Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE
Google Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.
Explore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.
EXPLORE TIMELAPSEThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.
EXPLORE DATASETSThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.
EXPLORE THE APIUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.
LEARN ABOUT THE CODE EDITORScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.
SEE CASE STUDIESThe Google Satellite Embedding dataset is a global, analysis-ready collection of learned geospatial embeddings. Each 10-meter pixel in this dataset is a 64-dimensional representation, or "embedding vector," that encodes temporal trajectories of surface conditions at and around that pixel as measured by various Earth observation instruments and datasets, over a …
https://brightdata.com/licensehttps://brightdata.com/license
The Google Maps dataset is ideal for getting extensive information on businesses anywhere in the world. Easily filter by location, business type, and other factors to get the exact data you need. The Google Maps dataset includes all major data points: timestamp, name, category, address, description, open website, phone number, open_hours, open_hours_updated, reviews_count, rating, main_image, reviews, url, lat, lon, place_id, country, and more.
Are you looking to identify B2B leads to promote your business, product, or service? Outscraper Google Maps Scraper might just be the tool you've been searching for. This powerful software enables you to extract business data directly from Google's extensive database, which spans millions of businesses across countless industries worldwide.
Outscraper Google Maps Scraper is a tool built with advanced technology that lets you scrape a myriad of valuable information about businesses from Google's database. This information includes but is not limited to, business names, addresses, contact information, website URLs, reviews, ratings, and operational hours.
Whether you are a small business trying to make a mark or a large enterprise exploring new territories, the data obtained from the Outscraper Google Maps Scraper can be a treasure trove. This tool provides a cost-effective, efficient, and accurate method to generate leads and gather market insights.
By using Outscraper, you'll gain a significant competitive edge as it allows you to analyze your market and find potential B2B leads with precision. You can use this data to understand your competitors' landscape, discover new markets, or enhance your customer database. The tool offers the flexibility to extract data based on specific parameters like business category or geographic location, helping you to target the most relevant leads for your business.
In a world that's growing increasingly data-driven, utilizing a tool like Outscraper Google Maps Scraper could be instrumental to your business' success. If you're looking to get ahead in your market and find B2B leads in a more efficient and precise manner, Outscraper is worth considering. It streamlines the data collection process, allowing you to focus on what truly matters – using the data to grow your business.
https://outscraper.com/google-maps-scraper/
As a result of the Google Maps scraping, your data file will contain the following details:
Query Name Site Type Subtypes Category Phone Full Address Borough Street City Postal Code State Us State Country Country Code Latitude Longitude Time Zone Plus Code Rating Reviews Reviews Link Reviews Per Scores Photos Count Photo Street View Working Hours Working Hours Old Format Popular Times Business Status About Range Posts Verified Owner ID Owner Title Owner Link Reservation Links Booking Appointment Link Menu Link Order Links Location Link Place ID Google ID Reviews ID
If you want to enrich your datasets with social media accounts and many more details you could combine Google Maps Scraper with Domain Contact Scraper.
Domain Contact Scraper can scrape these details:
Email Facebook Github Instagram Linkedin Phone Twitter Youtube
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Training Classifiers, Supervised Classification and Error Assessment
• How to add raster and vector data from the catalog in Google Earth Engine;
• Train a classifier;
• Perform the error assessment;
• Download the results.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data Management • Create and edit fusion tables • Upload imagery, vector, and tabular data using Fusion Tables and KMLs • Share data with other Google Earth Engine (GEE) users as well as download imagery after manipulation in GEE.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This resource contain the training materials from a workshop held at the 2nd Annual Developers Conference at the University of Utah. It delves into the integration of ground-based observations with remote sensing datasets. The workshop facilitated hands-on experience in employing cloud-based technologies such as Google Earth Engine, Compute Engine, and Cloud Storage for data dissemination. Participants learned to create automated systems for data upload, processing, and dissemination, featuring the Stevens River Ice Monitoring System. This approach enhances collaboration and efficiency in environmental studies by streamlining data handling workflows.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Artificial impervious surface area (ISA) documents human footprints. Accurate, timely, and detailed ISA datasets are therefore essential for global climate change and urban planning. However, due to the lack of sufficient training samples and operational mapping methods, global ISA mapping at 10-m resolution is still lacking. To this end, we proposed a global ISA mapping method leveraging multi-source geospatial data. Based on the existing satellite-derived ISA maps and the crowdsourcing OpenStreetMap (OSM), 58 million training samples were extracted via a series of temporal, spatial, spectral, and geometric rules. Combined with over 2.7 million Sentinel optical and radar images on the Google Earth Engine, we produced the 10 m global ISA dataset (GISA-10m). Based on the test samples that are independent to the training set, GISA-10m embraced an overall accuracy greater than 86%. In addition, the GISA-10m was comprehensively compared with the existing global ISA datasets, and the superiority of GISA-10m was demonstrated. The global dataset can be interpreted using the vrt file provided (GISA-10m_v01_2016.vrt).
