VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.
Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.
There's a story behind every dataset and here's your opportunity to share yours.
This dataset collects characteristics of the population in each region (age distribution, unemployment rate, immigration percent and primary economic sector) and cross it with the votes per each political part.
It has 52 fields:
1) Code [String]: Region code of the different Spanish areas. There are 8126 different regions, but the dataset only contains 8119, because some sources were incomplete.
2) RegionName [String]: Name of the region.
3) Population [Int]: Amount of people living in that area (1st January 2015)
4) TotalCensus [Int]: Number of people over 18 years old, which means that can vote.
5) TotalVotes [Int]: Number of total votes.
6) AbstentionPtge [Float]: Percent of the people that have not votes in the election. (TotalCensus-TotalVotes)/TotalCensus*100 %
7) BlankVotesPtge [Float]: Percent of votes that were blank. Calculated as follows: BlankVotes/TotalVotes*100 %
8) NullVotesPtge [Float]: Percent of votes that were null. Calculated as follows: NullVotes/TotalVotes*100 %
9) PP_Ptge [Float]: Percent of the votes given to the political party called “Partido Popular”. (PP_Votes)/TotalVotes*100 %
10) PSOE_Ptge [Float]: Percent of the votes given to the political party called “Partido Socialista Obrero Español” (PSOE_Votes)/TotalVotes*100 %
11) Podemos_Ptge [Float]: Percent of the votes given to the political party called “Podemos” (Podemos_Votes)/TotalVotes*100 %
12) Ciudadanos_Ptge [Float]: Percent of the votes given to the political party called “Ciudadanos” (Ciudadanos_Votes)/TotalVotes*100 %
13) Others_Ptge [Float]: Percent of the votes given to the others political parties (∑▒MinoritaryVotes)/TotalVotes*100 %
14) Age_0-4_Ptge [Float]: Percent of the populations which age is between 0 and 4 years old. It is calculated as follows: (Number of people in (0-4))/TotalPopulation*100 %
15) Age_5-9_Ptge [Float]: Percent of the populations which age is between 5 and 9 year old.
16) Age_10-14_Ptge [Float]: Percent of the populations which age is between 10 and 14 years old
17) Age_15-19_Ptge [Float]: Percent of the populations which age is between 15 and 19 years old
18) Age_20-24_Ptge [Float]: Percent of the populations which age is between 20 and 24 years old
19) Age_25-29_Ptge [Float]: Percent of the populations which age is between 25 and 29 years old
20) Age_30-34_Ptge [Float]: Percent of the populations which age is between 30 and 34 years old
21) Age_35-39_Ptge [Float]: Percent of the populations which age is between 35 and 39 years old
22) Age_40-44_Ptge [Float]: Percent of the populations which age is between 40 and 44 years old
23) Age_45-49_Ptge [Float]: Percent of the populations which age is between 45 and 49 years old
24) Age_50-54_Ptge [Float]: Percent of the populations which age is between 50 and 54 years old
25) Age_55-59_Ptge [Float]: Percent of the populations which age is between 55 and 59 years old
26) Age_60-64_Ptge [Float]: Percent of the populations which age is between 60 and 64 years old
27) Age_65-69_Ptge [Float]: Percent of the populations which age is between 65 and 69 years old
28) Age_70-74_Ptge [Float]: Percent of the populations which age is between 70 and 74 years old
29) Age_75-79_Ptge [Float]: Percent of the populations which age is between 75 and 79 year old
30) Age_80-84_Ptge [Float]: Percent of the populations which age is between 80 and 84 years old
31) Age_85-89_Ptge [Float]: Percent of the populations which age is between 85 and 89 year old
32) Age_90-94_Ptge [Float]: Percent of the populations which age is between 90 and 94 years old
33) Age_95-99_Ptge [Float]: Percent of the populations which age is between 95 and 99 years old
34) Age_100+_Ptge [Float]: Percent of the populations which is older than 100 years old.
