Delhi was the largest city in terms of number of inhabitants in India in 2023.The capital city was estimated to house nearly 33 million people, with Mumbai ranking second that year. India's population estimate was 1.4 billion, ahead of China that same year.
In 2022, the union territory of Delhi had the highest urban population density of over ** thousand persons per square kilometer. While the rural population density was highest in union territory of Puducherry, followed by the state of Bihar.
The data set contains geolocations of all the cities in India with a population of more than 1000.
There are total 10 columns in the dataset.
Geoname
- Unique Geo-ID for the city
Name
- Name of the city
ACSII Name
- ASCII name of the city for interpretability
Alternate Names
- Alternate names for the city
Latitude
- Latitude of the city
Longitude
- Longitude of the city
Population
- Population of the city
Digital Elevation Model
- Digital elevation of the city
Country
- Country of the city
Coordinates
- Coordinates of the city
The data set is contributed by opendatasoft Data Network
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population in the largest city (% of urban population) in India was reported at 6.3201 % in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. India - Population in the largest city - actual values, historical data, forecasts and projections were sourced from the World Bank on August of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population in largest city in India was reported at 33807403 in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. India - Population in largest city - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
Japan’s largest city, greater Tokyo, had a staggering 37.19 million inhabitants in 2023, making it the most populous city across the Asia-Pacific region. India had the second largest city after Japan with a population consisting of approximately 33 million inhabitants. Contrastingly, approximately 410 thousand inhabitants populated Papua New Guinea's largest city in 2023. A megacity regionNot only did Japan and India have the largest cities throughout the Asia-Pacific region but they were among the three most populated cities worldwide in 2023. Interestingly, over half on the world’s megacities were situated in the Asia-Pacific region. However, being home to more than half of the world’s population, it does not seem surprising that by 2025 it is expected that more than two thirds of the megacities across the globe will be located in the Asia Pacific region. Other megacities are also expected to emerge within the Asia-Pacific region throughout the next decade. There have even been suggestions that Indonesia’s Jakarta and its conurbation will overtake Greater Tokyo in terms of population size by 2030. Increasing populationsIncreased populations in megacities can be down to increased economic activity. As more countries across the Asia-Pacific region have made the transition from agriculture to industry, the population has adjusted accordingly. Thus, more regions have experienced higher shares of urban populations. However, as many cities such as Beijing, Shanghai, and Seoul have an aging population, this may have an impact on their future population sizes, with these Asian regions estimated to have significant shares of the population being over 65 years old by 2035.
In India, the share of the population that earned at least the equivalent of the highest ** percent of global income earners as of 2022 in purchasing power parity (PPP) terms was ** percent. Hyderabad topped the list with the highest share of middle-class and above category of consumers. Cities from south India topped the list with the first four ranks, followed by the national capital, Delhi.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Urban population (% of total population) in India was reported at 36.87 % in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. India - Urban population (% of total) - actual values, historical data, forecasts and projections were sourced from the World Bank on August of 2025.
The Bureau of the Census has released Census 2000 Summary File 1 (SF1) 100-Percent data. The file includes the following population items: sex, age, race, Hispanic or Latino origin, household relationship, and household and family characteristics. Housing items include occupancy status and tenure (whether the unit is owner or renter occupied). SF1 does not include information on incomes, poverty status, overcrowded housing or age of housing. These topics will be covered in Summary File 3. Data are available for states, counties, county subdivisions, places, census tracts, block groups, and, where applicable, American Indian and Alaskan Native Areas and Hawaiian Home Lands. The SF1 data are available on the Bureau's web site and may be retrieved from American FactFinder as tables, lists, or maps. Users may also download a set of compressed ASCII files for each state via the Bureau's FTP server. There are over 8000 data items available for each geographic area. The full listing of these data items is available here as a downloadable compressed data base file named TABLES.ZIP. The uncompressed is in FoxPro data base file (dbf) format and may be imported to ACCESS, EXCEL, and other software formats. While all of this information is useful, the Office of Community Planning and Development has downloaded selected information for all states and areas and is making this information available on the CPD web pages. The tables and data items selected are those items used in the CDBG and HOME allocation formulas plus topics most pertinent to the Comprehensive Housing Affordability Strategy (CHAS), the Consolidated Plan, and similar overall economic and community development plans. The information is contained in five compressed (zipped) dbf tables for each state. When uncompressed the tables are ready for use with FoxPro and they can be imported into ACCESS, EXCEL, and other spreadsheet, GIS and database software. The data are at the block group summary level. The first two characters of the file name are the state abbreviation. The next two letters are BG for block group. Each record is labeled with the code and name of the city and county in which it is located so that the data can be summarized to higher-level geography. The last part of the file name describes the contents . The GEO file contains standard Census Bureau geographic identifiers for each block group, such as the metropolitan area code and congressional district code. The only data included in this table is total population and total housing units. POP1 and POP2 contain selected population variables and selected housing items are in the HU file. The MA05 table data is only for use by State CDBG grantees for the reporting of the racial composition of beneficiaries of Area Benefit activities. The complete package for a state consists of the dictionary file named TABLES, and the five data files for the state. The logical record number (LOGRECNO) links the records across tables.
