CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Esri ArcGIS Server View Service - Names of the States and Their Territorial Parts is provided as a public view service for the latest list of names of states. Its origin is in the gazetteer Names of the States and Their Territorial Parts of editoral series UNO Gazetteers of Geographical Names - CZ. The view service is provided by Esri ArcGIS Server technology as a casched service. The service is accessible by one of the two access interfaces – REST and SOAP. It supports various coordinate reference systems through WMS interface.
https://weather.gov/disclaimerhttps://weather.gov/disclaimer
Last Revised: February 2016
Map Information
This nowCOAST™ time-enabled map service provides maps depicting the NWS
Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimate mosaics for
1-, 3-, 6-, 12-, 24-, 48-, and 72-hr time periods at a 1 km (0.6 miles)
horizontal resolution for CONUS and southern part of Canada. The precipitation
estimates are based only on radar data. The total precipitation amount is
indicated by different colors at 0.01, 0.10, 0.25 inches and then at 1/4 inch
intervals up to 4.0 inches (e.g. 0.50, 0.75, 1.00, 1.25, etc.), at 1-inch
intervals from 4 to 10 inches and then at 2-inch intervals up to 14+ inches.
The increments from 0.01 to 1.00 or 2.00 inches are similar to what are used on
NCEP's Weather Prediction Center QPF products and the NWS River Forecast Center
(RFC) daily precipitation analysis. The 1-hr mosaic is updated every 4 minutes
with a latency on nowCOAST™ of about 6-7 minutes from valid time. The 3-,
6-, 12-, and 24-hr QPEs are updated on nowCOAST™ every hour for the
period ending at the top of the hour. The 48- and 72-hr QPEs are generated
daily for the period ending at 12 UTC (i.e. 7AM EST) and available on
nowCOAST™ shortly afterwards.
For more detailed information about layer update frequency and timing, please reference the
nowCOAST™ Dataset Update Schedule.
Background Information
The NWS Multi-Radar Multi-Sensor System (MRMS)/Q3 QPEs are radar-only based quantitative precipitation analyses. The 1-hr precipitation accumulation is obtained by aggregating 12 instantaneous rate fields. Missing rate fields are filled with the neighboring rate fields if the data gap is not significantly large (e.g.<=15 minutes). The instantaneous rate is computed from the hybrid scan reflectivity and the precipitation flag fields (both are 2-D derivative products from the National 3-D Reflectivity Mosaic grid which has a 1-km horizontal resolution, 31 vertical levels and a 5-minute update cycle). The instantaneous rate currently uses four Z-R relationships (i.e. tropical, convective, stratiform, or snow). The particular ZR relationship used in any grid cell depends on precipitation type which is indicated by the precipitation flag. The other accumulation products are derived by aggregating the hourly accumulations. The 1-hr QPE are generated every 4 minutes, while the 3-, 6-, 12-, and 24-hr accumulations are generated every hour at the top of the hour. The 48- and 72-hr QPEs are updated daily at approximately 12 UTC. MRMS was developed by NOAA/OAR/National Severe Storms Laboratory and migrated into NWS operations at NOAA Integrated Dissemination Program.
Time Information
This map service is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.
In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.
This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.
This service is configured with time coverage support, meaning that the service will always return the most relevant available data, if any, to the specified time value. For example, if the service contains data valid today at 12:00 and 12:10 UTC, but a map request specifies a time value of today at 12:07 UTC, the data valid at 12:10 UTC will be returned to the user. This behavior allows more flexibility for users, especially when displaying multiple time-enabled layers together despite slight differences in temporal resolution or update frequency.
When interacting with this time-enabled service, only a single instantaneous time value should be specified in each request. If instead a time range is specified in a request (i.e. separate start time and end time values are given), the data returned may be different than what was intended.
Care must be taken to ensure the time value specified in each request falls within the current time coverage of the service. Because this service is frequently updated as new data becomes available, the user must periodically determine the service's time extent. However, due to software limitations, the time extent of the service and map layers as advertised by ArcGIS Server does not always provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time extent of the service:
Issue a returnUpdates=true request (ArcGIS REST protocol only)
for an individual layer or for the service itself, which will return
the current start and end times of available data, in epoch time format
(milliseconds since 00:00 January 1, 1970). To see an example, click on
the "Return Updates" link at the bottom of the REST Service page under
"Supported Operations". Refer to the
ArcGIS REST API Map Service Documentation
for more information.
Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against
the proper layer corresponding with the target dataset. For raster
data, this would be the "Image Footprints with Time Attributes" layer
in the same group as the target "Image" layer being displayed. For
vector (point, line, or polygon) data, the target layer can be queried
directly. In either case, the attributes returned for the matching
raster(s) or vector feature(s) will include the following:
validtime: Valid timestamp.
starttime: Display start time.
endtime: Display end time.
reftime: Reference time (sometimes referred to as
issuance time, cycle time, or initialization time).
projmins: Number of minutes from reference time to valid
time.
desigreftime: Designated reference time; used as a
common reference time for all items when individual reference
times do not match.
desigprojmins: Number of minutes from designated
reference time to valid time.
Query the nowCOAST™ LayerInfo web service, which has been created to
provide additional information about each data layer in a service,
including a list of all available "time stops" (i.e. "valid times"),
individual timestamps, or the valid time of a layer's latest available
data (i.e. "Product Time"). For more information about the LayerInfo
web service, including examples of various types of requests, refer to
the
nowCOAST™ LayerInfo Help Documentation
References
For more information about the MRMS/Q3 system, please see http://nmq.ou.edu and http://www.nssl.noaa.gov/projects/mrms.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Esri ArcGIS Server View Service - Czech Names of Seas - Antarctic is provided as a public view service for the gazetteer Czech Names of Seas and International Territories of editoral series UNO Gazetteers of Geographical Names - CZ. The view service is provided by Esri ArcGIS Server technology as a casched service. The service is accessible by one of the two access interfaces – REST and SOAP. It supports various coordinate reference systems through WMS interface.