35) ManPopulationPtge [Float]: Percentage of masculine population in a region. Calculated as follows: ManPopulation/TotalPopulation*100
36) WomanPopulationPtge [Float]: Percentage of masculine population in a region. Calculated as follows: WomanPopulation/TotalPopulation*100
37) SpanishPtge [Float]: Percentage of people with spanish nationality in a region. Calculated as follows: NativeSpanishPopulation/TotalPopulation*100
38) ForeignersPtge [Float]: Percentage of foreign people in a region. Calculated as follows: ForeignPopulation/TotalPopulation*100
39) SameComAutonPtge [Float]: Percentage of people who live in the same autonomic community (same province) that was born. Calculated as follows: SameComAutonPopulation/TotalPopulation*100
40) SameComAutonDiffProvPtge [Float]: Percentage of people who live in the same autonomic community (different province) that was born. Calculated as follows: SameComAutonDiffProvPopulation/TotalPopulation*100
41) DifComAutonPtge [Float]: Percentage of people who live in different autonomic community that was born. Calculated as follows: SameComAutonDiffProvPopulation/TotalPopulation*100
42) UnemployLess25_Ptge [Float]: Percent of unemployed people that are under 25 years and older than 18. It is calculated over the total amount of unemployment. (UnemploymentLess25_Man+ UnemploymentLess25_Woman)/TotalUnemployment*100
43) Unemploy25_40_Ptge [Float]: Percent of unemployed people that are 25-40 years over the total amount of unemployment. (Unemployment(25-40)_Man+ Unemployment(25-40)_Woman )/TotalUnemployment*100
44) UnemployMore40_Ptge [Float]: Percent of unemployed people that are older that 40 and younger than 69 years over the total amount of unemployment. (Unemployment(40-69)_Man+Unemployment(40-69)_Woman)/TotalUnemployment*100
45) UnemployLess25_population_Ptge [Float]: Percent of unemployed people younger than 25 and older than 18, over the total population of the region. Note that the percent is calculated over the total population and not over the total active population. (UnemploymentLess25_Man+ UnemploymentLess25_Woman)/TotalPopulation*100
46) Unemploy25_40_population_Ptge [Float]: Percent of unemployed people (25-40) years old, over the total population of the region. Note that the percent is calculated over the total population and not over the total active population. (Unemployment(25-40)_Man+ Unemployment(25-40)_Woman )/TotalPopulation*100
47) UnemployMore40_population_Ptge [Float]: Percent of unemployed people (40-69) years old, over the total population of the region. Note that the percent is calculated over the total population and not over the total active population. (UnemploymentLess25_Man+ UnemploymentLess25_Woman)/TotalPopulation*100
48) AgricultureUnemploymentPtge [Float]: Percent of unemployment in the agriculture sector relative to the total amount of unemployment. PeopleUnemployedInAgriculture/TotalUnemployment*100
49) IndustryUnemploymentPtge [Float]: Percent of unemployment in the industry sector relative to the total amount of unemployment. PeopleUnemployedInIndustry/TotalUnemployment*100
50) ConstructionUnemploymentPtge [Float]: Percent of unemployment in the construction sector relative to the total amount of unemployment. PeopleUnemployedInConstruction/TotalUnemployment*100
51) ServicesUnemploymentPtge [Float]: Percent of unemployment in the services sector relative to the total amount of unemployment. PeopleUnemployedInServices/TotalUnemployment*100
52) NotJobBeforeUnemploymentPtge [Float]: Percent of unemployment of people that didn’t have an employ before, over the total amount of unemployment. PeopleUnemployedWithoutEmployBefore/TotalUnemployment*100
References:
[1] Unemployment: www.datos.gob.es/es/catalogo/e00142804-paro-registrado-por-municipios
[2] Age distribution per region Relation between Spanish and foreigners Relation between woman and man Relation between people born in the same area or different areas of Spain http://www.ine.es/dynt3/inebase/index.htm?type=pcaxis&file=pcaxis&path=%2Ft20%2Fe245%2Fp05%2F%2Fa2015
[3] Congress elections result of Spanish election (June 2016) http://www.infoelectoral.interior.es/min/areaDescarga.html?method=inicio
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This is a publication on maternity activity in English NHS hospitals. This report examines data relating to delivery and birth episodes in 2022-23, and the booking appointments for these deliveries. This annual publication covers the financial year ending March 2023. Data is included from both the Hospital Episodes Statistics (HES) data warehouse and the Maternity Services Data Set (MSDS). HES contains records of all admissions, appointments and attendances for patients admitted to NHS hospitals in England. The HES data used in this publication are called 'delivery episodes'. The MSDS collects records of each stage of the maternity service care pathway in NHS-funded maternity services, and includes information not recorded in HES. The MSDS is a maturing, national-level dataset. In April 2019 the MSDS transitioned to a new version of the dataset. This version, MSDS v2.0, is an update that introduced a new structure and content - including clinical terminology, in order to meet current clinical practice and incorporate new requirements. It is designed to meet requirements that resulted from the National Maternity Review, which led to the publication of the Better Births report in February 2016. This is the fourth publication of data from MSDS v2.0 and data from 2019-20 onwards is not directly comparable to data from previous years. This publication shows the number of HES delivery episodes during the period, with a number of breakdowns including by method of onset of labour, delivery method and place of delivery. It also shows the number of MSDS deliveries recorded during the period, with breakdowns including the baby's first feed type, birthweight, place of birth, and breastfeeding activity; and the mothers' ethnicity and age at booking. There is also data available in a separate file on breastfeeding at 6 to 8 weeks. The count of Total Babies includes both live and still births, and previous changes to how Total Babies and Total Deliveries were calculated means that comparisons between 2019-20 MSDS data and later years should be made with care. Information on how all measures are constructed can be found in the HES Metadata and MSDS Metadata files provided below. In this publication we have also included an interactive Power BI dashboard to enable users to explore key NHS Maternity Statistics measures. The purpose of this publication is to inform and support strategic and policy-led processes for the benefit of patient care. This report will also be of interest to researchers, journalists and members of the public interested in NHS hospital activity in England. Any feedback on this publication or dashboard can be provided to enquiries@nhsdigital.nhs.uk, under the subject “NHS Maternity Statistics”.
