https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
The data shows the year-wise and state or union territory-wise literacy and rural and urban literacy, for male, female, and total literacy, in India according to Census.
Note: 1. Literacy rate is defined as the population of literates in the population aged 7 year and above. 2. The 1991 data (Excluding Jammu & Kashmir)and 2001 data (Excludes figures of Paomata, Mao Maran and Pura sub-divisions of Senapati district of Manipur for 2001) refer to Census of India.
Among the states in India, Kerala had the highest literary rate with 94 percent in 2011. Chandigarh, Himachal Pradesh and the capital territory of Delhi followed Kerala with above average literacy rates. Notably, all the leading states in the country had more literate males than females at the time of the census.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Govt Of India Literacy Rate’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/doncorleone92/govt-of-india-literacy-rate on 13 February 2022.
--- Dataset description provided by original source is as follows ---
This is the official dataset released by the govt. of India based on the census 2001 and 2011 survey.
The data is of 35 Indian states and union territories. The literacy rate is spread across the major parameters - Overall, Rural and Urban. All the data is percentage of the total population of that state.
Derived from the govt. of India's official site.
Understand the literacy rate in India and which states/UT's have the highest growth in terms of increased literacy rates.
--- Original source retains full ownership of the source dataset ---
Literacy in India has been increasing as more and more people receive a better education, but it is still far from all-encompassing. In 2022, the degree of literacy in India was about 76.32 percent, with the majority of literate Indians being men. It is estimated that the global literacy rate for people aged 15 and above is about 86 percent. How to read a literacy rateIn order to identify potential for intellectual and educational progress, the literacy rate of a country covers the level of education and skills acquired by a country’s inhabitants. Literacy is an important indicator of a country’s economic progress and the standard of living – it shows how many people have access to education. However, the standards to measure literacy cannot be universally applied. Measures to identify and define illiterate and literate inhabitants vary from country to country: In some, illiteracy is equated with no schooling at all, for example. Writings on the wallGlobally speaking, more men are able to read and write than women, and this disparity is also reflected in the literacy rate in India – with scarcity of schools and education in rural areas being one factor, and poverty another. Especially in rural areas, women and girls are often not given proper access to formal education, and even if they are, many drop out. Today, India is already being surpassed in this area by other emerging economies, like Brazil, China, and even by most other countries in the Asia-Pacific region. To catch up, India now has to offer more educational programs to its rural population, not only on how to read and write, but also on traditional gender roles and rights.
The statistic displays the main states and union territories in India with the highest number of illiterate people in 2011. In that year, Uttar Pradesh was at the top of the list, with more than 85 million illiterate people, followed by the state of Bihar with over 51 million people.
Description and codebook for subset of harmonized variables:
Guide to datasets:
Full Project Name: The Impact of Mother Literacy and Participation Programs on Child Learning in India
Unique ID: 458
PIs: Rukmini Banerji, James Berry, Marc Shotland
Location: Indian states of Bihar and Rajasthan
Sample: Around 9,000 households in 480 villages
Timeline: 2010 to 2012
Target Group: Children Parents Rural population Women and girls
Outcome of Interest: Employment, Student learning ,Women’s/girls’ decision-making, Gender attitudes and norms
Intervention Type: Early childhood development, Tracking and remedial education, Empowerment training
Associated publications: https://www.aeaweb.org/articles?id=10.1257/app.20150390
More information: https://www.povertyactionlab.org/evaluation/impact-mother-literacy-and-participation-programs-child-learning-india
Dataverse: Banerji, Rukmini; Berry, James; Shotland, Marc, 2017, “The Impact of Maternal Literacy and Participation Programs: Evidence from a Randomized Evaluation in India”, https://doi.org/10.7910/DVN/19PPE7, Harvard Dataverse, V1
Survey instrument:
Testing tools:
Survey instrument:
Testing tools:
No associated survey instrument
This dataset was created on 2021-10-06 20:35:41.921
by merging multiple datasets together. The source datasets for this version were:
Maternal Literacy in India Baseline: Modified from ml_merged : contains data with variables only from baseline surveys
Maternal Literacy in India Endline: Modified from ml_merged : contains data with variables only from endline surveys
Maternal Literacy in India Raw Administrative Statistics: ml_admin_stats_raw: Contains administrative statistics from the 2011 census and aser surveys used in online Appendix Table 1 in the paper; this is merged with some of the survey data to create ml_admin_stats
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Literacy Rate: Tamil Nadu data was reported at 80.100 % in 12-01-2011. This records an increase from the previous number of 73.450 % for 12-01-2001. Literacy Rate: Tamil Nadu data is updated decadal, averaging 58.525 % from Dec 1961 (Median) to 12-01-2011, with 6 observations. The data reached an all-time high of 80.100 % in 12-01-2011 and a record low of 36.390 % in 12-01-1961. Literacy Rate: Tamil Nadu data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Education Sector – Table IN.EDA001: Literacy Rate.