As of 2025, Tokyo-Yokohama in Japan was the largest world urban agglomeration, with 37 million people living there. Delhi ranked second with more than 34 million, with Shanghai in third with more than 30 million inhabitants.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
A list of new and ancient temples in India. This list contains - temple name - temple description - location - location co-ordinates - distance from Mumbai - distance from New Delhi - distance from Chennai - distance from Kolkata
Note: Regarding the distance, I only chose the top 4 metro cities (by population) in India. Please feel free to add any other city of your choice.
The National Family Health Survey (NFHS) was carried out as the principal activity of a collaborative project to strengthen the research capabilities of the Population Reasearch Centres (PRCs) in India, initiated by the Ministry of Health and Family Welfare (MOHFW), Government of India, and coordinated by the International Institute for Population Sciences (IIPS), Bombay. Interviews were conducted with a nationally representative sample of 89,777 ever-married women in the age group 13-49, from 24 states and the National Capital Territoty of Delhi. The main objective of the survey was to collect reliable and up-to-date information on fertility, family planning, mortality, and maternal and child health. Data collection was carried out in three phases from April 1992 to September 1993. THe NFHS is one of the most complete surveys of its kind ever conducted in India.
The households covered in the survey included 500,492 residents. The young age structure of the population highlights the momentum of the future population growth of the country; 38 percent of household residents are under age 15, with their reproductive years still in the future. Persons age 60 or older constitute 8 percent of the population. The population sex ratio of the de jure residents is 944 females per 1,000 males, which is slightly higher than sex ratio of 927 observed in the 1991 Census.
The primary objective of the NFHS is to provide national-level and state-level data on fertility, nuptiality, family size preferences, knowledge and practice of family planning, the potentiel demand for contraception, the level of unwanted fertility, utilization of antenatal services, breastfeeding and food supplemation practises, child nutrition and health, immunizations, and infant and child mortality. The NFHS is also designed to explore the demographic and socioeconomic determinants of fertility, family planning, and maternal and child health. This information is intended to assist policymakers, adminitrators and researchers in assessing and evaluating population and family welfare programmes and strategies. The NFHS used uniform questionnaires and uniform methods of sampling, data collection and analysis with the primary objective of providing a source of demographic and health data for interstate comparisons. The data collected in the NFHS are also comparable with those of the Demographic and Health Surveys (DHS) conducted in many other countries.
National
The population covered by the 1992-93 DHS is defined as the universe of all women age 13-49 who were either permanent residents of the households in the NDHS sample or visitors present in the households on the night before the survey were eligible to be interviewed.
Sample survey data
SAMPLE DESIGN
The sample design for the NFHS was discussed during a Sample Design Workshop held in Madurai in Octber, 1991. The workshop was attended by representative from the PRCs; the COs; the Office of the Registrar General, India; IIPS and the East-West Center/Macro International. A uniform sample design was adopted in all the NFHS states. The Sample design adopted in each state is a systematic, stratified sample of households, with two stages in rural areas and three stages in urban areas.
SAMPLE SIZE AND ALLOCATION
The sample size for each state was specified in terms of a target number of completed interviews with eligible women. The target sample size was set considering the size of the state, the time and ressources available for the survey and the need for separate estimates for urban and rural areas of the stat. The initial target sample size was 3,000 completed interviews with eligible women for states having a population of 25 million or less in 1991; 4,000 completed interviews for large states with more than 25 million population; 8,000 for Uttar Pradesh, the largest state; and 1,000 each for the six small northeastern states. In States with a substantial number of backward districts, the initial target samples were increased so as to allow separate estimates to be made for groups of backward districts.
The urban and rural samples within states were drawn separetly and , to the extent possible, sample allocation was proportional to the size of the urban-rural populations (to facilitate the selection of a self-weighting sample for each state). In states where the urban population was not sufficiently large to provide a sample of at least 1,000 completed interviews with eligible women, the urban areas were appropriately oversampled (except in the six small northeastern states).