Last Revised: February 2016 Map InformationThis nowCOAST™ time-enabled map service provides maps depicting the latest surface weather and marine weather observations at observing sites using the international station model. The station model is a method for representing information collected at an observing station using symbols and numbers. The station model depicts current weather conditions, cloud cover, wind speed, wind direction, visibility, air temperature, dew point temperature, sea surface water temperature, significant wave height, air pressure adjusted to mean sea level, and the change in air pressure over the last 3 hours. The circle in the model is centered over the latitude and longitude coordinates of the station. The total cloud cover is expressed as a fraction of cloud covering the sky and is indicated by the amount of circle filled in; however, all cloud cover values are presently displayed using the "Missing" symbol due to a problem with the source data. Present weather information is also not available for display at this time. Wind speed and direction are represented by a wind barb whose line extends from the cover cloud circle towards the direction from which the wind is blowing. The short lines or flags coming off the end of the long line are called barbs, which indicate wind speed in knots. Each normal barb represents 10 knots, while short barbs indicate 5 knots. A flag represents 50 knots. If there is no wind barb depicted, an outer circle around the cloud cover symbol indicates calm winds.Due to software limitations, the observations included in this map service are organized into three separate group layers: 1) Wind velocity (wind barb) observations, 2) Cloud Cover observations, and 3) All other observations, which are displayed as numerical values (e.g. Air Temperature, Wind Gust, Visibility, Sea Surface Temperature, etc.).Additionally, due to the density of weather/ocean observations in this map service, each of these group data layers has been split into ten individual "Scale Band" layers, with each one visible for a certain range of map scales. Thus, to ensure observations are displayed at any scale, users should make sure to always specify all ten corresponding scale band layers in every map request. This will result in the scale band most appropriate for your present zoom level being shown, resulting in a clean, uncluttered display. As you zoom in, additional observations will appear.The observations in this nowCOAST™ map service are updated approximately every 10 minutes. However, since the reporting frequency varies by network or station, the observations for a particular station may update only once per hour. For more detailed information about layer update frequency and timing, please reference the nowCOAST™ Dataset Update Schedule.Background InformationThe maps of near-real-time surface weather and ocean observations are based on non-restricted data obtained from the NWS Family of Services courtesy of NESDIS/OPSD and also the NWS Meteorological Assimilation Data Ingest System (MADIS). The data includes observations from terrestrial and maritime observing stations from the U.S.A. and other countries. For terrestrial networks, the platforms include but are not limited to ASOS, AWOS, RAWS, non-automated stations, U.S. Climate Reference Networks, many U.S. Geological Survey Stations via NWS HADS, several state DOT Road Weather Information Systems, and U.S. Historical Climatology Network-Modernization. For maritime areas, the platforms include NOS/CO-OPS National Water Level Observation Network (NWLON), NOS/CO-OPS Physical Oceanographic Real-Time System (PORTS), NWS/NDBC Fixed Buoys, NDBC Coastal-Marine Automated Network (C-MAN), drifting buoys, ferries, Regional Ocean Observing System (ROOS) coastal stations and buoys, and ships participating in the Voluntary Ship Observing (VOS) Program. Observations from MADIS are updated approximately every 10 minutes in the map service and those from NESDIS are updated every hour. However, not all stations report that frequently. Many stations only report once per hour sometime between 15 minutes before the hour and 30 minutes past the hour. For these stations, new observations will not appear until approximately 23 minutes past top of the hour for land-based stations and 33 minutes past the top of the hour for maritime stations.Time InformationThis map service is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.This service is configured with time coverage support, meaning that the service will always return the most relevant available data, if any, to the specified time value. For example, if the service contains data valid today at 12:00 and 12:10 UTC, but a map request specifies a time value of today at 12:07 UTC, the data valid at 12:10 UTC will be returned to the user. This behavior allows more flexibility for users, especially when displaying multiple time-enabled layers together despite slight differences in temporal resolution or update frequency.When interacting with this time-enabled service, only a single instantaneous time value should be specified in each request. If instead a time range is specified in a request (i.e. separate start time and end time values are given), the data returned may be different than what was intended.Care must be taken to ensure the time value specified in each request falls within the current time coverage of the service. Because this service is frequently updated as new data becomes available, the user must periodically determine the service's time extent. However, due to software limitations, the time extent of the service and map layers as advertised by ArcGIS Server does not always provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time extent of the service:Issue a returnUpdates=true request (ArcGIS REST protocol only) for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of the REST Service page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:validtime: Valid timestamp.starttime: Display start time.endtime: Display end time.reftime: Reference time (sometimes referred to as issuance time, cycle time, or initialization time).projmins: Number of minutes from reference time to valid time.desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.desigprojmins: Number of minutes from designated reference time to valid time.Query the nowCOAST™ LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST™ LayerInfo Help DocumentationReferencesNWS, 2013: Sample Station Plot, NWS/NCEP/WPC, College Park, MD (Available at http://www.wpc.ncep.noaa.gov/html/stationplot.shtml).NWS, 2013: Terminology and Weather Symbols, NWS/NCEP/OPC, College Park, MD (Available at http://www.opc.ncep.noaa.gov/product_description/keyterm.shtml).NWS, 2013: How to read Surface weather maps, JetStream an Online School for Weather (Available at http://www.srh.noaa.gov/jetstream/synoptic/wxmaps.htm).
This service combines parcel data from various local government bodies in Alaska and describes a subset of input fields using consistent field names. This service was designed for use in statewide applications that only require specific types of land parcel information, and benefit from having this information in a single service with a consistent schema. Any changes to input parcel data will trigger this service to update. Note that many input services do not include a truly unique identifier, or sometimes any identifier at all. The 'parcel_id' field contains a record identifier carried over from the input service, or is null if there is none. The 'local_gov' value of any record can be used to reference an input parcel web service in the table below.During processing, a *mostly unique identifier is created, called 'feature_id'. Duplicate values will occur for records that have identical 'local_gov' and 'parcel_id' values and also identical geometries. These cases are extremely rare (< 0.003%), and for the vast majority of records 'feature_id' is unique. Any duplicate values will be attached to parcels in the exact same place.Please reference original parcel web services if your use case requires official, authoritative, or comprehensive land parcel information. Local Government Parcel Web Service
Anchorage Municipality
https://services2.arcgis.com/Ce3DhLRthdwbHlfF/ArcGIS/rest/services/PropertyInformation_Hosted/FeatureServer/0
Denali Borough
https://arcgis.dnr.alaska.gov/arcgis/rest/services/OpenData/Administrative_BoroughParcels/FeatureServer/1
Bristol Bay Borough
https://services8.arcgis.com/MqzStQjDmKoNl0E6/ArcGIS/rest/services/TaxParcels_Related/FeatureServer/0
Dillingham Census Area
https://services3.arcgis.com/gdLTz4xpy5IxwbSz/arcgis/rest/services/ParcelsOnline/FeatureServer/0
Fairbanks North Star Borough
https://services.arcgis.com/f4rR7WnIfGBdVYFd/ArcGIS/rest/services/Tax_Parcels/FeatureServer/0
Haines Borough
https://services3.arcgis.com/pMlUMMROURtJLUZt/ArcGIS/rest/services/ParcelsOnline/FeatureServer/0
Juneau City & Borough
https://services.arcgis.com/kpMKjjLr8H1rZ4XO/arcgis/rest/services/Juneau_Parcel_Viewer/FeatureServer/0
Kenai Peninsula Borough
https://services.arcgis.com/ba4DH9pIcqkXJVfl/ArcGIS/rest/services/Redacted_Parcels_view/FeatureServer/0
Ketchikan Borough
https://services2.arcgis.com/65jtiGuzdaRB5FxF/ArcGIS/rest/services/KetchikanAKFeatures/FeatureServer/0
Kodiak Island Borough
https://services1.arcgis.com/R5BNizttyFKxRSMm/arcgis/rest/services/KIB_Parcels/FeatureServer/0
Matanuska-Susitna Borough
https://maps.matsugov.us/map/rest/services/OpenData/Cadastral_Parcels/FeatureServer/0
Nome Census Area
https://services9.arcgis.com/Oi9vFzXc8ZcONgM6/arcgis/rest/services/Parcels_Joined_with_Taxroll_Symbolized_by_Exempt/FeatureServer/0
North Slope Borough
https://gis-public.north-slope.org/server/rest/services/Lama/Parcels_sql/FeatureServer/9
Petersburg Borough
https://services7.arcgis.com/RqATEQTpM1W1xU9c/ArcGIS/rest/services/Lots/FeatureServer/0
Sitka City & Borough
https://services7.arcgis.com/EozEvrS4g3SEhtG3/ArcGIS/rest/services/Sitka_Parcels_2022/FeatureServer/0
Wrangell City & Borough
https://services7.arcgis.com/7cBSaoaaRaH5ojZy/arcgis/rest/services/Parcels/FeatureServer/0
Yakutat City & Borough
https://services2.arcgis.com/gRKiTtxkoTx0gERB/ArcGIS/rest/services/ParcelsOnline/FeatureServer/0
Last Revised: February 2016
Map Information
This nowCOAST™ time-enabled map service provides maps depicting the
latest global forecast guidance of water currents, water temperature, and
salinity at forecast projections: 0, 12, 24, 36, 48, 60, 72, 84, and 96-hours
from the NWS/NCEP Global Real-Time Ocean Forecast System (GRTOFS). The surface
water currents velocity maps display the direction using white or black
streaklets. The magnitude of the current is indicated by the length and width
of the streaklet. The maps of the GRTOFS surface forecast guidance are updated
on the nowCOAST™ map service once per day.
