting of the rising sun? A recent comparative history of life...

    • plos.figshare.com
    docx
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tim Adair; Rebecca Kippen; Mohsen Naghavi; Alan D. Lopez (2023). The setting of the rising sun? A recent comparative history of life expectancy trends in Japan and Australia [Dataset]. http://doi.org/10.1371/journal.pone.0214578
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Tim Adair; Rebecca Kippen; Mohsen Naghavi; Alan D. Lopez
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Australia, Japan
    Description

    IntroductionAdult male and female mortality declines in Japan have been slower than in most high-income countries since the early 1990s. This study compares Japan’s recent life expectancy trends with the more favourable trends in Australia, measures the contribution of age groups and causes of death to differences in these trends, and places the findings in the context of the countries’ risk factor transitions.MethodsThe study utilises data on deaths by age, sex and cause in Australia and Japan from 1950–2016 from the Global Burden of Disease Study. A decomposition method measures the contributions of various ages and causes to the male and female life expectancy gap and changes over four distinct phases during this period. Mortality differences by cohort are also assessed.FindingsJapan’s two-year male life expectancy advantage over Australia in the 1980s closed in the following 20 years. The trend was driven by ages 45–64 and then 65–79 years, and the cohort born in the late 1940s. Over half of Australia’s gains were from declines in ischaemic heart disease (IHD) mortality, with lung cancer, chronic respiratory disease and self-harm also contributing substantially. Since 2011 the trend has reversed again, and in 2016 Japan had a slightly higher male life expectancy. The advantage in Japanese female life expectancy widened over the period to 2.3 years in 2016. The 2016 gap was mostly from differential mortality at ages 65 years and over from IHD, chronic respiratory disease and cancers.ConclusionsThe considerable gains in Australian male life expectancy from declining non-communicable disease mortality are attributable to a range of risk factors, including declining smoking prevalence due to strong public health interventions. A recent reversal in life expectancy trends could continue because Japan has greater scope for further falls in smoking and far lower levels of obesity. Japan’s substantial female life expectancy advantage however could diminish in future because it is primarily due to lower mortality at old ages.

  18. f

    World Life Expectancy to 2100 - Trends and Data

    • futurebase.com
    Updated May 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Futurebase (2020). World Life Expectancy to 2100 - Trends and Data [Dataset]. https://futurebase.com/trends/world-life-expectancy
    Explore at:
    Dataset updated
    May 4, 2020
    Dataset provided by
    Futurebase
    Area covered
    World
    Description

    This chart shows global life expectancy, at birth, from the year 1800 to 2100.

  19. Global life expectancy from birth in selected regions 1820-2020

    • statista.com
    Updated Aug 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Global life expectancy from birth in selected regions 1820-2020 [Dataset]. https://www.statista.com/statistics/1302736/global-life-expectancy-by-region-country-historical/
    Explore at:
    Dataset updated
    Aug 9, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    North America, Africa, Asia, Europe, LAC
    Description

    A global phenomenon, known as the demographic transition, has seen life expectancy from birth increase rapidly over the past two centuries. In pre-industrial societies, the average life expectancy was around 24 years, and it is believed that this was the case throughout most of history, and in all regions. The demographic transition then began in the industrial societies of Europe, North America, and the West Pacific around the turn of the 19th century, and life expectancy rose accordingly. Latin America was the next region to follow, before Africa and most Asian populations saw their life expectancy rise throughout the 20th century.

  20. S

    Sweden SE: Life Expectancy at Birth: Female

    • ceicdata.com
    Updated Jan 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). Sweden SE: Life Expectancy at Birth: Female [Dataset]. https://www.ceicdata.com/en/sweden/health-statistics/se-life-expectancy-at-birth-female
    Explore at:
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Sweden
    Description

    Sweden SE: Life Expectancy at Birth: Female data was reported at 84.100 Year in 2016. This stayed constant from the previous number of 84.100 Year for 2015. Sweden SE: Life Expectancy at Birth: Female data is updated yearly, averaging 80.150 Year from Dec 1960 (Median) to 2016, with 57 observations. The data reached an all-time high of 84.200 Year in 2014 and a record low of 74.870 Year in 1960. Sweden SE: Life Expectancy at Birth: Female data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Sweden – Table SE.World Bank: Health Statistics. Life expectancy at birth indicates the number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life.; ; (1) United Nations Population Division. World Population Prospects: 2017 Revision. (2) Census reports and other statistical publications from national statistical offices, (3) Eurostat: Demographic Statistics, (4) United Nations Statistical Division. Population and Vital Statistics Reprot (various years), (5) U.S. Census Bureau: International Database, and (6) Secretariat of the Pacific Community: Statistics and Demography Programme.; Weighted average;

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). Life expectancy in the United States, 1860-2020 [Dataset]. https://www.statista.com/statistics/1040079/life-expectancy-united-states-all-time/
Organization logo

Life expectancy in the United States, 1860-2020

Explore at:
47 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Aug 9, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

Over the past 160 years, life expectancy (from birth) in the United States has risen from 39.4 years in 1860, to 78.9 years in 2020. One of the major reasons for the overall increase of life expectancy in the last two centuries is the fact that the infant and child mortality rates have decreased by so much during this time. Medical advancements, fewer wars and improved living standards also mean that people are living longer than they did in previous centuries.

Despite this overall increase, the life expectancy dropped three times since 1860; from 1865 to 1870 during the American Civil War, from 1915 to 1920 during the First World War and following Spanish Flu epidemic, and it has dropped again between 2015 and now. The reason for the most recent drop in life expectancy is not a result of any specific event, but has been attributed to negative societal trends, such as unbalanced diets and sedentary lifestyles, high medical costs, and increasing rates of suicide and drug use.

Search
Clear search
Close search
Google apps
Main menu