As of 2021, India recorded a higher nationwide literacy rate among men than women, at respectively 84.4 percent of male population and 71.5 percent of female population. The gender literacy gap was more evident in rural India, with only 66 percent of women aged between 15 and 49 years being literate, compared to over 81 percent of their male counterparts in the region.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is on Adolescents' Health Literacy survey collected in one district each in five states of India using HLSAC survey tool.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Literacy Rate: Kerala data was reported at 94.000 % in 12-01-2011. This records an increase from the previous number of 90.860 % for 12-01-2001. Literacy Rate: Kerala data is updated decadal, averaging 78.850 % from Dec 1951 (Median) to 12-01-2011, with 7 observations. The data reached an all-time high of 94.000 % in 12-01-2011 and a record low of 47.180 % in 12-01-1951. Literacy Rate: Kerala data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Education Sector – Table IN.EDA001: Literacy Rate.
The National Family Health Surveys (NFHS) programme, initiated in the early 1990s, has emerged as a nationally important source of data on population, health, and nutrition for India and its states. The 2005-06 National Family Health Survey (NFHS-3), the third in the series of these national surveys, was preceded by NFHS-1 in 1992-93 and NFHS-2 in 1998-99. Like NFHS-1 and NFHS-2, NFHS-3 was designed to provide estimates of important indicators on family welfare, maternal and child health, and nutrition. In addition, NFHS-3 provides information on several new and emerging issues, including family life education, safe injections, perinatal mortality, adolescent reproductive health, high-risk sexual behaviour, tuberculosis, and malaria. Further, unlike the earlier surveys in which only ever-married women age 15-49 were eligible for individual interviews, NFHS-3 interviewed all women age 15-49 and all men age 15-54. Information on nutritional status, including the prevalence of anaemia, is provided in NFHS3 for women age 15-49, men age 15-54, and young children.
A special feature of NFHS-3 is the inclusion of testing of the adult population for HIV. NFHS-3 is the first nationwide community-based survey in India to provide an estimate of HIV prevalence in the general population. Specifically, NFHS-3 provides estimates of HIV prevalence among women age 15-49 and men age 15-54 for all of India, and separately for Uttar Pradesh and for Andhra Pradesh, Karnataka, Maharashtra, Manipur, and Tamil Nadu, five out of the six states classified by the National AIDS Control Organization (NACO) as high HIV prevalence states. No estimate of HIV prevalence is being provided for Nagaland, the sixth high HIV prevalence state, due to strong local opposition to the collection of blood samples.