For more detailed information about layer update frequency and timing, please reference the
nowCOAST™ Dataset Update Schedule.
Background Information
GRTOFS is based on the Hybrid Coordinates Ocean Model (HYCOM), an eddy resolving, hybrid coordinate numerical ocean prediction model. GRTOFS has global coverge and a horizontal resolution of 1/12 degree and 32 hybrid vertical layers. It has one forecast cycle per day (i.e. 0000 UTC) which generates forecast guidance out to 144 hours (6 days). However, nowCOAST™ only provides guidance out to 96 hours (4 days). The forecast cycle uses 3-hourly momentum and radiation fluxes along with precipitation predictions from the NCEP Global Forecast System (GFS). Each forecast cycle is preceded with a 48-hr long nowcast cycle. The nowcast cycle uses daily initial 3-D fields from the NAVOCEANO operational HYCOM-based forecast system which assimilates situ profiles of temperature and salinity from a variety of sources and remotely sensed SST, SSH and sea-ice concentrations. GRTOFS was developed by NCEP/EMC/Marine Modeling and Analysis Branch. GRTOFS is run once per day (0000 UTC forecast cycle) on the NOAA Weather and Climate Operational Supercomputer System (WCOSS) operated by NWS/NCEP Central Operations.
The maps are generated using a visualization technique developed by the Data Visualization Research Lab at The University of New Hampshire's Center for Coastal and Ocean Mapping (http://www.ccom.unh.edu/vislab/). The method combines two techniques. First, equally spaced streamlines are computed in the flow field using Jobard and Lefer's (1977) algorithm. Second, a series of "streaklets" are rendered head to tail along each streamline to show the direction of flow. Each of these varies along its length in size, color and transparency using a method developed by Fowler and Ware (1989), and later refined by Mr. Pete Mitchell and Dr. Colin Ware (Mitchell, 2007).
Time Information
This map service is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.
In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.
This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.
This service is configured with time coverage support, meaning that the service will always return the most relevant available data, if any, to the specified time value. For example, if the service contains data valid today at 12:00 and 12:10 UTC, but a map request specifies a time value of today at 12:07 UTC, the data valid at 12:10 UTC will be returned to the user. This behavior allows more flexibility for users, especially when displaying multiple time-enabled layers together despite slight differences in temporal resolution or update frequency.
When interacting with this time-enabled service, only a single instantaneous time value should be specified in each request. If instead a time range is specified in a request (i.e. separate start time and end time values are given), the data returned may be different than what was intended.
Care must be taken to ensure the time value specified in each request falls within the current time coverage of the service. Because this service is frequently updated as new data becomes available, the user must periodically determine the service's time extent. However, due to software limitations, the time extent of the service and map layers as advertised by ArcGIS Server does not always provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time extent of the service:
Issue a returnUpdates=true request (ArcGIS REST protocol only)
for an individual layer or for the service itself, which will return
the current start and end times of available data, in epoch time format
(milliseconds since 00:00 January 1, 1970). To see an example, click on
the "Return Updates" link at the bottom of the REST Service page under
"Supported Operations". Refer to the
ArcGIS REST API Map Service Documentation
for more information.
Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against
the proper layer corresponding with the target dataset. For raster
data, this would be the "Image Footprints with Time Attributes" layer
in the same group as the target "Image" layer being displayed. For
vector (point, line, or polygon) data, the target layer can be queried
directly. In either case, the attributes returned for the matching
raster(s) or vector feature(s) will include the following:
validtime: Valid timestamp.
starttime: Display start time.
endtime: Display end time.
reftime: Reference time (sometimes referred to as
issuance time, cycle time, or initialization time).
projmins: Number of minutes from reference time to valid
time.
desigreftime: Designated reference time; used as a
common reference time for all items when individual reference
times do not match.
desigprojmins: Number of minutes from designated
reference time to valid time.
Query the nowCOAST™ LayerInfo web service, which has been created to
provide additional information about each data layer in a service,
including a list of all available "time stops" (i.e. "valid times"),
individual timestamps, or the valid time of a layer's latest available
data (i.e. "Product Time"). For more information about the LayerInfo
web service, including examples of various types of requests, refer to
the
nowCOAST™ LayerInfo Help Documentation
References
Fowler, D. and C. Ware, 1989: Strokes for Representing Vector Field Maps. Proceedings: Graphics Interface '98 249-253. Jobard, B and W. Lefer,1977: Creating evenly spaced streamlines of arbitrary density. Proceedings: Eurographics workshop on Visualization in Scientific Computing. 43-55. Mitchell, P.W., 2007: The Perceptual optimization of 2D Flow Visualizations Using Human in the Loop Local Hill Climbing. University of New Hampshire Masters Thesis. Department of Computer Science. NWS, 2013: About Global RTOFS, NCEP/EMC/MMAB, College Park, MD (Available at http://polar.ncep.noaa.gov/global/about/). Chassignet, E.P., H.E. Hurlburt, E.J. Metzger, O.M. Smedstad, J. Cummings, G.R. Halliwell, R. Bleck, R. Baraille, A.J. Wallcraft, C. Lozano, H.L. Tolman, A. Srinivasan, S. Hankin, P. Cornillon, R. Weisberg, A. Barth, R. He, F. Werner, and J. Wilkin, 2009: U.S. GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM). Oceanography, 22(2), 64-75. Mehra, A, I. Rivin, H. Tolman, T. Spindler, and B. Balasubramaniyan, 2011: A Real-Time Operational Global Ocean Forecast System, Poster, GODAE OceanView –GSOP-CLIVAR Workshop in Observing System Evaluation and Intercomparisons, Santa Cruz, CA.
Last Revised: February 2016
Map Information
This nowCOAST™ time-enabled map service provides maps of lightning strike
density data from the NOAA/National Weather Service/NCEP's Ocean Prediction
Center (OPC) which emulate (simulate) data from the future NOAA GOES-R Global
Lightning Mapper (GLM). The purpose of this product is to provide mariners and
others with enhanced "awareness of developing and transitory thunderstorm
activity, to give users the ability to determine whether a cloud system is
producing lightning and if that activity is increasing or decreasing..."
