76 datasets found
  1. g

    Coronavirus (Covid-19) Data in the United States

    • github.com
    • openicpsr.org
    • +3more
    csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data
    Explore at:
    csvAvailable download formats
    Dataset provided by
    New York Times
    License

    https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

    Description

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

  2. COVID-19 Trends in Each Country

    • coronavirus-response-israel-systematics.hub.arcgis.com
    • coronavirus-resources.esri.com
    • +2more
    Updated Mar 27, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). COVID-19 Trends in Each Country [Dataset]. https://coronavirus-response-israel-systematics.hub.arcgis.com/maps/a16bb8b137ba4d8bbe645301b80e5740
    Explore at:
    Dataset updated
    Mar 27, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Earth
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source

  3. COVID-19 cases worldwide as of May 2, 2023, by country or territory

    • statista.com
    • flwrdeptvarieties.store
    Updated Aug 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). COVID-19 cases worldwide as of May 2, 2023, by country or territory [Dataset]. https://www.statista.com/statistics/1043366/novel-coronavirus-2019ncov-cases-worldwide-by-country/
    Explore at:
    Dataset updated
    Aug 29, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.

    COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.

    Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.

  4. A

    ‘COVID-19 Coronavirus Dataset’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Feb 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘COVID-19 Coronavirus Dataset’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-covid-19-coronavirus-dataset-4bcc/6a53de38/?iid=022-210&v=presentation
    Explore at:
    Dataset updated
    Feb 14, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘COVID-19 Coronavirus Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/vignesh1694/covid19-coronavirus on 14 February 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    A SARS-like virus outbreak originating in Wuhan, China, is spreading into neighboring Asian countries, and as far afield as Australia, the US a and Europe.

    On 31 December 2019, the Chinese authorities reported a case of pneumonia with an unknown cause in Wuhan, Hubei province, to the World Health Organisation (WHO)’s China Office. As more and more cases emerged, totaling 44 by 3 January, the country’s National Health Commission isolated the virus causing fever and flu-like symptoms and identified it as a novel coronavirus, now known to the WHO as 2019-nCoV.

    The following dataset shows the numbers of spreading coronavirus across the globe.

    Content

    Sno - Serial number Date - Date of the observation Province / State - Province or state of the observation Country - Country of observation Last Update - Recent update (not accurate in terms of time) Confirmed - Number of confirmed cases Deaths - Number of death cases Recovered - Number of recovered cases

    Acknowledgements

    Thanks to John Hopkins CSSE for the live updates on Coronavirus and data streaming. Source: https://github.com/CSSEGISandData/COVID-19 Dashboard: https://public.tableau.com/profile/vignesh.coumarane#!/vizhome/DashboardToupload/Dashboard12

    Inspiration

    Inspired by the following work: https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

    --- Original source retains full ownership of the source dataset ---

  5. U.S. Counties and Territories for COVID-19 Trends

    • disasterpartners.org
    Updated Apr 28, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Urban Observatory by Esri (2020). U.S. Counties and Territories for COVID-19 Trends [Dataset]. https://www.disasterpartners.org/datasets/49c25e0ce50340e08fcfe51fe6f26d1e
    Explore at:
    Dataset updated
    Apr 28, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Urban Observatory by Esri
    Area covered
    Description

    On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.Trends represent the day-to-day rate of new cases with a focus on the most recent 10 to 14 days. Includes Puerto Rico, Guam, Northern Marianas, and U.S. Virgin Islands. Daily new case counts are volatile for many reasons and sometimes the trends reflect that volatility. Thus, we decided to include longer-term summaries here. County Trends as of 9 Mar 20230 (-0) in Emergent1135 (+51) in Spreading1664 (-63) in Epidemic230 (+10) in Controlled110 (+2) in End StageNotes: Many states now only report once per week, and FL only once every two weeks. On 3/7/2022 we adjusted the formula for active cases to reflect the Omicron Variant which is documented to cause lower rates of serious and severe illness. To produce these trends we analyze daily updates from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.For more information about COVID-19 trends, see our country level trends story map and the full methodology.Data Source: Johns Hopkins University CSSE US Cases by County dashboard and USAFacts for Utah County level Data.Feature layer generated from running the Join Features solution that is the basis for daily updates for the U.S. County COVID-19 Tends Story Map.