NFHS-3 covered all 29 states in India, which comprise more than 99 percent of India's population. NFHS-3 is designed to provide estimates of key indicators for India as a whole and, with the exception of HIV prevalence, for all 29 states by urban-rural residence. Additionally, NFHS-3 provides estimates for the slum and non-slum populations of eight cities, namely Chennai, Delhi, Hyderabad, Indore, Kolkata, Meerut, Mumbai, and Nagpur. NFHS-3 was conducted under the stewardship of the Ministry of Health and Family Welfare (MOHFW), Government of India, and is the result of the collaborative efforts of a large number of organizations. The International Institute for Population Sciences (IIPS), Mumbai, was designated by MOHFW as the nodal agency for the project. Funding for NFHS-3 was provided by the United States Agency for International Development (USAID), DFID, the Bill and Melinda Gates Foundation, UNICEF, UNFPA, and MOHFW. Macro International, USA, provided technical assistance at all stages of the NFHS-3 project. NACO and the National AIDS Research Institute (NARI) provided technical assistance for the HIV component of NFHS-3. Eighteen Research Organizations, including six Population Research Centres, shouldered the responsibility of conducting the survey in the different states of India and producing electronic data files.
The survey used a uniform sample design, questionnaires (translated into 18 Indian languages), field procedures, and procedures for biomarker measurements throughout the country to facilitate comparability across the states and to ensure the highest possible data quality. The contents of the questionnaires were decided through an extensive collaborative process in early 2005. Based on provisional data, two national-level fact sheets and 29 state fact sheets that provide estimates of more than 50 key indicators of population, health, family welfare, and nutrition have already been released. The basic objective of releasing fact sheets within a very short period after the completion of data collection was to provide immediate feedback to planners and programme managers on key process indicators.
The population covered by the 2005 DHS is defined as the universe of all ever-married women age 15-49, NFHS-3 included never married women age 15-49 and both ever-married and never married men age 15-54 as eligible respondents.
Sample survey data
SAMPLE SIZE
Since a large number of the key indicators to be estimated from NFHS-3 refer to ever-married women in the reproductive ages of 15-49, the target sample size for each state in NFHS-3 was estimated in terms of the number of ever-married women in the reproductive ages to be interviewed.
The initial target sample size was 4,000 completed interviews with ever-married women in states with a 2001 population of more than 30 million, 3,000 completed interviews with ever-married women in states with a 2001 population between 5 and 30 million, and 1,500 completed interviews with ever-married women in states with a population of less than 5 million. In addition, because of sample-size adjustments required to meet the need for HIV prevalence estimates for the high HIV prevalence states and Uttar Pradesh and for slum and non-slum estimates in eight selected cities, the sample size in some states was higher than that fixed by the above criteria. The target sample was increased for Andhra Pradesh, Karnataka, Maharashtra, Manipur, Nagaland, Tamil Nadu, and Uttar Pradesh to permit the calculation of reliable HIV prevalence estimates for each of these states. The sample size in Andhra Pradesh, Delhi, Maharashtra, Tamil Nadu, Madhya Pradesh, and West Bengal was increased to allow separate estimates for slum and non-slum populations in the cities of Chennai, Delhi, Hyderabad, Indore, Kolkata, Mumbai, Meerut, and Nagpur.
The target sample size for HIV tests was estimated on the basis of the assumed HIV prevalence rate, the design effect of the sample, and the acceptable level of precision. With an assumed level of HIV prevalence of 1.25 percent and a 15 percent relative standard error, the estimated sample size was 6,400 HIV tests each for men and women in each of the high HIV prevalence states. At the national level, the assumed level of HIV prevalence of less than 1 percent (0.92 percent) and less than a 5 percent relative standard error yielded a target of 125,000 HIV tests at the national level.
Blood was collected for HIV testing from all consenting ever-married and never married women age 15-49 and men age 15-54 in all sample households in Andhra Pradesh, Karnataka, Maharashtra, Manipur, Tamil Nadu, and Uttar Pradesh. All women age 15-49 and men age 15-54 in the sample households were eligible for interviewing in all of these states plus Nagaland. In the remaining 22 states, all ever-married and never married women age 15-49 in sample households were eligible to be interviewed. In those 22 states, men age 15-54 were eligible to be interviewed in only a subsample of households. HIV tests for women and men were carried out in only a subsample of the households that were selected for men's interviews in those 22 states. The reason for this sample design is that the required number of HIV tests is determined by the need to calculate HIV prevalence at the national level and for some states, whereas the number of individual interviews is determined by the need to provide state level estimates for attitudinal and behavioural indicators in every state. For statistical reasons, it is not possible to estimate HIV prevalence in every state from NFHS-3 as the number of tests required for estimating HIV prevalence reliably in low HIV prevalence states would have been very large.