Lightning Strike Density, as opposed to display of individual strikes,
highlights the location of lightning cores and trends of increasing and
decreasing activity. The maps depict the density of lightning strikes during a
15 minute time period at an 8 km x 8 km spatial resolution. The lightning
strike density maps cover the geographic area from 25 degrees South to 80
degrees North latitude and from 110 degrees East to 0 degrees West longitude.
The map units are number of strikes per square km per minute multiplied by a
scaling factor of 10^3. The strike density is color coded using a color scheme
which allows the data to be easily seen when overlaid on GOES imagery and to
distinguish areas of low and high density values. The maps are updated on
nowCOAST™ approximately every 15 minutes. The latest data depicted on the
maps are approximately 12 minutes old (or older). Given the spatial resolution
and latency of the data, the data should NOT be used to activite your lightning
safety plans. Always follow the safety rule: when you first hear thunder or see
lightning in your area, activate your emergency plan. If outdoors, immediately
seek shelter in a substantial building or a fully enclosed metal vehicle such
as a car, truck or van. Do not resume activities until 30 minutes after the
last observed lightning or thunder.
For more detailed information about layer update frequency and timing, please reference the
nowCOAST™ Dataset Update Schedule.
Background Information
The source for the data is OPC's gridded lightning strike density data on an 8x8 km grid. The gridded data emulate the spatial resolution of the future Global Lightning Mapper (GLM) instrument to be flown on the NOAA GOES-R series of geostationary satellites, with the first satellite scheduled for launch in late 2016.
The gridded data is based on data from Vaisala's ground based U.S. National Lightning Detection Network (NLDN) and its global lightning detection network referred to as the Global Lightning Dataset (GLD360). These networks are capable of detecting cloud-to-ground strikes, cloud-to-ground flash information and survey level cloud lightning information. According to the National Lightning Safety Institute, NLDN uses radio frequency detectors in the spectrum 1.0 kHz through 400 kHz to measure energy discharges from lightning as well as approximate distance and direction. According to Vaisala, the GLD360 network is capable of a detection efficiency greater than 70% over most of the Northern Hemisphere with a median location accuracy of 5 km or better. OPC's gridded data are coarser than the original source data from Vaisala's networks. The 15-minute gridded source data are updated at OPC every 15 minutes at 10 minutes past the valid time.
The lightning strike density product from NWS/NCEP/OPC is considered a derived product or Level 5 product ("NOAA-generated products using lightning data as input but not displaying the contractor transmitted/provided lightning data") and is appropriate for public distribution.
Time Information
This map service is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.
In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.
This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.
This service is configured with time coverage support, meaning that the service will always return the most relevant available data, if any, to the specified time value. For example, if the service contains data valid today at 12:00 and 12:10 UTC, but a map request specifies a time value of today at 12:07 UTC, the data valid at 12:10 UTC will be returned to the user. This behavior allows more flexibility for users, especially when displaying multiple time-enabled layers together despite slight differences in temporal resolution or update frequency.
When interacting with this time-enabled service, only a single instantaneous time value should be specified in each request. If instead a time range is specified in a request (i.e. separate start time and end time values are given), the data returned may be different than what was intended.
Care must be taken to ensure the time value specified in each request falls within the current time coverage of the service. Because this service is frequently updated as new data becomes available, the user must periodically determine the service's time extent. However, due to software limitations, the time extent of the service and map layers as advertised by ArcGIS Server does not always provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time extent of the service:
Issue a returnUpdates=true request (ArcGIS REST protocol only)
for an individual layer or for the service itself, which will return
the current start and end times of available data, in epoch time format
(milliseconds since 00:00 January 1, 1970). To see an example, click on
the "Return Updates" link at the bottom of the REST Service page under
"Supported Operations". Refer to the
ArcGIS REST API Map Service Documentation
for more information.
Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against
the proper layer corresponding with the target dataset. For raster
data, this would be the "Image Footprints with Time Attributes" layer
in the same group as the target "Image" layer being displayed. For
vector (point, line, or polygon) data, the target layer can be queried
directly. In either case, the attributes returned for the matching
raster(s) or vector feature(s) will include the following:
validtime: Valid timestamp.
starttime: Display start time.
endtime: Display end time.
reftime: Reference time (sometimes referred to as
issuance time, cycle time, or initialization time).
projmins: Number of minutes from reference time to valid
time.
desigreftime: Designated reference time; used as a
common reference time for all items when individual reference
times do not match.
desigprojmins: Number of minutes from designated
reference time to valid time.
Query the nowCOAST™ LayerInfo web service, which has been created to
provide additional information about each data layer in a service,
including a list of all available "time stops" (i.e. "valid times"),
individual timestamps, or the valid time of a layer's latest available
data (i.e. "Product Time"). For more information about the LayerInfo
web service, including examples of various types of requests, refer to
the
nowCOAST™ LayerInfo Help Documentation
References
Kithil, 2015: Overview of Lightning Detection Equipment, National
Lightning Safety Institute, Louisville, CO. (Available from
http://www.lightningsafety.com/nsli_ihm/detectors.html).
NASA and NOAA, 2014: Geostationary Lightning Mapper (GLM). (Available at
http://www.goes-r.gov/spacesegment/glm.html).
NWS, 2013: Lightning Strike Density Product Description Document.
NOAA/NWS/NCEP/Ocean Prediction Center, College Park, MD (Available at
http://www.opc.ncep.noaa.gov/lightning/lightning_pdd.php
and http://products.weather.gov/PDD/Experimental%20Lightning%20Strike%20Density%20Product%2020130913.pdf).
NOAA Knows Lightning. NWS, Silver Spring, MD (Available at
http://www.lightningsafety.noaa.gov/resources/lightning3_050714.pdf).
Siebers, A., 2013: Soliciting Comments until June 3, 2014 on an
Experimental Lightning Strike Density product (Offshore Waters). Public
Information Notice, NOAA/NWS Headquarters, Washington, DC (Available at
http://www.nws.noaa.gov/om/notification/pns13lightning_strike_density.htm).