  6. Coronavirus (Covid-19) Data of United States (USA)

    • kaggle.com
    zip
    Updated Nov 5, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joel Hanson (2020). Coronavirus (Covid-19) Data of United States (USA) [Dataset]. https://www.kaggle.com/joelhanson/coronavirus-covid19-data-in-the-united-states
    Explore at:
    zip(7506633 bytes)Available download formats
    Dataset updated
    Nov 5, 2020
    Authors
    Joel Hanson
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Coronavirus (COVID-19) Data in the United States

    [ U.S. State-Level Data (Raw CSV) | U.S. County-Level Data (Raw CSV) ]

    The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

    Since late January, The Times has tracked cases of coronavirus in real-time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

    We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists, and government officials who would like access to the data to better understand the outbreak.

    The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

    United States Data

    Data on cumulative coronavirus cases and deaths can be found in two files for states and counties.

    Each row of data reports cumulative counts based on our best reporting up to the moment we publish an update. We do our best to revise earlier entries in the data when we receive new information.

    Both files contain FIPS codes, a standard geographic identifier, to make it easier for an analyst to combine this data with other data sets like a map file or population data.

    Download all the data or clone this repository by clicking the green "Clone or download" button above.

    State-Level Data

    State-level data can be found in the states.csv file. (Raw CSV file here.)

    date,state,fips,cases,deaths
    2020-01-21,Washington,53,1,0
    ...
    

    County-Level Data

    County-level data can be found in the counties.csv file. (Raw CSV file here.)

    date,county,state,fips,cases,deaths
    2020-01-21,Snohomish,Washington,53061,1,0
    ...
    

    In some cases, the geographies where cases are reported do not map to standard county boundaries. See the list of geographic exceptions for more detail on these.

    Methodology and Definitions

    The data is the product of dozens of journalists working across several time zones to monitor news conferences, analyze data releases and seek clarification from public officials on how they categorize cases.

    It is also a response to a fragmented American public health system in which overwhelmed public servants at the state, county and territorial levels have sometimes struggled to report information accurately, consistently and speedily. On several occasions, officials have corrected information hours or days after first reporting it. At times, cases have disappeared from a local government database, or officials have moved a patient first identified in one state or county to another, often with no explanation. In those instances, which have become more common as the number of cases has grown, our team has made every effort to update the data to reflect the most current, accurate information while ensuring that every known case is counted.

    When the information is available, we count patients where they are being treated, not necessarily where they live.

    In most instances, the process of recording cases has been straightforward. But because of the patchwork of reporting methods for this data across more than 50 state and territorial governments and hundreds of local health departments, our journalists sometimes had to make difficult interpretations about how to count and record cases.

    For those reasons, our data will in some cases not exactly match the information reported by states and counties. Those differences include these cases: When the federal government arranged flights to the United States for Americans exposed to the coronavirus in China and Japan, our team recorded those cases in the states where the patients subsequently were treated, even though local health departments generally did not. When a resident of Florida died in Los Angeles, we recorded her death as having occurred in California rather than Florida, though officials in Florida counted her case in their records. And when officials in some states reported new cases without immediately identifying where the patients were being treated, we attempted to add information about their locations later, once it became available.

    • Confirmed Cases

    Confirmed cases are patients who test positive for the coronavirus. We consider a case confirmed when it is reported by a federal, state, territorial or local government agency.

    • Dates

    For each date, we show the cumulative number of confirmed cases and deaths as reported that day in that county or state. All cases and deaths are counted on the date they are first announced.

    • Counties

    In some instances, we report data from multiple counties or other non-county geographies as a single county. For instance, we report a single value for New York City, comprising the cases for New York, Kings, Queens, Bronx and Richmond Counties. In these instances, the FIPS code field will be empty. (We may assign FIPS codes to these geographies in the future.) See the list of geographic exceptions.