Top of Atmosphere (TOA) reflectance data in bands from the USGS Landsat 5 and Landsat 8 satellites were accessed via Google Earth Engine. CANUE staff used Google Earth Engine functions to create cloud free annual composites, and mask water features, then export the resulting band data. NDVI indices were calculated as (band 4 - Band 3)/(Band 4 Band 3) for Landsat 5 data, and as (band 5 - band 4)/(band 5 Band 4) for Landsat 8 data. These composites are created from all the scenes in each annual period beginning from the first day of the year and continuing to the last day of the year. No data were available for 2012, due to decommissioning of Landsat 5 in 2011 prior to the start of Landsat 8 in 2013. No cross-calibration between the sensors was performed, please be aware there may be small bias differences between NDVI values calculated using Landsat 5 and Landsat 8. Final NDVI metrics were linked to all 6-digit DMTI Spatial single link postal code locations in Canada, and for surrounding areas within 100m, 250m, 500m, and 1km.
PLEASE NOTE: These data do not include data over Tasmania. Please see links relevant to that area.
GEODATA TOPO 250K Series 3 is a vector representation of the major topographic features appearing on the 1:250,000 scale NATMAPs supplied in KML format and is designed for use in a range of commercial GIS software. Data is arranged within specific themes. All data is based on the GDA94 coordinate system.
GEODATA TOPO 250K Series 3 is available as a free download product in Personal Geodatabase, ArcView Shapefile or MapInfo TAB file formats. Each package includes data arranged in ten main themes - cartography, elevation, framework, habitation, hydrography, infrastructure, terrain, transport, utility and vegetation. Data is also available as GEODATA TOPO 250K Series 3 for Google Earth in kml format for use on Google Earth TM Mapping Service.
Product Specifications
Themes: Cartography, Elevation, Framework, Habitation, Hydrography, Infrastructure, Terrain, Transport, Utility and Vegetation
Coverage: National (Powerlines not available in South Australia)
Currency: Data has a currency of less than five years for any location
Coordinates: Geographical
Datum: Geocentric Datum of Australia (GDA94)
Formats: Personal Geodatabase, kml, Shapefile and MapInfo TAB
Release Date: 26 June 2006
KML is a file format used to display geographic data in an Earth browser such as Google Earth. This dataset contains KML files used to display the NSF/NCAR HIAPER GV flight track in real-time during the ASPIRE project.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
GEE-TED: A tsetse ecological distribution model for Google Earth Engine Please refer to the associated publication: Fox, L., Peter, B.G., Frake, A.N. and Messina, J.P., 2023. A Bayesian maximum entropy model for predicting tsetse ecological distributions. International Journal of Health Geographics, 22(1), p.31. https://link.springer.com/article/10.1186/s12942-023-00349-0 Description GEE-TED is a Google Earth Engine (GEE; Gorelick et al. 2017) adaptation of a tsetse ecological distribution (TED) model developed by DeVisser et al. (2010), which was designed for use in ESRI's ArcGIS. TED uses time-series climate and land-use/land-cover (LULC) data to predict the probability of tsetse presence across space based on species habitat preferences (in this case Glossina Morsitans). Model parameterization includes (1) day and night temperatures (MODIS Land Surface Temperature; MOD11A2), (2) available moisture/humidity using a vegetation index as a proxry (MODIS NDVI; MOD13Q1), (3) LULC (MODIS Land Cover Type 1; MCD12Q1), (4) year selections, and (5) fly movement rate (meters/16-days). TED has also been used as a basis for the development of an agent-based model by Lin et al. (2015) and in a cost-benefit analysis of tsetse control in Tanzania by Yang et al. (2017). Parameterization in Fox et al. (2023): Suitable LULC types and climate thresholds used here are specific to Glossina Morsitans in Kenya and are based on the parameterization selections in DeVisser et al. (2010) and DeVisser and Messina (2009). Suitable