SAMPLE DESIGN
The urban and rural samples within each state were drawn separately and, to the extent possible, unless oversampling was required to permit separate estimates for urban slum and non-slum areas, the sample within each state was allocated proportionally to the size of the state's urban and rural populations. A uniform sample design was adopted in all states. In each state, the rural sample was selected in two stages, with the selection of Primary Sampling Units (PSUs), which are villages, with probability proportional to population size (PPS) at the first stage, followed by the random selection of households within each PSU in the second stage. In urban areas, a three-stage procedure was followed. In the first stage, wards were selected with PPS sampling. In the next stage, one census enumeration block (CEB) was randomly selected from each sample ward. In the final stage, households were randomly selected within each selected CEB.
SAMPLE SELECTION IN RURAL AREAS
In rural areas, the 2001 Census list of villages served as the sampling frame. The list was stratified by a number of variables. The first level of stratification was geographic, with districts being subdivided into contiguous regions. Within each of these regions, villages were further stratified using selected variables from the following list: village size, percentage of males working in the nonagricultural sector, percentage of the population belonging to scheduled castes or scheduled tribes, and female literacy. In addition to these variables, an external estimate of HIV prevalence, i.e., 'High', 'Medium' or 'Low', as estimated for all the districts in high HIV prevalence states, was used for stratification in high HIV prevalence states. Female literacy was used for implicit stratification (i.e., villages were
The statistic displays the literacy rate in rural and urban regions of the state of Uttar Pradesh in India in 2011, with a breakdown by gender. In that year, the literacy rate among males living in rural areas in Uttar Pradesh was around 76 percent. India's literacy rate from 1981 through 2011 can be found here.
The Longitudinal Aging Study in India (LASI) aims to understand the situation of India’s elderly population by collecting data on their health, social situations, and economic circumstances. It will provide a foundation for innovative, rigorous, and multidisciplinary studies of aging in India that will inform policy and advance scientific knowledge. Its goal is to provide data harmonized with the Health and Retirement Study (HRS) and its sister studies around the world. A pilot study has been conducted that includes household survey data, Computer-Assisted Personal Interviews (CAPI) and molecular biomarkers. The results of the pilot study will inform the design of a full-scale, nationally representative LASI, with a sample of roughly 30,000 to be followed longitudinally (with refresher populations added as needed). Due to its harmonized design with parallel international studies, LASI will contribute to scientific insights and policy development in other countries as well. LASI will ultimately be part of a worldwide effort aimed at understanding how different institutions, cultures, and policies can understand and prepare for population ageing.
You can download the pilot data at the Harvard Program on the Global Demography of Aging website
Methodology
The LASI pilot survey targeted 1,600 individuals aged 45 and older and their spouses, and will inform the design and rollout of a full-scale, nationally representative LASI survey. The expectation is that LASI will be a biennial survey and will be representative of Indians aged 45 and older, with no upper age limit.
1,600 age-qualifying individuals were drawn from a stratified, multistage area probability sampling design. After a series of pre-pilot studies designed to test the instrument and the key ideas behind it, pilot data were collected through face-to-face interviews over three month time periods. Descriptive analyses of the data will be performed and lessons will be drawn to inform the launching of a full-scale LASI survey.