The 2022 Philippines National Demographic and Health Survey (NDHS) was implemented by the Philippine Statistics Authority (PSA). Data collection took place from May 2 to June 22, 2022.
The primary objective of the 2022 NDHS is to provide up-to-date estimates of basic demographic and health indicators. Specifically, the NDHS collected information on fertility, fertility preferences, family planning practices, childhood mortality, maternal and child health, nutrition, knowledge and attitudes regarding HIV/AIDS, violence against women, child discipline, early childhood development, and other health issues.
The information collected through the NDHS is intended to assist policymakers and program managers in designing and evaluating programs and strategies for improving the health of the country’s population. The 2022 NDHS also provides indicators anchored to the attainment of the Sustainable Development Goals (SDGs) and the new Philippine Development Plan for 2023 to 2028.
National coverage
The survey covered all de jure household members (usual residents), all women aged 15-49, and all children aged 0-4 resident in the household.
Sample survey data [ssd]
The sampling scheme provides data representative of the country as a whole, for urban and rural areas separately, and for each of the country’s administrative regions. The sample selection methodology for the 2022 NDHS was based on a two-stage stratified sample design using the Master Sample Frame (MSF) designed and compiled by the PSA. The MSF was constructed based on the listing of households from the 2010 Census of Population and Housing and updated based on the listing of households from the 2015 Census of Population. The first stage involved a systematic selection of 1,247 primary sampling units (PSUs) distributed by province or HUC. A PSU can be a barangay, a portion of a large barangay, or two or more adjacent small barangays.
In the second stage, an equal take of either 22 or 29 sample housing units were selected from each sampled PSU using systematic random sampling. In situations where a housing unit contained one to three households, all households were interviewed. In the rare situation where a housing unit contained more than three households, no more than three households were interviewed. The survey interviewers were instructed to interview only the preselected housing units. No replacements and no changes of the preselected housing units were allowed in the implementing stage in order to prevent bias. Survey weights were calculated, added to the data file, and applied so that weighted results are representative estimates of indicators at the regional and national levels.
All women age 15–49 who were either usual residents of the selected households or visitors who stayed in the households the night before the survey were eligible to be interviewed. Among women eligible for an individual interview, one woman per household was selected for a module on women’s safety.
For further details on sample design, see APPENDIX A of the final report.
Computer Assisted Personal Interview [capi]
Two questionnaires were used for the 2022 NDHS: the Household Questionnaire and the Woman’s Questionnaire. The questionnaires, based on The DHS Program’s model questionnaires, were adapted to reflect the population and health issues relevant to the Philippines. Input was solicited from various stakeholders representing government agencies, academe, and international agencies. The survey protocol was reviewed by the ICF Institutional Review Board.
After all questionnaires were finalized in English, they were translated into six major languages: Tagalog, Cebuano, Ilocano, Bikol, Hiligaynon, and Waray. The Household and Woman’s Questionnaires were programmed into tablet computers to allow for computer-assisted personal interviewing (CAPI) for data collection purposes, with the capability to choose any of the languages for each questionnaire.
Processing the 2022 NDHS data began almost as soon as fieldwork started, and data security procedures were in place in accordance with confidentiality of information as provided by Philippine laws. As data collection was completed in each PSU or cluster, all electronic data files were transferred securely via SyncCloud to a server maintained by the PSA Central Office in Quezon City. These data files were registered and checked for inconsistencies, incompleteness, and outliers. The field teams were alerted to any inconsistencies and errors while still in the area of assignment. Timely generation of field check tables allowed for effective monitoring of fieldwork, including tracking questionnaire completion rates. Only the field teams, project managers, and NDHS supervisors in the provincial, regional, and central offices were given access to the CAPI system and the SyncCloud server.