temperatures range from 17–40°C during the day and 10–40°C at night and available moisture is characterized as NDVI > 0.39. Suitable LULC comprises predominantly woody vegetation; a complete list of suitable categories is available in DeVisser and Messina (2009). In the Fox et al. (Forthcoming) publication, two versions of MCD12Q1 were used to assess suitable LULC types: Versions 051 and 006. The GeoTIFF supplied in this dataset entry (GEE-TED_Kenya_2016-2017.tif) uses the aforementioned parameters to show the probable tsetse distribution across Kenya for the years 2016-2017. A static graphic of this GEE-TED output is shown below and an interactive version can be viewed at: https://cartoscience.users.earthengine.app/view/gee-ted. Figure associated with Fox et al. (2023) GEE code The code supplied below is generalizable across geographies and species; however, it is highly recommended that parameterization is given considerable attention to produce reliable results. Note that output visualization on-the-fly will take some time and it is recommended that results be exported as an asset within GEE or exported as a GeoTIFF. Note: Since completing the Fox et al. (2023) manuscript, GEE has removed Version 051 per NASA's deprecation of the product. The current release of GEE-TED now uses only MCD12Q1 Version 006; however, alternative LULC data selections can be used with minimal modification to the code. // Input options var tempMin = 10 // Temperature thresholds in degrees Celsius var tempMax = 40 var ndviMin = 0.39 // NDVI thresholds; proxy for available moisture/humidity var ndviMax = 1 var movement = 500 // Fly movement rate in meters/16-days var startYear = 2008 // The first 2 years will be used for model initialization var endYear = 2019 // Computed probability is based on startYear+2 to endYear var country = 'KE' // Country codes - https://en.wikipedia.org/wiki/List_of_FIPS_country_codes var crs = 'EPSG:32737' // See https://epsg.io/ for appropriate country UTM zone var rescale = 250 // Output spatial resolution var labelSuffix = '02052020' // For file export labeling only //[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17] MODIS/006/MCD12Q1 var lulcOptions006 = [1,1,1,1,1,1,1,1,1, 0, 1, 0, 0, 0, 0, 0, 0] // 1 = suitable 0 = unsuitable // No more input required ------------------------------ // var region = ee.FeatureCollection("USDOS/LSIB_SIMPLE/2017") .filterMetadata('country_co', 'equals', country) // Input parameter modifications var tempMinMod = (tempMin+273.15)/0.02 var tempMaxMod = (tempMax+273.15)/0.02 var ndviMinMod = ndviMin*10000 var ndviMaxMod = ndviMax*10000 var ndviResolution = 250 var movementRate = movement+(ndviResolution/2) // Loading image collections var lst = ee.ImageCollection('MODIS/006/MOD11A2').select('LST_Day_1km', 'LST_Night_1km') .filter(ee.Filter.calendarRange(startYear,endYear,'year')) var ndvi = ee.ImageCollection('MODIS/006/MOD13Q1').select('NDVI') .filter(ee.Filter.calendarRange(startYear,endYear,'year')) var lulc006 = ee.ImageCollection('MODIS/006/MCD12Q1').select('LC_Type1') // Lulc mode and boolean reclassification var lulcMask = lulc006.mode().remap([1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17],lulcOptions006) .eq(1).rename('remapped').clip(region) // Merge NDVI and LST image collections var combined = ndvi.combine(lst, true) var combinedList = combined.toList(10000) // Boolean reclassifications (suitable/unsuitable) for day/night temperatures and ndvi var con =...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data Acquisition • Acquiring data stored on Google’s servers for use in Google Earth Engine.