The LASI pilot survey was conducted in four states: Karnataka, Kerala, Punjab, and Rajasthan. To capture regional variation we have included two northern states (Punjab and Rajasthan) and two southern states (Karnataka and Kerala). Karnataka and Rajasthan were included in the Study on Global AGEing and Adult Health (SAGE), which will enable us to compare our findings with the SAGE data. The inclusion of Kerala and Punjab demonstrates our aim to obtain a broader representation of India, where geographic variations accompanied by socioeconomic and cultural differences call for careful study and deliberation. Punjab is an example of an economically developed state, while Rajasthan is relatively poor, with very low female literacy, high fertility, and persisting gender disparities. Kerala, which is known for its relatively efficient health care system, has undergone rapid social development and is included as a potential harbinger of how other Indian states might evolve.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Dataset Description:
This dataset contains two distinct tables that offer valuable insights into the population trends and characteristics of Indian districts. Dataset 1 includes demographic data, such as population growth rate, sex ratio, and literacy rate, while Dataset 2 provides information about the geographical aspects, including district area and population count. Together, these datasets empower researchers and data enthusiasts to explore and analyze India's demographic and geographical dynamics, contributing to a deeper understanding of the nation's diverse regions and populations.
Column Name | Description |
---|---|
District | The name of the district within India. |
State | The state to which the district belongs. |
Growth | The population growth rate of the district. |
Sex_Ratio | The ratio of males to females in the population. |
Literacy | The literacy rate of the district's population. |
Column Name | Description |
---|---|
District | The name of the district within India. |
State | The state to which the district belongs. |
Area_km2 | The geographical area of the district in square kilometers. |
Population | The population count of the district. |
These two datasets, "Demographic Insights" and "Geographical Information," provide valuable information about the demographic and geographical characteristics of districts within India. The former focuses on population-related metrics, while the latter offers insights into the spatial dimensions of each district.
The National Family Health Survey 2019-21 (NFHS-5), the fifth in the NFHS series, provides information on population, health, and nutrition for India, each state/union territory (UT), and for 707 districts.
The primary objective of the 2019-21 round of National Family Health Surveys is to provide essential data on health and family welfare, as well as data on emerging issues in these areas, such as levels of fertility, infant and child mortality, maternal and child health, and other health and family welfare indicators by background characteristics at the national and state levels. Similar to NFHS-4, NFHS-5 also provides information on several emerging issues including perinatal mortality, high-risk sexual behaviour, safe injections, tuberculosis, noncommunicable diseases, and the use of emergency contraception.
The information collected through NFHS-5 is intended to assist policymakers and programme managers in setting benchmarks and examining progress over time in India’s health sector. Besides providing evidence on the effectiveness of ongoing programmes, NFHS-5 data will help to identify the need for new programmes in specific health areas.
The clinical, anthropometric, and biochemical (CAB) component of NFHS-5 is designed to provide vital estimates of the prevalence of malnutrition, anaemia, hypertension, high blood glucose levels, and waist and hip circumference, Vitamin D3, HbA1c, and malaria parasites through a series of biomarker tests and measurements.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, all men age 15-54, and all children aged 0-5 resident in the household.
Sample survey data [ssd]
A uniform sample design, which is representative at the national, state/union territory, and district level, was adopted in each round of the survey. Each district is stratified into urban and rural areas. Each rural stratum is sub-stratified into smaller substrata which are created considering the village population and the percentage of the population belonging to scheduled castes and scheduled tribes (SC/ST). Within each explicit rural sampling stratum, a sample of villages was selected as Primary Sampling Units (PSUs); before the PSU selection, PSUs were sorted according to the literacy rate of women age 6+ years. Within each urban sampling stratum, a sample of Census Enumeration Blocks (CEBs) was selected as PSUs. Before the PSU selection, PSUs were sorted according to the percentage of SC/ST population. In the second stage of selection, a fixed number of 22 households per cluster was selected with an equal probability systematic selection from a newly created list of households in the selected PSUs. The list of households was created as a result of the mapping and household listing operation conducted in each selected PSU before the household selection in the second stage. In all, 30,456 Primary Sampling Units (PSUs) were selected across the country in NFHS-5 drawn from 707 districts as on March 31st 2017, of which fieldwork was completed in 30,198 PSUs.
For further details on sample design, see Section 1.2 of the final report.
Computer Assisted Personal Interview [capi]
Four survey schedules/questionnaires: Household, Woman, Man, and Biomarker were canvassed in 18 local languages using Computer Assisted Personal Interviewing (CAPI).