THE RURAL SAMPLE: THE FRAME, STRATIFICATION AND SELECTION
A two-stage stratified sampling was adopted for the rural areas: selection of villages followed by selection of households. Because the 1991 Census data were not available at the time of sample selection in most states, the 1981 Census list of villages served as the sampling frame in all the states with the exception of Assam, Delhi and Punjab. In these three states the 1991 Census data were used as the sampling frame.
Villages were stratified prior to selection on the basis of a number of variables. The firts level of stratification in all the states was geographic, with districts subdivided into regions according to their geophysical characteristics. Within each of these regions, villages were further stratified using some of the following variables : village size, distance from the nearest town, proportion of nonagricultural workers, proportion of the population belonging to scheduled castes/scheduled tribes, and female literacy. However, not all variables were used in every state. Each state was examined individually and two or three variables were selected for stratification, with the aim of creating not more than 12 strata for small states and not more than 15 strata for large states. Females literacy was often used for implicit stratification (i.e., the villages were ordered prior to selection according to the proportion of females who were literate). Primary sampling Units (PSUs) were selected systematically, with probaility proportional to size (PPS). In some cases, adjacent villages with small population sizes were combined into a single PSU for the purpose of sample selection. On average, 30 households were selected for interviewing in each selected PSU.
In every state, all the households in the selected PSUs were listed about two weeks prior to the survey. This listing provided the necessary frame for selecting households at the second sampling stage. The household listing operation consisted of preparing up-to-date notional and layout sketch maps of each selected PSU, assigning numbers to structures, recording addresses (or locations) of these structures, identifying the residential structures, and listing the names of the heads of all the households in the residentiak structures in the selected PSU. Each household listing team consisted of a lister and a mapper. The listing operation was supervised by the senior field staff of the concerned CO and the PRC in each state. Special efforts were made not to miss any household in the selected PSU during the listing operation. In PSUs with fewer than 500 households, a complete household listing was done. In PSUs with 500 or more households, segmentation of the PSU was done on the basis of existing wards in the PSU, and two segments were selected using either systematic sampling or PPS sampling. The household listing in such PSUs was carried out in the selected segments. The households to be interviewed were selected from provided with the original household listing, layout sketch map and the household sample selected for each PSU. All the selected households were approached during the data collection, and no substitution of a household was allowed under any circumstances.
THE RURAL URBAN SAMPLE: THE FRAME, STRATIFICATION AND SELECTION
A three-stage sample design was adopted for the urban areas in each state: selection of cities/towns, followed by urban blocks, and finally households. Cities and towns were selected using the 1991 population figures while urban blocks were selected using the 1991 list of census enumeration blocks in all the states with the exception of the firts phase states. For the first phase states, the list of urban blocks provided by the National Sample Survey Organization (NSSSO) served as the sampling frame.
All cities and towns were subdivided into three strata: (1) self-selecting cities (i.e., cities with a population large enough to be selected with certainty), (2) towns that are district headquaters, and (3) other towns. Within each stratum, the cities/towns were arranged according to the same kind of geographic stratification used in the rural areas. In self-selecting cities, the sample was selected according to a two-stage sample design: selection of the required number of urban blocks, followed by selection of households in each of selected blocks. For district headquarters and other towns, a three stage sample design was used: selection of towns with PPS, followed by selection of two census blocks per selected town, followed by selection of households from each selected block. As in rural areas, a household listing was carried out in the selected blocks, and an average of 20 households per block was selected systematically.
Face-to-face
Three types of questionnaires were used in the NFHS: the Household Questionnaire, the Women's Questionnaire, and the Village Questionnaire. The overall content
The National Family Health Surveys (NFHS) programme, initiated in the early 1990s, has emerged as a nationally important source of data on population, health, and nutrition for India and its states. The 2005-06 National Family Health Survey (NFHS-3), the third in the series of these national surveys, was preceded by NFHS-1 in 1992-93 and NFHS-2 in 1998-99. Like NFHS-1 and NFHS-2, NFHS-3 was designed to provide estimates of important indicators on family welfare, maternal and child health, and nutrition. In addition, NFHS-3 provides information on several new and emerging issues, including family life education, safe injections, perinatal mortality, adolescent reproductive health, high-risk sexual behaviour, tuberculosis, and malaria. Further, unlike the earlier surveys in which only ever-married women age 15-49 were eligible for individual interviews, NFHS-3 interviewed all women age 15-49 and all men age 15-54. Information on nutritional status, including the prevalence of anaemia, is provided in NFHS3 for women age 15-49, men age 15-54, and young children.