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Google Earth Engine used to compute the NDVI statistics added to Globe-LFMC. The input of the program is a point shapefile (“samplePlotsShapefile”, extensions .cpg, .dbf, .prj, .shp, .shx) representing the location of each Globe-LFMC site. This shapefile is available as additional data in figshare (see Code Availability). To run this GEE code the shapefile needs to be uploaded into the GEE Assets and, then, imported into the Code Editor with the name “plots” (without quotation marks).Google Earth Engine codeChange Notice - GEE_script_for_GlobeLFMC_ndvi_stats_v2.jsThe following acknowledgements have been added at the beginning of the code: “Portions of the following code are modifications based on work created and shared by Google in Earth Engine Data Catalog and Earth Engine Guides under the Apache 2.0 License. https://www.apache.org/licenses/LICENSE-2.0”Change Notice - samplePlotsShapefile_v2The shapefile describing the database sites has been corrected and updated with the correct coordinates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Supporting information for: REMAP: An online remote sensing application for land cover classification and monitoringcsv and json files for implementing land cover classifications using the remap, the remote ecosystem assessment and monitoring pipeline (https://remap-app.org/)Nearmap aerial photograph courtesy of Nearmap Pty Ltd.For further information see:Murray, N.J., Keith, D.A., Simpson, D., Wilshire, J.H., Lucas, R.M. (accepted) REMAP: A cloud-based remote sensing application for generalized ecosystem classifications. Methods in Ecology and Evolution.
KML is a file format used to display geographic data in an Earth browser such as Google Earth. This dataset contains KML files used to display the GV flight track in real-time during the PREDICT project
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Clipping
• How to clip a raster image to the extent of a vector polygon in order to speed up processing times as well to display only the imagery you want.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This project aims to use remote sensing data from the Landsata database from Google Earth Engine to evaluate the spatial extent changes in the Bear Lake located between the US states of Utah and Idaho. This work is part of a term project submitted to Dr Alfonso Torres-Rua as a requirment to pass the Remote Sensing of Land Surfaces class (CEE6003). More information about the course is provided below. This project uses the geemap Python package (https://github.com/giswqs/geemap) for dealing with the google earth engine datasets. The content of this notebook can be used to:
learn how to retrive the Landsat 8 remote sensed data. The same functions and methodology can also be used to get the data of other Landsat satallites and other satallites such as Sentinel-2, Sentinel-3 and many others. However, slight changes might be required when dealing with other satallites then Landsat. Learn how to create time lapse images that visulaize changes in some parameters over time. Learn how to use supervised classification to track the changes in the spatial extent of water bodies such as Bear Lake that is located between the US states of Utah and Idaho. Learn how to use different functions and tools that are part of the geemap Python package. More information about the geemap Pyhton package can be found at https://github.com/giswqs/geemap and https://github.com/diviningwater/RS_of_Land_Surfaces_laboratory Course information:
Name: Remote Sensing of Land Surfaces class (CEE6003) Instructor: Alfonso Torres-Rua (alfonso.torres@usu.edu) School: Utah State University Semester: Spring semester 2023
Esse conjunto de dados contém refletância da superfície corrigida atmosfericamente e temperatura da superfície derivadas dos dados produzidos pelos sensores OLI/TIRS do Landsat 8. Essas imagens contêm cinco bandas visíveis e de infravermelho próximo (VNIR) e duas bandas de infravermelho de ondas curtas (SWIR) processadas para refletância de superfície ortorretificada, além de uma banda de infravermelho térmico (TIR) processada para temperatura de superfície ortorretificada. Elas também contêm bandas intermediárias usadas no cálculo dos produtos de ST e bandas de controle de qualidade. Os produtos de SR do Landsat 8 são criados com o código de refletância da superfície terrestre (LaSRC, na sigla em inglês). Todos os produtos ST da Coleção 2 são criados com um algoritmo de canal único desenvolvido em conjunto pelo Rochester Institute of Technology (RIT) e pelo Jet Propulsion Laboratory (JPL) da National