Electronic data collected in the 2019-21 National Family Health Survey were received on a daily basis via the SyncCloud system at the International Institute for Population Sciences, where the data were stored on a password-protected computer. Secondary editing of the data, which required resolution of computer-identified inconsistencies and coding of open-ended questions, was conducted in the field by the Field Agencies and at the Field Agencies central office, and IIPS checked the secondary edits before the dataset was finalized.
Field-check tables were produced by IIPS and the Field Agencies on a regular basis to identify certain types of errors that might have occurred in eliciting information and recording question responses. Information from the field-check tables on the performance of each fieldwork team and individual investigator was promptly shared with the Field Agencies during the fieldwork so that the performance of the teams could be improved, if required.
A total of 664,972 households were selected for the sample, of which 653,144 were occupied. Among the occupied households, 636,699 were successfully interviewed, for a response rate of 98 percent.
In the interviewed households, 747,176 eligible women age 15-49 were identified for individual women’s interviews. Interviews were completed with 724,115 women, for a response rate of 97 percent. In all, there were 111,179 eligible men age 15-54 in households selected for the state module. Interviews were completed with 101,839 men, for a response rate of 92 percent.
As per the Indian census data of 2011, about 83 percent of the male population in the southern state of Karnataka knew how to read or write. During the same year, the female literacy rate was at 68 percent in the state.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Financial Inclusion (FI) is one of the most important indicators of inclusive growth of an economy. This paper examines the status of FI in India by constructing a comprehensive financial inclusion index (FII). The data analysis indicates that states such as Goa, Kerala, Tamil Nadu, Maharashtra, and Telangana performed well in FI. Further, a panel data regression model is estimated to know the determinants of financial inclusion in 27 Indian States for the period 2005 to 2020. The composite index can be used to monitor and assess financial inclusion over time and at the grass root level also. The estimated results show that per capita NSDP, literacy rate, urban population share, road length, and number of factories are perhaps the most important financial inclusion determinants. The novelty of this study is to provide a comprehensive understanding of financial inclusion levels across different states in India for two-decade period along with rural and urban financial inclusion levels. The study serves as a critical resource for understanding the dynamics of financial inclusion in India for the two decades period and offers valuable insights for policymakers by identifying key determinants and guide the development of targeted policies aimed at improving financial inclusion, which is essential for economic growth and development.
The statistic displays the literacy rate in the state of Assam in India between 1991 and 2011, by gender. In 2001, the literacy rate among female population living in Assam was around 55 percent. India's literacy rate from 1981 through 2011 can be found here.
description: The National Indian Education Study, 2005 (NIES 2005), is a study that is part of the National Indian Education Study (NIES), which is a part of National Assessment of Educational Progress (NAEP) program; program data is available since 2005 at https://nces.ed.gov/nationsreportcard/nies/. NIES 2005 (https://nces.ed.gov/nationsreportcard/nies/) is a cross-sectional survey that is designed to describe the condition of education for American Indian and Alaska Native (AI/AN) students in the United States. Students in public, private, Department of Defense, and Bureau of Indian Education-funded schools were sampled using paper-and-pencil assessment in April and May of 2005. Overall weighted response rate for 4th grade reading was 83 percent. Overall weighted response rate for 8th grade reading was 85 percent. Overall weighted response rate for 4th grade math was 86 percent. Overall weighted response rate for 8th grade math was 87 percent. Key statistics produced from NIES 2005 provides educators, policymakers, and the public with information about the academic performance in reading and mathematics of AI/AN fourth- and eighth-graders as well as their exposure to Native American culture.; abstract: The National Indian Education Study, 2005 (NIES 2005), is a study that is part of the National Indian Education Study (NIES), which is a part of National Assessment of Educational Progress (NAEP) program; program data is available since 2005 at https://nces.ed.gov/nationsreportcard/nies/. NIES 2005 (https://nces.ed.gov/nationsreportcard/nies/) is a cross-sectional survey that is designed to describe the condition of education for American Indian and Alaska Native (AI/AN) students in the United States. Students in public, private, Department of Defense, and Bureau of Indian Education-funded schools were sampled using paper-and-pencil assessment in April and May of 2005. Overall weighted response rate for 4th grade reading was 83 percent. Overall weighted response rate for 8th grade reading was 85 percent. Overall weighted response rate for 4th grade math was 86 percent. Overall weighted response rate for 8th grade math was 87 percent. Key statistics produced from NIES 2005 provides educators, policymakers, and the public with information about the academic performance in reading and mathematics of AI/AN fourth- and eighth-graders as well as their exposure to Native American culture.