A special feature of NFHS-3 is the inclusion of testing of the adult population for HIV. NFHS-3 is the first nationwide community-based survey in India to provide an estimate of HIV prevalence in the general population. Specifically, NFHS-3 provides estimates of HIV prevalence among women age 15-49 and men age 15-54 for all of India, and separately for Uttar Pradesh and for Andhra Pradesh, Karnataka, Maharashtra, Manipur, and Tamil Nadu, five out of the six states classified by the National AIDS Control Organization (NACO) as high HIV prevalence states. No estimate of HIV prevalence is being provided for Nagaland, the sixth high HIV prevalence state, due to strong local opposition to the collection of blood samples.
NFHS-3 covered all 29 states in India, which comprise more than 99 percent of India's population. NFHS-3 is designed to provide estimates of key indicators for India as a whole and, with the exception of HIV prevalence, for all 29 states by urban-rural residence. Additionally, NFHS-3 provides estimates for the slum and non-slum populations of eight cities, namely Chennai, Delhi, Hyderabad, Indore, Kolkata, Meerut, Mumbai, and Nagpur. NFHS-3 was conducted under the stewardship of the Ministry of Health and Family Welfare (MOHFW), Government of India, and is the result of the collaborative efforts of a large number of organizations. The International Institute for Population Sciences (IIPS), Mumbai, was designated by MOHFW as the nodal agency for the project. Funding for NFHS-3 was provided by the United States Agency for International Development (USAID), DFID, the Bill and Melinda Gates Foundation, UNICEF, UNFPA, and MOHFW. Macro International, USA, provided technical assistance at all stages of the NFHS-3 project. NACO and the National AIDS Research Institute (NARI) provided technical assistance for the HIV component of NFHS-3. Eighteen Research Organizations, including six Population Research Centres, shouldered the responsibility of conducting the survey in the different states of India and producing electronic data files.
The survey used a uniform sample design, questionnaires (translated into 18 Indian languages), field procedures, and procedures for biomarker measurements throughout the country to facilitate comparability across the states and to ensure the highest possible data quality. The contents of the questionnaires were decided through an extensive collaborative process in early 2005. Based on provisional data, two national-level fact sheets and 29 state fact sheets that provide estimates of more than 50 key indicators of population, health, family welfare, and nutrition have already been released. The basic objective of releasing fact sheets within a very short period after the completion of data collection was to provide immediate feedback to planners and programme managers on key process indicators.
The population covered by the 2005 DHS is defined as the universe of all ever-married women age 15-49, NFHS-3 included never married women age 15-49 and both ever-married and never married men age 15-54 as eligible respondents.
Sample survey data
SAMPLE SIZE
Since a large number of the key indicators to be estimated from NFHS-3 refer to ever-married women in the reproductive ages of 15-49, the target sample size for each state in NFHS-3 was estimated in terms of the number of ever-married women in the reproductive ages to be interviewed.
The initial target sample size was 4,000 completed interviews with ever-married women in states with a 2001 population of more than 30 million, 3,000 completed interviews with ever-married women in states with a 2001 population between 5 and 30 million, and 1,500 completed interviews with ever-married women in states with a population of less than 5 million. In addition, because of sample-size adjustments required to meet the need for HIV prevalence estimates for the high HIV prevalence states and Uttar Pradesh and for slum and non-slum estimates in eight selected cities, the sample size in some states was higher than that fixed by the above criteria. The target sample was increased for Andhra Pradesh, Karnataka, Maharashtra, Manipur, Nagaland, Tamil Nadu, and Uttar Pradesh to permit the calculation of reliable HIV prevalence estimates for each of these states. The sample size in Andhra Pradesh, Delhi, Maharashtra, Tamil Nadu, Madhya Pradesh, and West Bengal was increased to allow separate estimates for slum and non-slum populations in the cities of Chennai, Delhi, Hyderabad, Indore, Kolkata, Mumbai, Meerut, and Nagpur.
The target sample size for HIV tests was estimated on the basis of the assumed HIV prevalence rate, the design effect of the sample, and the acceptable level of precision. With an assumed level of HIV prevalence of 1.25 percent and a 15 percent relative standard error, the estimated sample size was 6,400 HIV tests each for men and women in each of the high HIV prevalence states. At the national level, the assumed level of HIV prevalence of less than 1 percent (0.92 percent) and less than a 5 percent relative standard error yielded a target of 125,000 HIV tests at the national level.