    Cities like St. Louis and Baltimore that are administered separately from an adjacent county of the same name are counted separately.

    • “Unknown” Counties

    Many state health departments choose to report cases separately when the patient’s county of residence is unknown or pending determination. In these instances, we record the county name as “Unknown.” As more information about these cases becomes available, the cumulative number of cases in “Unknown” counties may fluctuate.

    Sometimes, cases are first reported in one county and then moved to another county. As a result, the cumulative number of cases may change for a given county.

    Geographic Exceptions

    • New York City

    All cases for the five boroughs of New York City (New York, Kings, Queens, Bronx and Richmond counties) are assigned to a single area called New York City.

    • Kansas City, Mo.

    Four counties (Cass, Clay, Jackson, and Platte) overlap the municipality of Kansas City, Mo. The cases and deaths that we show for these four counties are only for the portions exclusive of Kansas City. Cases and deaths for Kansas City are reported as their line.

    • Alameda, Calif.

    Counts for Alameda County include cases and deaths from Berkeley and the Grand Princess cruise ship.

    • Chicago

    All cases and deaths for Chicago are reported as part of Cook County.

    License and Attribution

    In general, we are making this data publicly available for broad, noncommercial public use including by medical and public health researchers, policymakers, analysts and local news media.

    If you use this data, you must attribute it to “The New York Times” in any publication. If you would like a more expanded description of the data, you could say “Data from The New York Times, based on reports from state and local health agencies.”

    If you use it in an online presentation, we would appreciate it if you would link to our U.S. tracking page at https://www.nytimes.com/interactive/2020/us/coronavirus-us-cases.html.

    If you use this data, please let us know at covid-data@nytimes.com and indicate if you would be willing to talk to a reporter about your research.

    See our LICENSE for the full terms of use for this data.

    This license is co-extensive with the Creative Commons Attribution-NonCommercial 4.0 International license, and licensees should refer to that license (CC BY-NC) if they have questions about the scope of the license.

    Contact Us

    If you have questions about the data or licensing conditions, please contact us at:

    covid-data@nytimes.com

    Contributors

    Mitch Smith, Karen Yourish, Sarah Almukhtar, Keith Collins, Danielle Ivory, and Amy Harmon have been leading our U.S. data collection efforts.

    Data has also been compiled by Jordan Allen, Jeff Arnold, Aliza Aufrichtig, Mike Baker, Robin Berjon, Matthew Bloch, Nicholas Bogel-Burroughs, Maddie Burakoff, Christopher Calabrese, Andrew Chavez, Robert Chiarito, Carmen Cincotti, Alastair Coote, Matt Craig, John Eligon, Tiff Fehr, Andrew Fischer, Matt Furber, Rich Harris, Lauryn Higgins, Jake Holland, Will Houp, Jon Huang, Danya Issawi, Jacob LaGesse, Hugh Mandeville, Patricia Mazzei, Allison McCann, Jesse McKinley, Miles McKinley, Sarah Mervosh, Andrea Michelson, Blacki Migliozzi, Steven Moity, Richard A. Oppel Jr., Jugal K. Patel, Nina Pavlich, Azi Paybarah, Sean Plambeck, Carrie Price, Scott Reinhard, Thomas Rivas, Michael Robles, Alison Saldanha, Alex Schwartz, Libby Seline, Shelly Seroussi, Rachel Shorey, Anjali Singhvi, Charlie Smart, Ben Smithgall, Steven Speicher, Michael Strickland, Albert Sun, Thu Trinh, Tracey Tully, Maura Turcotte, Miles Watkins, Jeremy White, Josh Williams, and Jin Wu.

    Context

    There's a story behind every dataset and here's your opportunity to share yours.# Coronavirus (Covid-19) Data in the United States

    [ U.S. State-Level Data ([Raw

  7. d

    MD COVID-19 - Total Cases in Congregate Facility Settings (Nursing Homes,...