The National Family Health Survey (NFHS) was carried out as the principal activity of a collaborative project to strengthen the research capabilities of the Population Reasearch Centres (PRCs) in India, initiated by the Ministry of Health and Family Welfare (MOHFW), Government of India, and coordinated by the International Institute for Population Sciences (IIPS), Bombay. Interviews were conducted with a nationally representative sample of 89,777 ever-married women in the age group 13-49, from 24 states and the National Capital Territoty of Delhi. The main objective of the survey was to collect reliable and up-to-date information on fertility, family planning, mortality, and maternal and child health. Data collection was carried out in three phases from April 1992 to September 1993. THe NFHS is one of the most complete surveys of its kind ever conducted in India.
The households covered in the survey included 500,492 residents. The young age structure of the population highlights the momentum of the future population growth of the country; 38 percent of household residents are under age 15, with their reproductive years still in the future. Persons age 60 or older constitute 8 percent of the population. The population sex ratio of the de jure residents is 944 females per 1,000 males, which is slightly higher than sex ratio of 927 observed in the 1991 Census.
The primary objective of the NFHS is to provide national-level and state-level data on fertility, nuptiality, family size preferences, knowledge and practice of family planning, the potentiel demand for contraception, the level of unwanted fertility, utilization of antenatal services, breastfeeding and food supplemation practises, child nutrition and health, immunizations, and infant and child mortality. The NFHS is also designed to explore the demographic and socioeconomic determinants of fertility, family planning, and maternal and child health. This information is intended to assist policymakers, adminitrators and researchers in assessing and evaluating population and family welfare programmes and strategies. The NFHS used uniform questionnaires and uniform methods of sampling, data collection and analysis with the primary objective of providing a source of demographic and health data for interstate comparisons. The data collected in the NFHS are also comparable with those of the Demographic and Health Surveys (DHS) conducted in many other countries.
National
The population covered by the 1992-93 DHS is defined as the universe of all women age 13-49 who were either permanent residents of the households in the NDHS sample or visitors present in the households on the night before the survey were eligible to be interviewed.
Sample survey data
SAMPLE DESIGN
The sample design for the NFHS was discussed during a Sample Design Workshop held in Madurai in Octber, 1991. The workshop was attended by representative from the PRCs; the COs; the Office of the Registrar General, India; IIPS and the East-West Center/Macro International. A uniform sample design was adopted in all the NFHS states. The Sample design adopted in each state is a systematic, stratified sample of households, with two stages in rural areas and three stages in urban areas.
SAMPLE SIZE AND ALLOCATION
The sample size for each state was specified in terms of a target number of completed interviews with eligible women. The target sample size was set considering the size of the state, the time and ressources available for the survey and the need for separate estimates for urban and rural areas of the stat. The initial target sample size was 3,000 completed interviews with eligible women for states having a population of 25 million or less in 1991; 4,000 completed interviews for large states with more than 25 million population; 8,000 for Uttar Pradesh, the largest state; and 1,000 each for the six small northeastern states. In States with a substantial number of backward districts, the initial target samples were increased so as to allow separate estimates to be made for groups of backward districts.
The urban and rural samples within states were drawn separetly and , to the extent possible, sample allocation was proportional to the size of the urban-rural populations (to facilitate the selection of a self-weighting sample for each state). In states where the urban population was not sufficiently large to provide a sample of at least 1,000 completed interviews with eligible women, the urban areas were appropriately oversampled (except in the six small northeastern states).