Blood was collected for HIV testing from all consenting ever-married and never married women age 15-49 and men age 15-54 in all sample households in Andhra Pradesh, Karnataka, Maharashtra, Manipur, Tamil Nadu, and Uttar Pradesh. All women age 15-49 and men age 15-54 in the sample households were eligible for interviewing in all of these states plus Nagaland. In the remaining 22 states, all ever-married and never married women age 15-49 in sample households were eligible to be interviewed. In those 22 states, men age 15-54 were eligible to be interviewed in only a subsample of households. HIV tests for women and men were carried out in only a subsample of the households that were selected for men's interviews in those 22 states. The reason for this sample design is that the required number of HIV tests is determined by the need to calculate HIV prevalence at the national level and for some states, whereas the number of individual interviews is determined by the need to provide state level estimates for attitudinal and behavioural indicators in every state. For statistical reasons, it is not possible to estimate HIV prevalence in every state from NFHS-3 as the number of tests required for estimating HIV prevalence reliably in low HIV prevalence states would have been very large.
SAMPLE DESIGN
The urban and rural samples within each state were drawn separately and, to the extent possible, unless oversampling was required to permit separate estimates for urban slum and non-slum areas, the sample within each state was allocated proportionally to the size of the state's urban and rural populations. A uniform sample design was adopted in all states. In each state, the rural sample was selected in two stages, with the selection of Primary Sampling Units (PSUs), which are villages, with probability proportional to population size (PPS) at the first stage, followed by the random selection of households within each PSU in the second stage. In urban areas, a three-stage procedure was followed. In the first stage, wards were selected with PPS sampling. In the next stage, one census enumeration block (CEB) was randomly selected from each sample ward. In the final stage, households were randomly selected within each selected CEB.
SAMPLE SELECTION IN RURAL AREAS
In rural areas, the 2001 Census list of villages served as the sampling frame. The list was stratified by a number of variables. The first level of stratification was geographic, with districts being subdivided into contiguous regions. Within each of these regions, villages were further stratified using selected variables from the following list: village size, percentage of males working in the nonagricultural sector, percentage of the population belonging to scheduled castes or scheduled tribes, and female literacy. In addition to these variables, an external estimate of HIV prevalence, i.e., 'High', 'Medium' or 'Low', as estimated for all the districts in high HIV prevalence states, was used for stratification in high HIV prevalence states. Female literacy was used for implicit stratification (i.e., villages were
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the Surat, India metro area from 1950 to 2025.
As of the year 2024, the population of the capital city of India, Delhi was over ** million people. This was a 2.63 percent growth from last year. The historical trends show that the population doubled between 1990 and 2010. The UN estimated that the population was expected to reach around ** million by 2030. Reasons for population growth As per the Delhi Economic Survey, migration added over *** thousand people to Delhi’s population in 2022. The estimates showed relative stability in natural population growth for a long time before the pandemic. The numbers suggest a sharp decrease in birth rates from 2020 onwards and a corresponding increase in death rates in 2021 due to the Covid-19 pandemic. The net natural addition or the remaining growth is attributed to migration. These estimates are based on trends published by the Civil Registration System. National Capital Region (NCR) Usually, population estimates for Delhi represent the urban agglomeration of Delhi, which includes Delhi and some of its adjacent suburban areas. The National Capital Region or NCR is one of the largest urban agglomerations in the world. It is an example of inter-state regional planning and development, centred around the National Capital Territory of Delhi, and covering certain districts of neighbouring states Haryana, Uttar Pradesh, and Rajasthan. Noida, Gurugram, and Ghaziabad are some of the key cities of NCR. Over the past decade, NCR has emerged as a key economic centre in India.
A nationwide survey on "Particulars of Slums" was carried-out by the National Sample Survey Organisation (NSSO) during the period January-June, 1993 in its 49th round to ascertain the extent of civic facilities available in the slums. The 49th round survey among other objectives also collected data on the condition of slum dwellings as well as on some general particulars of slum areas. Apart from formulating the sampling design with an emphasis to obtain an adequate number of slum households for the survey on housing condition and migration, surveyed the slum areas and collected information on slums. The schedule 0.21 was canvassed in both the rural and urban areas. All the slums, both the declared ones as well as the others (undeclared), found in the selected first stage units were surveyed even if hamlet-group/sub-block selection was resorted to in some of then. To ascertain the extent of civic facilities available in the slums as well as the information regarding the improvement of slum condition during a period of last five years was also collected. Information was collected by contacting one or more knowledgeable persons in the FSU on the basis of predominant criterion in both declared and undeclared slums, and not through household approach.