This map was last updated March 2014. World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes NASA Blue Marble: Next Generation 500m resolution imagery at small scales (above 1:1,000,000), i-cubed 15m eSAT imagery at medium-to-large scales (down to 1:70,000) for the world, and USGS 15m Landsat imagery for Antarctica. The map features 0.3m resolution imagery in the continental United States and parts of Western Europe from DigitalGlobe. Additional DigitalGlobe sub-meter imagery is featured in many parts of the world, with concentrations in South America, Eastern Europe, India, Japan, the Middle East and Northern Africa, Southern Africa, Australia, and New Zealand. In other parts of the world, 1 meter resolution imagery is available from GeoEye IKONOS, Getmapping, AeroGRID, IGN Spain, and IGP Portugal. Additionally, imagery at different resolutions has been contributed by the GIS User Community. To view this map service now, along with useful reference overlays, click here to open the Imagery with Labels web map.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Imagery or Imagery with Labels from the Basemap control to start browsing the imagery. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.The coverage for Europe includes AeroGRID 1m resolution imagery for Belgium, France (Region Nord-Pas-de-Calais only), Germany, Luxembourg, and The Netherlands and 2m resolution imagery for the Czech Republic, plus 1m resolution imagery for Portugal from the Instituto Geográfico Português.For details on the coverage in this map service, view the list of Contributors for the World Imagery Map.View the coverage map below to learn more about the coverage for the high-resolution imagery:Updated imagery coverage map: Areas updated in the most recent release. World coverage map: Areas with high-resolution imagery throughout the world.Metadata: This service is metadata-enabled. With the Identify tool in ArcMap or the ArcGIS Online Content Viewer, you can see the resolution, collection date, and source of the imagery at the location you click. The metadata applies only to the best available imagery at that location. You may need to zoom in to view the best available imagery.Reference overlays: The World Boundaries and Places service is designed to be drawn on top of this service as a reference overlay. This is what gets drawn on top of the imagery if you choose the Imagery With Labels basemap in any of the ArcGIS clients.The World Transportation service is designed to be drawn on top of this service to provide street labels when you are zoomed in and streets and roads when you are zoomed out.There are three ready to use web maps that use the World Imagery service as their basemap, Imagery, in which both reference layers are turned off, Imagery with Labels, which has World Boundaries and Places turned on but World Transportation turned off, and Imagery with Labels and Transportation, which has both reference layers turned on.Feedback: Have you ever seen a problem in the Esri World Imagery Map that you wanted to see fixed? You can use the Imagery Map Feedback web map to provide feedback on issues or errors that you see. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.ArcGIS Desktop use: This service requires ArcGIS 9.3 or more recent.The World Imagery map service is not available as a globe service. If you need a globe service containing imagery use the Prime Imagery (3D) globe service. However note that this is no longer being updated by Esri.Tip: Here are some famous locations as they appear in this map service. The following URLs launch the Imagery With Labels and Transportation web map (which combines this map service with the two reference layers designed for it) and take you to specific locations on the map using location parameters included in the URL.Grand Canyon, Arizona, USAGolden Gate, California, USATaj Mahal, Agra, IndiaVatican CityBronze age white horse, Uffington, UKUluru (Ayres Rock), AustraliaMachu Picchu, Cusco, PeruOkavango Delta, BotswanaScale Range: 1:591,657,528 down to 1:1,128Coordinate System: Web Mercator Auxiliary Sphere (WKID 102100)Tiling Scheme: Web Mercator Auxiliary SphereMap Service Name: World_ImageryArcGIS Desktop/Explorer URL: http://services.arcgisonline.com/arcgis/services ArcGIS Desktop files: MXD LYR (These ready-to-use files contain this service and associated reference overlay services. ArcGIS 9.3 or more recent required).ArcGIS Server Manager and Web ADF URL: http://server.arcgisonline.com/arcgis/services/World_Imagery/MapServerREST URL for ArcGIS Web APIs: http://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServerSOAP API URL: http://services.arcgisonline.com/ArcGIS/services/World_Imagery/MapServer?wsdl
Crowdsource Polling is a configurable app template that can be used for collecting feedback and assessing public sentiment for a series of proposals, plans, or events. Users are presented with a map and list of features containing the details of each proposal, plan, or event including any attached documents. These users can then submit their feedback in the form of votes and comments. Crowdsource Polling can be accessed anonymously and by authenticating via Twitter.Use CasesCrowdsource Polling can be configured to present information such as:proposed land use changesenvironmental impact pollingpublic comment on capital projectspublic comment on proposed rights of way for transmission systemsevents permit reviewConfigurable OptionsConfigure Crowdsource Polling to present content from any web map and personalize the app by modifying the following options: Display a custom title and logo in the application headerUse a custom color schemeChoose which layer contains the features for which feedback is being solicitedProvide custom instruction on the use of the app, contact information, credits, etc. in a highly configurable help windowSupported DevicesThis application is responsively designed to support use in browsers on desktops, mobile phones, and tablets.Data RequirementsThis web app includes the capability to edit a hosted feature service or an ArcGIS Server feature service. Creating hosted feature services requires an ArcGIS Online organizational subscription or an ArcGIS Developer account. Crowdsource Polling requires a web map with at least one feature layer. In addition, the following requirements must be met to expose full app functionality:To enable votes, this layer must have a numeric field for storing the number of votes on each featureTo collect comments, the feature layer must have a related tableTo capture the names of authenticated users, the layer must have a text field for storing this valueGet Started This application can be created in the following ways:Click the Create a Web App button on this pageShare a map and choose to Create a Web AppOn the Content page, click Create - App - From Template Click the Download button to access the source code. Do this if you want to host the app on your own server and optionally customize it to add features or change styling.Learn MoreFor release notes and more information on configuring this app, see the Crowdsource Polling documentation.
Map Information
The nowCOAST time-enabled map service provides maps depicting the geographic coverage of the latest NOAA/National Weather Service (NWS) WARNINGS
for short-duration hazards for inland, coastal, and maritime areas which are in progress, imminent, or has a very high probability of occurring.
These hazards include severe thunderstorms (damaging winds, large hail), tornadoes, waterspouts, flash floods, and extreme winds associated with major land-falling hurricanes.
Specifically, the layer includes the following warnings: Special Marine Warnings (winds of 34 knots, 3/4 inch diameter hail, waterspouts),
Severe Thunderstorm Warnings (winds of 58 MPH or greater, large hail of 1 inch or greater in diameter), Tornado Warnings, Flash Flood Warnings,
and Extreme Wind Warnings (sustained surface winds of 115 MPH or greater during major [Category 3 or higher]land-falling hurricane within one hour).
The colors used to identify the different warnings are the same colors used by the NWS on their map at weather.gov.
The map is updated in the nowCOAST map service every minute. For more detailed information about the update schedule, please see:
http://new.nowcoast.noaa.gov/help/#section=updateschedule
Background Information
The NWS threat-based polygon or storm-based warnings are issued by NWS Weather Forecast Offices to depict the type of short-duration weather or hydrological hazard which is in progress, imminent or has a very high probability of occurring for a specified geographic area. For Severe Thunderstorm, Tornado, Flash Flood and Extreme Wind Warnings, the warnings are not restricted to geopolitical boundaries. However, Special Marine Warnings are issued for marine areas such as bays, harbors, sounds and coastal waters along the U.S. coastline out to the NWS Offshore marine forecast zone. For Guam and Pago Pago, American Samoa, the coastal waters extend out to the the NWS High Seas marine forecast zone.
Time Information
This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.
This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.
In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.
Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:
Issue a returnUpdates=true request for an individual layer or for
the service itself, which will return the current start and end times of
available data, in epoch time format (milliseconds since 00:00 January 1,
1970). To see an example, click on the "Return Updates" link at the bottom of
this page under "Supported Operations". Refer to the
ArcGIS REST API Map Service Documentation
for more information.
Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against
the proper layer corresponding with the target dataset. For raster
data, this would be the "Image Footprints with Time Attributes" layer
in the same group as the target "Image" layer being displayed. For
vector (point, line, or polygon) data, the target layer can be queried
directly. In either case, the attributes returned for the matching
raster(s) or vector feature(s) will include the following:
validtime: Valid timestamp.
starttime: Display start time.
endtime: Display end time.
reftime: Reference time (sometimes reffered to as
issuance time, cycle time, or initialization time).
projmins: Number of minutes from reference time to valid
time.
desigreftime: Designated reference time; used as a
common reference time for all items when individual reference
times do not match.
desigprojmins: Number of minutes from designated
reference time to valid time.