THE RURAL SAMPLE: THE FRAME, STRATIFICATION AND SELECTION
A two-stage stratified sampling was adopted for the rural areas: selection of villages followed by selection of households. Because the 1991 Census data were not available at the time of sample selection in most states, the 1981 Census list of villages served as the sampling frame in all the states with the exception of Assam, Delhi and Punjab. In these three states the 1991 Census data were used as the sampling frame.
Villages were stratified prior to selection on the basis of a number of variables. The firts level of stratification in all the states was geographic, with districts subdivided into regions according to their geophysical characteristics. Within each of these regions, villages were further stratified using some of the following variables : village size, distance from the nearest town, proportion of nonagricultural workers, proportion of the population belonging to scheduled castes/scheduled tribes, and female literacy. However, not all variables were used in every state. Each state was examined individually and two or three variables were selected for stratification, with the aim of creating not more than 12 strata for small states and not more than 15 strata for large states. Females literacy was often used for implicit stratification (i.e., the villages were ordered prior to selection according to the proportion of females who were literate). Primary sampling Units (PSUs) were selected systematically, with probaility proportional to size (PPS). In some cases, adjacent villages with small population sizes were combined into a single PSU for the purpose of sample selection. On average, 30 households were selected for interviewing in each selected PSU.
In every state, all the households in the selected PSUs were listed about two weeks prior to the survey. This listing provided the necessary frame for selecting households at the second sampling stage. The household listing operation consisted of preparing up-to-date notional and layout sketch maps of each selected PSU, assigning numbers to structures, recording addresses (or locations) of these structures, identifying the residential structures, and listing the names of the heads of all the households in the residentiak structures in the selected PSU. Each household listing team consisted of a lister and a mapper. The listing operation was supervised by the senior field staff of the concerned CO and the PRC in each state. Special efforts were made not to miss any household in the selected PSU during the listing operation. In PSUs with fewer than 500 households, a complete household listing was done. In PSUs with 500 or more households, segmentation of the PSU was done on the basis of existing wards in the PSU, and two segments were selected using either systematic sampling or PPS sampling. The household listing in such PSUs was carried out in the selected segments. The households to be interviewed were selected from provided with the original household listing, layout sketch map and the household sample selected for each PSU. All the selected households were approached during the data collection, and no substitution of a household was allowed under any circumstances.
THE RURAL URBAN SAMPLE: THE FRAME, STRATIFICATION AND SELECTION
A three-stage sample design was adopted for the urban areas in each state: selection of cities/towns, followed by urban blocks, and finally households. Cities and towns were selected using the 1991 population figures while urban blocks were selected using the 1991 list of census enumeration blocks in all the states with the exception of the firts phase states. For the first phase states, the list of urban blocks provided by the National Sample Survey Organization (NSSSO) served as the sampling frame.
All cities and towns were subdivided into three strata: (1) self-selecting cities (i.e., cities with a population large enough to be selected with certainty), (2) towns that are district headquaters, and (3) other towns. Within each stratum, the cities/towns were arranged according to the same kind of geographic stratification used in the rural areas. In self-selecting cities, the sample was selected according to a two-stage sample design: selection of the required number of urban blocks, followed by selection of households in each of selected blocks. For district headquarters and other towns, a three stage sample design was used: selection of towns with PPS, followed by selection of two census blocks per selected town, followed by selection of households from each selected block. As in rural areas, a household listing was carried out in the selected blocks, and an average of 20 households per block was selected systematically.
Face-to-face
Three types of questionnaires were used in the NFHS: the Household Questionnaire, the Women's Questionnaire, and the Village Questionnaire. The overall content
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
The data shows the year-wise and state or union territory-wise literacy and rural and urban literacy, for male, female, and total literacy, in India according to Census.
Note: 1. Literacy rate is defined as the population of literates in the population aged 7 year and above. 2. The 1991 data (Excluding Jammu & Kashmir)and 2001 data (Excludes figures of Paomata, Mao Maran and Pura sub-divisions of Senapati district of Manipur for 2001) refer to Census of India.