The geographical coverage of the survey was the whole of the Indian Union except Ladakh & Kargil districts of Jammu & Kashmir, 768 interior villages of Nagaland and 172 villages in Andaman & Nicobar islands which remain inaccessible throughout the year. However, certain districts of Jammu & Kashmir viz. Doda, Anantanag, Pulwama, Srinagar, Badgam, Barmula & Kupwara, as well as Amritsar district in Punjab, had to be excluded from the survey coverage due to unfavourable field conditions.
Sample Design : The first stage units in the rural sector and urban sector were census villages and urban frame survey (UFS) blocks respectively. However for newly declared towns of the 1991 census,for which UFS frames were not available, census EBs were used as first stage units.
Sampling frame for fsu's : In the rural sector, the sampling frame in most of the districts was the 1981 census list of villages. However, in Assam and in 8 districts of Madhya Pradesh, 1971 Census lists of villages were used. For Nagaland, the villages situated within 5 kms of a bus route constituted the sampling frame. For the Andaman & Nicobar islands the list of accessible villages was used as sampling frame. In the urban sector, the lists of NSS urban frame survey (UFS) blocks were the sampling frames used in most cases. However, 1991 Census house - listing enumeration blocks were considered as the sampling units for some of the newly declared towns of the 1991 population census, for which UFS frames were not available.
Stratification : Each state/u.t. was divided into one or more agro-economic regions by grouping contiguous districts which are similar with respect to population density and crop pattern. In Gujarat, however, some districts were subdivided for the purpose of region formation on the basis of location of dry areas and the distribution of tribal population in the state. The total number of regions formed in the whole of India was 78.
In the rural sector, within each region, each district with a rural population of less than 1.8 million according to the 1981 Census formed a single basic stratum. Districts with larger population were divided into two or more strata, depending on population, by grouping contiguous tehsils, similar as far as possible in respect of rural population density & crop pattern. In Gujarat, however, in the case of districts extending over more than one region, the portion of a district falling in each region constituted a separate stratum even if the rural population of the district as a whole was less than 1.8 million. Further, in Assam, the strata formed for the earlier NSS round on the basis of 1971 Census rural population exactly in the above manner, but with a cutoff point of 1.5 million population, were retained as the strata for rural sampling.
In the urban sector, strata were formed, within NSS regions, on the basis of 1981 (1991 in some of the new towns) Census population. Each city with a population of 10 lakhs or more formed a separate stratum itself. The remaining towns of each region were grouped to form three different strata on the basis of 1981 (1991 in a few cases) census population.
Sub stratification of urban strata : In order to be able to allocate a large proportion of the first stage sample to slum-dominated areas than would otherwise be possible, each stratum in the urban sector was divided into two "sub-strata" a s follows. Sub-stratum 1 was constituted of the UFS blocks in the stratum with a "slum area" indicated in the frame. Substratum 2 was constituted of the remaining blocks of the stratum.
Allocation of sample : A total all-India sample of 8000 first stage units (5072 villages and 2928 urban blocks) determined on the basis of investigator strength in different state/u.t's and the expected workload per investigator was first allocated to the states/u.t's in proportion to Central Staff available. The sample thus obtained for each state/u.t. was then allocated to its rural & urban sectors considering the relative sizes of the rural & urban population with double weightage for the urban sector. Within each sector of a state/u.t., the allotted sample size was reallocated to the different strata in proportion to stratum population. Stratum-level allocations were adjusted so that the sample size for a stratum (rural or urban) was at least a multiple of 4. This was done in order to have equal sized samples in each sub-sample and sub-round.
In the urban sector, stratum-level allocations were further allocated to the two sub-strata in proportion to the number of UFS blocks in the sub-strata, with double weightage to sub-stratum 1, with a minimum sample size of 4 blocks to sub-stratum 1 (2 if stratum allocation was only 4). Sub-stratum level allocations were made even in number.
Selection of fsu's : Sample villages except in Arunachal Pradesh were selected by pps systematic sampling with population as the size variable and sample blocks by simple random sampling without replacement. In both sectors the sample of fsu's was drawn in the form of two independent sub-samples. (In Arunachal Pradesh the sample of villages was drawn by a cluster sampling procedure. The field staff were supplied with a list of sample "nucleus" villages and were advised to select cluster of villages building up each cluster around a nucleus village according to prescribed guidelines. The nucleus villages were selected circular-systematically with equal probability in the form of two ) independent sub-samples.
Face-to-face [f2f]
The questionnaire consisted of 6 blocks (including 0) as given below : Block - 0 : descriptive identification of sample village/block having slum Block - 1 : identification of sample village/block having slum. Block - 3 : Remarks by investigator. Block - 4 : Comments by Supervisory Officer(s). Block - 5 : Particulars about slum.