Query the nowCOAST LayerInfo web service, which has been created to
provide additional information about each data layer in a service,
including a list of all available "time stops" (i.e. "valid times"),
individual timestamps, or the valid time of a layer's latest available
data (i.e. "Product Time"). For more information about the LayerInfo
web service, including examples of various types of requests, refer to
the nowCOAST help documentation at:
http://new.nowcoast.noaa.gov/help/#section=layerinfo
References
NWS, 2003: NWS Product Description Document for Special Marine Warning, NWS, Silver Spring, MD. NWS, 2005: NWS Instructions 10-511, WFO Severe Weather Products Specification, NWS, Silver Spring, MD. NWS, 2007: NWS Instructions 10-922, Weather Forecast Office Hydrologic Products Specifications, NWS, Silver Spring, MD. NWS, 2014: Extreme Wind Warning Product (http://www.nws.noaa.gov/os/hurricane/eww.shtml).
NWS Instructions and other directives are available at http://www.nws.noaa.gov/directives/.
A listing of web services published from the authoritative East Baton Rouge Parish Geographic Information System (EBRGIS) data repository. Services are offered in Esri REST, and the Open Geospatial Consortium (OGC) Web Mapping Service (WMS) or Web Feature Service (WFS) formats.
Map InformationThis nowCOAST updating map service provides maps depicting visible, infrared, and water vapor imagery composited from NOAA/NESDIS GOES-EAST and GOES-WEST. The horizontal resolutions of the IR, visible, and water vapor composite images are approximately 1km, 4km, and 4km, respectively. The visible and IR imagery depict the location of clouds. The water vapor imagery indicates the amount of water vapor contained in the mid to upper levels of the troposphere. The darker grays indicate drier air while the brighter grays/whites indicates more saturated air. The GOES composite imagers are updated in the nowCOAST map service every 30 minutes. For more detailed information about the update schedule, see: http://new.nowcoast.noaa.gov/help/#section=updatescheduleBackground InformationThe GOES map layer displays visible (VIS) and infrared (IR4) cloud, and water vapor (WV) imagery from the NOAA/ National Environmental Satellite, Data, and Information Service (NESDIS) Geostationary Satellites (GOES-East and GOES-West). These satellites circle the Earth in a geosynchronous orbit (i.e. orbit the equatorial plane of the Earth at a speed matching the rotation of the Earth). This allows the satellites to hover continuously over one position on the surface. The geosynchronous plane is about 35,800 km (22,300 miles) above the Earth which is high enough to allow the satellites a full-disc view of the Earth. GOES-East is positioned at 75 deg W longitude and the equator. GOES-West is located at 135 deg W and the equator. The two satellites cover an area from 20 deg W to 165 deg E. The images are derived from data from GOES' Imagers. An imager is a multichannel instrument that senses radiant energy and reflected solar energy from the Earth's surface and atmosphere. The VIS, IR4, and WV images are obtained from GOES Imager Channels 1, 4, and 3, respectively. The GOES raster images are obtained from NESDIS servers in geo-referenced Tagged-Image File Format (geoTIFF).Time InformationThis map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:Issue a returnUpdates=true request for an individual layer or for the service itself, which will return the current start and end times of available data, in epoch time format (milliseconds since 00:00 January 1, 1970). To see an example, click on the "Return Updates" link at the bottom of this page under "Supported Operations". Refer to the ArcGIS REST API Map Service Documentation for more information.Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against the proper layer corresponding with the target dataset. For raster data, this would be the "Image Footprints with Time Attributes" layer in the same group as the target "Image" layer being displayed. For vector (point, line, or polygon) data, the target layer can be queried directly. In either case, the attributes returned for the matching raster(s) or vector feature(s) will include the following:validtime: Valid timestamp.starttime: Display start time.endtime: Display end time.reftime: Reference time (sometimes reffered to as issuance time, cycle time, or initialization time).projmins: Number of minutes from reference time to valid time.desigreftime: Designated reference time; used as a common reference time for all items when individual reference times do not match.desigprojmins: Number of minutes from designated reference time to valid time.Query the nowCOAST LayerInfo web service, which has been created to provide additional information about each data layer in a service, including a list of all available "time stops" (i.e. "valid times"), individual timestamps, or the valid time of a layer's latest available data (i.e. "Product Time"). For more information about the LayerInfo web service, including examples of various types of requests, refer to the nowCOAST help documentation at: http://new.nowcoast.noaa.gov/help/#section=layerinfoReferencesNOAA, 2013: Geostationary Operational Environmental Satellites (GOES). (Available at http://www.ospo.noaa.gov/Operations/GOES/index.html)A Basic Introduction to Water Vapor Imagery. (Available at http://cimss.ssec.wisc.edu/goes/misc/wv/wv_intro.html)CIMSS, 1996: Water Vapor Imagery Tutorial (Available at http://cimss.ssec.wisc.edu/goes/misc/wv/)
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This file contains the digital vector boundaries for the historical countries in England and Wales as at Census Day 1921.The boundaries available are: (BGC) Generalised resolution - clipped to the coastline (Mean High Water mark).Contains both Ordnance Survey and ONS Intellectual Property Rights.
REST URL of WFS Server – https://dservices1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/services/CTRY_DEC_1921_EW_BFC_Eng_Excl_Monmouthshire_V2/WFSServer?service=wfs&request=getcapabilities
REST URL of Map Server – https://services1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/rest/services/CTRY_DEC_1921_EW_BFC_Eng_Excl_Monmouthshire_V2/MapServer
REST URL of Feature Access Service – https://services1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/rest/services/CTRY_DEC_1921_EW_BFC_Eng_Excl_Monmouthshire_V2/FeatureServerNote re Monmouthshire:According to the list of counties included within the regions of England of Wales listed in Table VII of the General Report, Monmouthshire is classed as a Welsh county. To that end, the data provided for regions includes Monmouthshire within the “Welsh counties”.However, for the purposes of the 1921 Census outputs, Monmouthshire was generally included within England. In some of the printed tables, figures were given for both “England including Monmouthshire” and “England excluding Monmouthshire”, likewise for Wales. These additional breakdowns are not being included within the digitised data at this time and for the purposes of dissemination on Nomis, Monmouthshire has been included within England only to align with the majority of printed tables. As such, any user aggregated data from regions to country will not match figures given for England and for Wales on Nomis.
Map Information
This nowCOAST time-enabled map service provides maps depicting the geographic coverage of the latest NOAA/National Weather Service (NWS) WATCHES for the following short-duration hazardous weather and hydrological events which may affect inland and coastal areas: severe thunderstorms (surface winds of 58 MPH (93 KM/H, 50 knots) or greater, large hail of 1 inch (2.5 cm) or greater in diameter, tornadoes, and flash floods. A watch indicates that the risk of hazardous weather or hydrologic event has increased significantly, but its occurrence, location, and/or timing is still uncertain. The geographic areas covered by Severe Thunderstorm, Tornado, and Flash Flood Watches are usually indicated by county or subdivided-county boundaries. The colors used to identify the different watches are the same colors used by the NWS on their map at weather.gov. The NWS watches are updated in the nowCOAST map service approximately every 10 minutes. For more detailed information about the update schedule, please see: http://new.nowcoast.noaa.gov/help/#section=updateschedule
Background Information
The NWS watches depict the geographic areas where the risk of hazardous weather or hydrologic events has increased significantly, but their occurrence, location, and/or timing is still uncertain. The watch is intended to give enough lead time so people can set their plans into motion. NWS Severe Thunderstorm and Tornado Watches are issued by the NWS/NCEP Storm Prediction Center in Oklahoma. Flash Flood Watches are issued by the NWS regional Weather Forecast Offices (WFO). All watches are cancelled by WFOs.