    • datasets.ai
    • opendata.maryland.gov
    • +1more
    23, 40, 55, 8
    Updated Sep 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Maryland (2024). MD COVID-19 - Total Cases in Congregate Facility Settings (Nursing Homes, Assisted Living, State and Local Facilities and Group Homes with +10 Residents) [Dataset]. https://datasets.ai/datasets/md-covid-19-total-cases-in-congregate-facility-settings-nursing-homes-assisted-living-stat
    Explore at:
    23, 8, 40, 55Available download formats
    Dataset updated
    Sep 20, 2024
    Dataset authored and provided by
    State of Maryland
    Area covered
    Maryland
    Description

    Summary This layer has been DEPRECATED. (last updated 12/1/2021). Was formerly a weekly update.

    The Outbreak-Associated Cases in Congregate Living data dashboard on coronavirus.maryland.gov was redesigned on 11/17/21 to align with other outbreak reporting. Visit https://opendata.maryland.gov/dataset/MD-COVID-19-Congregate-Outbreak/ey5n-qn5s to view Outbreak-Associated Cases in Congregate Living data as reported after 11/17/21.

    Confirmed COVID-19 cases among Maryland residents who live and work in congregate living facilities in Maryland for the reporting period.

    Description The MD COVID-19 - Total Cases in Congregate Facility Settings data layer is a total of positive COVID-19 test results have been reported to MDH in nursing homes, assisted living facilities, group homes of 10 or more and state and local facilities for the reporting period. Data are reported to MDH by local health departments, the Department of Public Safety and Correctional Services and the Department of Juvenile Services. To appear on the list, facilities report at least one confirmed case of COVID-19 over the prior 14 days. Facilities are removed from the list when health officials determine 14 days have passed with no new cases and no tests pending. The list provides a point-in-time picture of COVID-19 case activity among these facilities. Numbers reported for each facility listed reflect totals ever reported for cases. Data are updated once weekly.

    Terms of Use The Spatial Data, and the information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.

  8. COVID-19 Trends in Each Country

    • data.amerigeoss.org
    esri rest, html
    Updated Jul 29, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESRI (2020). COVID-19 Trends in Each Country [Dataset]. https://data.amerigeoss.org/dataset/covid-19-trends-in-each-country
    Explore at:
    esri rest, htmlAvailable download formats
    Dataset updated
    Jul 29, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Description

    COVID-19 Trends Methodology
    Our goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.


    6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.
    6/22/2020 - Added Executive Summary and Subsequent Outbreaks sections
    Revisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.
    Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.
    Correction on 6/1/2020
    Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020.
    Revisions added on 4/30/2020 are highlighted.
    Revisions added on 4/23/2020 are highlighted.

    Executive Summary
    COVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties.
    The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.

    We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.

    Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.

    Reasons for undertaking this work in March of 2020:
    1. The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.
    2. The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.
    3. The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:
    • U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online.
    • Initial older guidance was also obtained online.
    Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws.
    Thus, the formula used to compute an estimate of active cases is:

    Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths.
    <br

  9. T

    CORONAVIRUS CASES by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). CORONAVIRUS CASES by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-cases
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS CASES reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  10. r

    covid19_jhu_csse_summary

    • redivis.com
    Updated Jan 8, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stanford Center for Population Health Sciences (2020). covid19_jhu_csse_summary [Dataset]. https://redivis.com/datasets/rxta-4v35cgyzf
    Explore at:
    Dataset updated
    Jan 8, 2022
    Dataset authored and provided by
    Stanford Center for Population Health Sciences
    Time period covered
    Jan 22, 2020 - Jul 12, 2020
    Description

    The table covid19_jhu_csse_summary is part of the dataset Coronavirus COVID-19 Global Cases, available at https://redivis.com/datasets/rxta-4v35cgyzf. It contains 390476 rows across 13 variables.