1572 slums spread over 5072 villages and 2928 urban blocks in the sample have been surveyed.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The actions are categorised as incremental, reformist or transformational but may span these categories depending on depth and scope of implementation. For a detailed list of all solutions mentioned in the urban HAPs, see Table B in S1 Text.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background: Particulate matter (PM) is one among the crucial air pollutants and has the potential to cause a wide range of health effects. Indian cities ranked top places in the World Health Organization list of most polluted cities by PM. Objectives: Present study aims to assess the trends, short- and long-term health effects of PM in major Indian cities. Methods: PM-induced hospital admissions and mortality are quantified using AirQ+ software. Results: Annual PM concentration in most of the cities is higher than the National Ambient Air Quality Standards of India. Trend analysis showed peak PM concentration during post-monsoon and winter seasons. The respiratory and cardiovascular hospital admissions in the male (female) population are estimated to be 31,307 (28,009) and 5460 (4882) cases, respectively. PM2.5 has accounted for a total of 1,27,014 deaths in 2017. Conclusion: Cities with high PM concentration and exposed population are more susceptible to mortality and hospital admissions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Census: Population: Uttar Pradesh: Agra data was reported at 1,585,704.000 Person in 03-01-2011. This records an increase from the previous number of 1,331,339.000 Person for 03-01-2001. Census: Population: Uttar Pradesh: Agra data is updated decadal, averaging 442,172.500 Person from Mar 1901 (Median) to 03-01-2011, with 12 observations. The data reached an all-time high of 1,585,704.000 Person in 03-01-2011 and a record low of 185,449.000 Person in 03-01-1911. Census: Population: Uttar Pradesh: Agra data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAC035: Census: Population: By Towns and Urban Agglomerations: Uttar Pradesh.
The Employment and Unemployment surveys of National sample Survey (NSS) are primary sources of data on various indicators of labour force at National and State levels. These are used for planning, policy formulation, decision support and as input for further statistical exercises by various Government organizations, academicians, researchers and scholars. NSS surveys on employment and un-employment with large sample size of households have been conducted quinquennially from 27th. round(October'1972 - September'1973) onwards. Cotinuing in this series the fourth such all-india survey on the situation of employment and unemployment in India was carried out during the period july 1987 - june 1988 .
The working Group set up for planning of the entire scheme of the survey, among other things, examined also in detail some of the key results generated from the 38th round data and recommended some stream-lining of the 38th round schedule for the use in the 43rd round. Further, it felt no need for changing the engaging the easting conceptual frame work. However, some additional items were recommended to be included in the schedule to obtain the necessary and relevant information for generating results to see the effects on participation rates in view of the ILO suggestions.5.0.1. The NSSO Governing Council approved the recommendations of the working Group and also the schedule of enquiry in its 44th meeting held on 16 January, 1987. In this survey, a nation-wide enquiry was conducted to provide estimates on various characteristics pertaining to employment and unemployment in India and some characteristics associated with them at the national and state levels. Information on various facets of employment and unemployment in India was collected through a schedule of enquiry (schedule 10).
The survey covered the whole of Indian Union excepting i) Ladakh and Kargil districts of Jammu & Kashmir ii) Rural areas of Nagaland
Randomly selected households based on sampling procedure and members of the household
Sample survey data [ssd]
It may be mentioned here that in order to net more households of the upper income bracket in the Sample , significant changes have been made in the sample design in this round (compares to the design of the 38th round).