Time Information
This map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.
This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.
In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.
Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:
Issue a returnUpdates=true request for an individual layer or for
the service itself, which will return the current start and end times of
available data, in epoch time format (milliseconds since 00:00 January 1,
1970). To see an example, click on the "Return Updates" link at the bottom of
this page under "Supported Operations". Refer to the
ArcGIS REST API Map Service Documentation
for more information.
Issue an Identify (ArcGIS REST) or GetFeatureInfo (WMS) request against
the proper layer corresponding with the target dataset. For raster
data, this would be the "Image Footprints with Time Attributes" layer
in the same group as the target "Image" layer being displayed. For
vector (point, line, or polygon) data, the target layer can be queried
directly. In either case, the attributes returned for the matching
raster(s) or vector feature(s) will include the following:
validtime: Valid timestamp.
starttime: Display start time.
endtime: Display end time.
reftime: Reference time (sometimes reffered to as
issuance time, cycle time, or initialization time).
projmins: Number of minutes from reference time to valid
time.
desigreftime: Designated reference time; used as a
common reference time for all items when individual reference
times do not match.
desigprojmins: Number of minutes from designated
reference time to valid time.
Query the nowCOAST LayerInfo web service, which has been created to
provide additional information about each data layer in a service,
including a list of all available "time stops" (i.e. "valid times"),
individual timestamps, or the valid time of a layer's latest available
data (i.e. "Product Time"). For more information about the LayerInfo
web service, including examples of various types of requests, refer to
the nowCOAST help documentation at:
http://new.nowcoast.noaa.gov/help/#section=layerinfo
References
NWS, 2006: NWS Instructions 10-313, WFO Severe Weather Products Specification, NWS, Silver Spring, MD. NWS, 2007: NWS Instructions 10-922, Weather Forecast Office Hydrologic Products Specification, NWS, Silver Spring, MD. NWS, 2010: NWS Instructions 10-512, National Severe Weather Products Specification, NWS, Silver Spring, MD.
NWS Instructions and other directives are available at http://www.nws.noaa.gov/directives/.
This service combines parcel data from various local government bodies in Alaska and describes a subset of input fields using consistent field names. This service was designed for use in statewide applications that only require specific types of land parcel information, and benefit from having this information in a single service with a consistent schema. Any changes to input parcel data will trigger this service to update. Note that many input services do not include a truly unique identifier, or sometimes any identifier at all. The 'parcel_id' field contains a record identifier carried over from the input service, or is null if there is none. The 'local_gov' value of any record can be used to reference an input parcel web service in the table below.During processing, a *mostly unique identifier is created, called 'feature_id'. Duplicate values will occur for records that have identical 'local_gov' and 'parcel_id' values and also identical geometries. These cases are extremely rare (< 0.003%), and for the vast majority of records 'feature_id' is unique. Any duplicate values will be attached to parcels in the exact same place.Please reference original parcel web services if your use case requires official, authoritative, or comprehensive land parcel information. Local Government Parcel Web Service
Anchorage Municipality
https://services2.arcgis.com/Ce3DhLRthdwbHlfF/ArcGIS/rest/services/PropertyInformation_Hosted/FeatureServer/0
Denali Borough
https://arcgis.dnr.alaska.gov/arcgis/rest/services/OpenData/Administrative_BoroughParcels/FeatureServer/1
Bristol Bay Borough
https://services8.arcgis.com/MqzStQjDmKoNl0E6/ArcGIS/rest/services/TaxParcels_Related/FeatureServer/0
Dillingham Census Area
https://services3.arcgis.com/gdLTz4xpy5IxwbSz/arcgis/rest/services/ParcelsOnline/FeatureServer/0
Fairbanks North Star Borough
https://services.arcgis.com/f4rR7WnIfGBdVYFd/ArcGIS/rest/services/Tax_Parcels/FeatureServer/0
Haines Borough
https://services3.arcgis.com/pMlUMMROURtJLUZt/ArcGIS/rest/services/ParcelsOnline/FeatureServer/0
Juneau City & Borough
https://services.arcgis.com/kpMKjjLr8H1rZ4XO/arcgis/rest/services/Juneau_Parcel_Viewer/FeatureServer/0
Kenai Peninsula Borough
https://services.arcgis.com/ba4DH9pIcqkXJVfl/ArcGIS/rest/services/Redacted_Parcels_view/FeatureServer/0
Ketchikan Borough
https://services2.arcgis.com/65jtiGuzdaRB5FxF/ArcGIS/rest/services/KetchikanAKFeatures/FeatureServer/0
Kodiak Island Borough
https://services1.arcgis.com/R5BNizttyFKxRSMm/arcgis/rest/services/KIB_Parcels/FeatureServer/0
Matanuska-Susitna Borough
https://maps.matsugov.us/map/rest/services/OpenData/Cadastral_Parcels/FeatureServer/0
Nome Census Area
https://services9.arcgis.com/Oi9vFzXc8ZcONgM6/arcgis/rest/services/Parcels_Joined_with_Taxroll_Symbolized_by_Exempt/FeatureServer/0
North Slope Borough
https://gis-public.north-slope.org/server/rest/services/Lama/Parcels_sql/FeatureServer/9
Petersburg Borough
https://services7.arcgis.com/RqATEQTpM1W1xU9c/ArcGIS/rest/services/Lots/FeatureServer/0
Sitka City & Borough
https://services7.arcgis.com/EozEvrS4g3SEhtG3/ArcGIS/rest/services/Sitka_Parcels_2022/FeatureServer/0
Wrangell City & Borough
https://services7.arcgis.com/7cBSaoaaRaH5ojZy/arcgis/rest/services/Parcels/FeatureServer/0
Yakutat City & Borough
https://services2.arcgis.com/gRKiTtxkoTx0gERB/ArcGIS/rest/services/ParcelsOnline/FeatureServer/0
This nowCOAST time-enabled map service provides maps of NOAA/National Weather Service RIDGE2 mosaics of base reflectivity images across the Continental United States (CONUS) as well as Puerto Rico, Hawaii, Guam and Alaska with a 2 kilometer (1.25 mile) horizontal resolution. The mosaics are compiled by combining regional base reflectivity radar data obtained from 158 Weather Surveillance Radar 1988 Doppler (WSR-88D) also known as NEXt-generation RADar (NEXRAD) sites across the country operated by the NWS and the Dept. of Defense and also from data from Terminal Doppler Weather Radars (TDWR) at major airports. The colors on the map represent the strength of the energy reflected back toward the radar. The reflected intensities (echoes) are measured in dBZ (decibels of z). The color scale is very similar to the one used by the NWS RIDGE2 map viewer. The radar data itself is updated by the NWS every 10 minutes during non-precipitation mode, but every 4-6 minutes during precipitation mode. To ensure nowCOAST is displaying the most recent data possible, the latest mosaics are downloaded every 5 minutes. For more detailed information about the update schedule, see: http://new.nowcoast.noaa.gov/help/#section=updateschedule
Background InformationReflectivity is related to the power, or intensity, of the reflected radiation that is sensed by the radar antenna. Reflectivity is expressed on a logarithmic scale in units called dBZ. The "dB" in the dBz scale is logarithmic and is unit less, but is used only to express a ratio. The "z" is the ratio of the density of water drops (measured in millimeters, raised to the 6th power) in each cubic meter (mm^6/m^3). When the "z" is large (many drops in a cubic meter), the reflected power is large. A small "z" means little returned energy. In fact, "z" can be less than 1 mm^6/m^3 and since it is logarithmic, dBz values will become negative, as often in the case when the radar is in clear air mode and indicated by earth tone colors. dBZ values are related to the intensity of rainfall. The higher the dBZ, the stronger the rain rate. A value of 20 dBZ is typically the point at which light rain begins. The values of 60 to 65 dBZ is about the level where 3/4 inch hail can occur. However, a value of 60 to 65 dBZ does not mean that severe weather is occurring at that location. The best reflectivity is lowest (1/2 degree elevation angle) reflectivity scan from the radar. The source of the base reflectivity mosaics is the NWS Southern Region Radar Integrated Display with Geospatial Elements (RIDGE2).