A team of secondary editors in the PSA Central Office carried out secondary editing, which involved resolving inconsistencies and recoding “other” responses; the former was conducted during data collection, and the latter was conducted following the completion of the fieldwork. Data editing was performed using the CSPro software package. The secondary editing of the data was completed in August 2022. The final cleaning of the data set was carried out by data processing specialists from The DHS Program in September 2022.
A total of 35,470 households were selected for the 2022 NDHS sample, of which 30,621 were found to be occupied. Of the occupied households, 30,372 were successfully interviewed, yielding a response rate of 99%. In the interviewed households, 28,379 women age 15–49 were identified as eligible for individual interviews. Interviews were completed with 27,821 women, yielding a response rate of 98%.
The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors and (2) sampling errors. Nonsampling errors are the results of mistakes made in implementing data collection and in data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 2022 Philippines National Demographic and Health Survey (2022 NDHS) to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 2022 NDHS is only one of many samples that could have been selected from the same population, using the same design and identical size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95% of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 2022 NDHS sample was the result of a multistage stratified design, and, consequently, it was necessary to use more complex formulas. Sampling errors are computed in SAS using programs developed by ICF. These programs use the Taylor linearization method to estimate variances for survey estimates that are means, proportions, or ratios. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.
A more detailed description of estimates of sampling errors are presented in APPENDIX B of the survey report.
Data Quality Tables
See details of the data quality tables in Appendix C of the final report.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
VITAL SIGNS INDICATOR Life Expectancy (EQ6)
FULL MEASURE NAME Life Expectancy
LAST UPDATED April 2017
DESCRIPTION Life expectancy refers to the average number of years a newborn is expected to live if mortality patterns remain the same. The measure reflects the mortality rate across a population for a point in time.
DATA SOURCE State of California, Department of Health: Death Records (1990-2013) No link
California Department of Finance: Population Estimates Annual Intercensal Population Estimates (1990-2010) Table P-2: County Population by Age (2010-2013) http://www.dof.ca.gov/Forecasting/Demographics/Estimates/
CONTACT INFORMATION vitalsigns.info@mtc.ca.gov
METHODOLOGY NOTES (across all datasets for this indicator) Life expectancy is commonly used as a measure of the health of a population. Life expectancy does not reflect how long any given individual is expected to live; rather, it is an artificial measure that captures an aspect of the mortality rates across a population. Vital Signs measures life expectancy at birth (as opposed to cohort life expectancy). A statistical model was used to estimate life expectancy for Bay Area counties and Zip codes based on current life tables which require both age and mortality data. A life table is a table which shows, for each age, the survivorship of a people from a certain population.
Current life tables were created using death records and population estimates by age. The California Department of Public Health provided death records based on the California death certificate information. Records include age at death and residential Zip code. Single-year age population estimates at the regional- and county-level comes from the California Department of Finance population estimates and projections for ages 0-100+. Population estimates for ages 100 and over are aggregated to a single age interval. Using this data, death rates in a population within age groups for a given year are computed to form unabridged life tables (as opposed to abridged life tables). To calculate life expectancy, the probability of dying between the jth and (j+1)st birthday is assumed uniform after age 1. Special consideration is taken to account for infant mortality. For the Zip code-level life expectancy calculation, it is assumed that postal Zip codes share the same boundaries as Zip Code Census Tabulation Areas (ZCTAs). More information on the relationship between Zip codes and ZCTAs can be found at https://www.census.gov/geo/reference/zctas.html. Zip code-level data uses three years of mortality data to make robust estimates due to small sample size. Year 2013 Zip code life expectancy estimates reflects death records from 2011 through 2013. 2013 is the last year with available mortality data. Death records for Zip codes with zero population (like those associated with P.O. Boxes) were assigned to the nearest Zip code with population. Zip code population for 2000 estimates comes from the Decennial Census. Zip code population for 2013 estimates are from the American Community Survey (5-Year Average). The ACS provides Zip code population by age in five-year age intervals. Single-year age population estimates were calculated by distributing population within an age interval to single-year ages using the county distribution. Counties were assigned to Zip codes based on majority land-area.
Zip codes in the Bay Area vary in population from over 10,000 residents to less than 20 residents. Traditional life expectancy estimation (like the one used for the regional- and county-level Vital Signs estimates) cannot be used because they are highly inaccurate for small populations and may result in over/underestimation of life expectancy. To avoid inaccurate estimates, Zip codes with populations of less than 5,000 were aggregated with neighboring Zip codes until the merged areas had a population of more than 5,000. In this way, the original 305 Bay Area Zip codes were reduced to 218 Zip code areas for 2013 estimates. Next, a form of Bayesian random-effects analysis was used which established a prior distribution of the probability of death at each age using the regional distribution. This prior is used to shore up the life expectancy calculations where data were sparse.