SAMPLE DESIGN AND SAMPLE SIZE The survey had a two-stage stratified design. The first stage units (f.s.u.'s) are villages in the rural sector and urban blocks in the urban sector. The second stage units are households in both the sectors. Sampling frame for f.s.u.'s : The lists of 1981 census villages constituted the sampling frame for rural sector in most districts. But the 1981 census frame could not be used for a few districts because, either the 1981 census was not held there or the list of 1981 census villages could not be obtained or the lists obtained from the census authorities were found to be grossly incomplete. In such cases 1971 census frame were used. In the urban sector , the Urban Frame Survey (U.F.S.) blocks constituted the sampling frame. STRATIFICATION : States were first divided into agro-economic regions which are groups of contiguous districts , similar with respect to population density and crop pattern. In Gujarat, however , some districts have been split for the purpose of region formation In consideration of the location of dry areas and the distribution of the tribal population in the state. The composition of the regions is given in the Appendix. RURAL SECTOR: In the rural sector, within each region, each district with 1981Census rural population less 1.8 million formed a single stratum. Districts with larger population were divided into two or more strata, depending on population, by grouping contiguous tehsils similar, as for as possible, in respect of rural population Density and crop pattern. (In Gujarat, however , in the case of districts extending over more than one region, even if the rural population was less than 1.8 million, the portion of a district falling in each region constituted a separate stratum. Further ,in Assam the old "basic strata" formed on the basis of 1971 census rural population exactly in the above manner, but with cut-off population as 1.5 million have been retained as the strata for rural sampling.) URBAN SECTOR : In the urban sector , strata were formed , again within NSS region , on the basis of the population size class of towns . Each city with population 10 lakhs or more is self-representative , as in the earlier rounds . For the purpose of stratification, in towns with '81 census population 4 lakhs or more , the blocks have been divided into two categories , viz . : One consisting of blocks in areas inhabited by the relatively affluent section of the population and the other consisting of the remaining blocks. The strata within each region were constituted as follows :
Stratum population class of town
1 all towns with population less than 50,000 2 -do- 50,000 - 199,999 3 -do- 200,000 - 399,999 4 -do- 400,000 - 999,999 ( affluent area) 5 (other area) 6 a single city with population 1 million and above (affluent area) 7 " (other area) 8 another city with population 1 million and above
Note : There is no region with more than one city with population 1 million and above. The stratum number have been retained as above even if in some regions some of the strata are empty.
Allocation for first stage units : The total all-India sample size was allocated to the states /U.T.'s proportionate to the strength of central field staff. This was allocated to the rural and urban sectors considering the relative size of the rural and urban population. Now the rural samples were allocated to the rural strata in proportion to rural population. The urban samples were allocated to the urban strata in proportion to urban population with double weight age given to those strata of towns with population 4 lakhs or more which lie in area inhabited by the relatively affluent section. All allocations have been adjusted such that the sample size for stratum was at least a multiple of 4 (preferably multiple of 8) and the total sample size of a region is a multiple of 8 for the rural and urban sectors separately.
Selection of f.s.u.'s : The sample villages have been selected circular systematically with probability proportional to population in the form of two independent interpenetrating sub-samples (IPNS) . The sample blocks have been selected circular systematically with equal probability , also in the form of two IPNS' s.
As regards the rural areas of Arunachal Pradesh, the procedure of 'cluster sampling' was:- The field staff will be supplied with a list of the nucleus villages of each cluster and they selected the remaining villages of the cluster according to the procedure described in Section Two. The nucleus villages were selected circular systematically with equal probability, in the form of two IPNS 's.
Hamlet-group and sub-blocks : Large villages and blocks were sub- divided into a suitable number of hamlet-groups and sub-blocks respectively having equal population convent and one them was selected at random for surveys.
Hamlet-group and sub-blocks : Large villages and blocks were sub- divided into a suitable number of hamlet-groups and sub-blocks respectively having equal population convent and one them was selected at random for surveys.
Selection of households : rural : In order to have adequate number of sample households from the affluent section of the society, some new procedures were introduced for selection of sample households, both in the rural and urban sectors. In the rural sector , while listing households, the investigator identified the households in village/ selected hamlet- group which may be considered to be relatively more affluent than the rest. This was done largely on the basis of his own judgment but while exercising his judgment considered factors generally associated with rich people in the localitysuch as : living in large pucca house in well-maintained state, ownership/possession of cultivated/irrigated land in excess of certain norms. ( e.g.20 acres of cultivated land or 10 acres of irrigated land), ownership of motor vehicles and costly consumer durables like T.V. , VCR, VCP AND refrigerator, ownership of large business establishment , etc. Now these "rich" households will form sub-stratum 1. (If the total number of households listed is 80 or more , 10 relatively most affluent households will form sub-stratum 1. If it is below 80, 8 such households will form sub-stratum 1. The remaining households will 'constitute sub-stratum 2. At the time of listing, information relating to each household' s major sources of income will be collected, on the basis of which its means of livelihood will be identified as one of the following : "self-employed in non-agriculture " "rural labour" and "others" (see section Two for definition of these terms) . Also the area of land possessed as on date of survey will be ascertained from all households while listing. Now the households of sub-stratum 2 will be arranged in the order : (1)self-employed in non-agriculture, (2) rural labour, other households, with land possessed (acres) : (3) less than 1.00 (4) 1.00-2.49,(5)2.50-4.99, (6)
Delhi was the largest city in terms of number of inhabitants in India in 2023.The capital city was estimated to house nearly 33 million people, with Mumbai ranking second that year. India's population estimate was 1.4 billion, ahead of China that same year.