Time InformationThis map is time-enabled, meaning that each individual layer contains time-varying data and can be utilized by clients capable of making map requests that include a time component.
This particular service can be queried with or without the use of a time component. If the time parameter is specified in a request, the data or imagery most relevant to the provided time value, if any, will be returned. If the time parameter is not specified in a request, the latest data or imagery valid for the present system time will be returned to the client. If the time parameter is not specified and no data or imagery is available for the present time, no data will be returned.
In addition to ArcGIS Server REST access, time-enabled OGC WMS 1.3.0 access is also provided by this service.
Due to software limitations, the time extent of the service and map layers displayed below does not provide the most up-to-date start and end times of available data. Instead, users have three options for determining the latest time information about the service:
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This file contains the digital vector boundaries for Local Enterprise Partnerships, in England, as at December 2022.The boundaries available are: (BFE) Full resolution - extent of the realm (usually this is the Mean Low Water mark but in some cases boundaries extend beyond this to include off shore islands).Contains both Ordnance Survey and ONS Intellectual Property Rights. Version 2 - To account for name changes. E37000011 Gloucestershire changed its name to GFirst on the 31st December 2022E37000045 Derby, Derbyshire, Nottingham and Nottinghamshire has changed its name to D2N2 on the 31st December 2022E37000051 London has changed it’s name to The London Economic Action Partnership on the 31st December 2022E37000053 Oxfordshire has changed it’s name to OxLEP on the 31st December 2022E37000054 Sheffield City Region has changed it’s name to South Yorkshire on the 1st December 2022E37000059 Greater Cambridge and Greater Peterborough has changed it’s name to The Business Board on the 31st December 2022
REST URL of Feature Access Service – https://services1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/rest/services/LEP_DEC_2022_EN_BFE_V2/FeatureServer
REST URL of WFS Server – https://dservices1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/services/LEP_DEC_2022_EN_BFE_V2/WFSServer?service=wfs&request=getcapabilities
REST URL of Map Server – https://services1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/rest/services/LEP_DEC_2022_EN_BFE_V2/MapServer
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This file contains the digital vector boundaries for Local Resilience Forums, in England and Wales, as at December 2020.The BUC boundaries are ultra generalised (500m) - clipped to the coastline (Mean High Water mark).Contains both Ordnance Survey and ONS Intellectual Property Rights.Name change in this versionE48000008 Devon, Cornwall & Isle of Scilly changed to E48000008 Devon, Cornwall and Isles of Scilly
REST URL of Feature Access Service – https://services1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/rest/services/Local_Resilience_Forums_December_2020_Boundaries_EW_BUC_V2/FeatureServerREST URL of WFS Server –https://dservices1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/services/Local_Resilience_Forums_December_2020_Boundaries_EW_BUC_V2/WFSServer?service=wfs&request=getcapabilitiesREST URL of Map Server –https://services1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/rest/services/Local_Resilience_Forums_December_2020_Boundaries_EW_BUC_V2/MapServer
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This file contains the digital vector boundaries for Lower layer Super Output Areas as at 31 December 2011 in England and Wales. The boundaries available are: Generalised (20m) - clipped to the coastline (Mean High Water mark); Version 3 - Amendments made to remove spike anomalies which occurred due to the automated production process. No changes to boundaries, names and codes have been undertaken. Contains both Ordnance Survey and ONS Intellectual Property Rights. Download File SizesGeneralised (20m) - clipped to the coastline (22 MB)
REST URL of Feature Access Service – https://services1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/rest/services/LSOA_Dec_2011_Boundaries_Generalised_Clipped_BGC_EW_V3/FeatureServerREST URL of WFS Server –https://dservices1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/services/LSOA_Dec_2011_Boundaries_Generalised_Clipped_BGC_EW_V3/WFSServer?service=wfs&request=getcapabilitiesREST URL of Map Server –https://services1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/rest/services/LSOA_Dec_2011_Boundaries_Generalised_Clipped_BGC_EW_V3/MapServer
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This file contains the digital vector boundaries for Local Enterprise Partnerships, in England, as at December 2022.The boundaries available are: (BUC) Ultra generalised (500m) - clipped to the coastline (Mean High Water mark).Contains both Ordnance Survey and ONS Intellectual Property Rights. Version 2 - To account for name changes. E37000011 Gloucestershire changed its name to GFirst on the 31st December 2022
E37000045 Derby, Derbyshire, Nottingham and Nottinghamshire has changed its name to D2N2 on the 31st December 2022
E37000051
London has changed it’s name to The London Economic Action Partnership
on the 31st December 2022
E37000053
Oxfordshire has changed it’s name to OxLEP on the 31st
December 2022
E37000054 Sheffield City Region has changed it’s name to South Yorkshire on the 1st December 2022
E37000059
Greater Cambridge and Greater Peterborough has changed it’s name to The
Business Board on the 31st December 2022
REST URL of Feature Access Service – https://services1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/rest/services/LEP_DEC_2022_EN_BUC_V2/FeatureServer
REST URL of WFS Server – https://dservices1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/services/LEP_DEC_2022_EN_BUC_V2/WFSServer?service=wfs&request=getcapabilities
REST URL of Map Server – https://services1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/rest/services/LEP_DEC_2022_EN_BUC_V2/MapServer
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Esri ArcGIS Server View Service - Names of the States and Their Territorial Parts is provided as a public view service for the latest list of names of states. Its origin is in the gazetteer Names of the States and Their Territorial Parts of editoral series UNO Gazetteers of Geographical Names - CZ. The view service is provided by Esri ArcGIS Server technology as a casched service. The service is accessible by one of the two access interfaces – REST and SOAP. It supports various coordinate reference systems through WMS interface.