Aeronautics and Space Administration (NASA). As faixas de dados coletados são agrupadas em "cenas" sobrepostas que cobrem aproximadamente 170 km x 183 km usando uma grade de referência padronizada. Alguns recursos têm apenas dados de SR. Nesse caso, as bandas ST estão presentes, mas vazias. Para recursos com bandas ST e SR, "PROCESSING_LEVEL" é definido como "L2SP". Para recursos com apenas bandas SR, "PROCESSING_LEVEL" é definido como "L2SR". Outros documentos e exemplos de uso. Os arquivos da Coleção 2 da Landsat estão disponíveis publicamente em um bucket do Google Cloud Storage (link em inglês) com base no modelo de pagamento por solicitação. Os arquivos são indexados em uma tabela do BigQuery atualizada regularmente para facilitar a análise: earth-engine-public-data.geo_index.landsat_c2_index. Observações do provedor de dados: Os produtos de dados precisam conter dados ópticos e térmicos para serem processados com sucesso e gerar a temperatura da superfície. O NDVI do ASTER é necessário para ajustar temporalmente o produto ASTER GED à cena do Landsat de destino. Portanto, as aquisições noturnas não podem ser processadas para temperatura da superfície. Há um erro conhecido nas recuperações de temperatura da superfície em relação a nuvens e possíveis sombras de nuvens. A caracterização desses problemas foi documentada por Cook et al., (2014). O ASTER GED contém áreas com dados de emissividade média ausentes, que são necessários para a geração de produtos ST. Se houver informações ausentes do ASTER GED, os dados do ST também estarão ausentes nessas áreas. O conjunto de dados ASTER GED é criado com todos os pixels de céu limpo das cenas do ASTER adquiridas de 2000 a 2008. Embora esse conjunto de dados tenha uma extensão espacial global, há áreas sem informações de emissividade média devido à contaminação persistente por nuvens nas medições do ASTER. O USGS também filtra valores não físicos (emissividade < 0,6) no ASTER GED para remover qualquer subestimação de emissividade devido a nuvens não detectadas. Para qualquer pixel sem entrada ASTER GED ou com valor de emissividade não física, os produtos Landsat ST resultantes têm pixels ausentes. Os pixels ausentes de ST do Landsat serão consistentes ao longo do tempo (1982 até o presente) devido à natureza estática dos dados de climatologia média do ASTER GED. Para mais informações, consulte landsat-collection-2-surface-temperature-data-gaps-due-missing
Meet Earth EngineGoogle Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.SATELLITE IMAGERY+YOUR ALGORITHMS+REAL WORLD APPLICATIONSLEARN MOREGLOBAL-SCALE INSIGHTExplore our interactive timelapse viewer to travel back in time and see how the world has changed over the past twenty-nine years. Timelapse is one example of how Earth Engine can help gain insight into petabyte-scale datasets.EXPLORE TIMELAPSEREADY-TO-USE DATASETSThe public data archive includes more than thirty years of historical imagery and scientific datasets, updated and expanded daily. It contains over twenty petabytes of geospatial data instantly available for analysis.EXPLORE DATASETSSIMPLE, YET POWERFUL APIThe Earth Engine API is available in Python and JavaScript, making it easy to harness the power of Google’s cloud for your own geospatial analysis.EXPLORE THE APIGoogle Earth Engine has made it possible for the first time in history to rapidly and accurately process vast amounts of satellite imagery, identifying where and when tree cover change has occurred at high resolution. Global Forest Watch would not exist without it. For those who care about the future of the planet Google Earth Engine is a great blessing!-Dr. Andrew Steer, President and CEO of the World Resources Institute.CONVENIENT TOOLSUse our web-based code editor for fast, interactive algorithm development with instant access to petabytes of data.LEARN ABOUT THE CODE EDITORSCIENTIFIC AND HUMANITARIAN IMPACTScientists and non-profits use Earth Engine for remote sensing research, predicting disease outbreaks, natural resource management, and more.SEE CASE STUDIESREADY TO BE PART OF THE SOLUTION?SIGN UP NOWTERMS OF SERVICE PRIVACY ABOUT GOOGLE