  11. Live commerce usage growth during COVID-19 worldwide 2021, by region

    • statista.com
    Updated Jan 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Live commerce usage growth during COVID-19 worldwide 2021, by region [Dataset]. https://www.statista.com/statistics/1276981/change-livestream-commerce-usage-worldwide-region/
    Explore at:
    Dataset updated
    Jan 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 2021
    Area covered
    Worldwide
    Description

    From before to during the coronavirus pandemic, the share of respondents who made purchases via livestream increased by an average of 76 percentage points worldwide. Of the regions included in the study, Europe saw the highest growth during this period, with livestream shoppers growing by 86 percentage points. The Middle East followed with 76, while North America recorded a usage spike of about 68 percentage points.

  12. COVID-19 Open Research Dataset (CORD-19)

    • zenodo.org
    • live.european-language-grid.eu
    application/gzip, bin +3
    Updated Jul 22, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sebastian Kohlmeier; Kyle Lo; Lucy Lu Wang; JJ Yang; Sebastian Kohlmeier; Kyle Lo; Lucy Lu Wang; JJ Yang (2024). COVID-19 Open Research Dataset (CORD-19) [Dataset]. http://doi.org/10.5281/zenodo.3813567
    Explore at:
    bin, application/gzip, txt, csv, pdfAvailable download formats
    Dataset updated
    Jul 22, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Sebastian Kohlmeier; Kyle Lo; Lucy Lu Wang; JJ Yang; Sebastian Kohlmeier; Kyle Lo; Lucy Lu Wang; JJ Yang
    Description

    Important: This dataset is updated regularly and the latest version for download can be found here.

    In response to the COVID-19 pandemic, the Allen Institute for AI has partnered with leading research groups to prepare and distribute the COVID-19 Open Research Dataset (CORD-19), a free resource of scholarly articles, including full text content, about COVID-19 and the coronavirus family of viruses for use by the global research community.

    This dataset is intended to mobilize researchers to apply recent advances in natural language processing to generate new insights in support of the fight against this infectious disease. The corpus will be updated weekly as new research is published in peer-reviewed publications and archival services like bioRxiv, medRxiv, and others.

    By downloading this dataset you are agreeing to the Dataset license. Specific licensing information for individual articles in the dataset is available in the metadata file.

    Additional licensing information is available on the PMC website, medRxiv website and bioRxiv website.

    Dataset content:

    • Commercial use subset
    • Non-commercial use subset
    • PMC custom license subset
    • bioRxiv/medRxiv subset (pre-prints that are not peer reviewed)
    • Metadata file
    • Readme

    Each paper is represented as a single JSON object (see schema file for details).

    Description:

    The dataset contains all COVID-19 and coronavirus-related research (e.g. SARS, MERS, etc.) from the following sources:

    • PubMed's PMC open access corpus using this query (COVID-19 and coronavirus research)
    • Additional COVID-19 research articles from a corpus maintained by the WHO
    • bioRxiv and medRxiv pre-prints using the same query as PMC (COVID-19 and coronavirus research)

    We also provide a comprehensive metadata file of coronavirus and COVID-19 research articles with links to PubMed, Microsoft Academic and the WHO COVID-19 database of publications (includes articles without open access full text).

    We recommend using metadata from the comprehensive file when available, instead of parsed metadata in the dataset. Please note the dataset may contain multiple entries for individual PMC IDs in cases when supplementary materials are available.

    This repository is linked to the WHO database of publications on coronavirus disease and other resources, such as Microsoft Academic Graph, PubMed, and Semantic Scholar. A coalition including the Chan Zuckerberg Initiative, Georgetown University’s Center for Security and Emerging Technology, Microsoft Research, and the National Library of Medicine of the National Institutes of Health came together to provide this service.

    Citation:

    When including CORD-19 data in a publication or redistribution, please cite our arXiv pre-print.

    The Allen Institute for AI and particularly the Semantic Scholar team will continue to provide updates to this dataset as the situation evolves and new research is released.

  13. e

    Coronavirus resources: US state and local health deparments (Live Science)

    • coronavirus-resources.esri.com
    • data.amerigeoss.org
    Updated Mar 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). Coronavirus resources: US state and local health deparments (Live Science) [Dataset]. https://coronavirus-resources.esri.com/documents/4b3f5f45d8ef4638a42dde9911190760
    Explore at:
    Dataset updated
    Mar 16, 2020
    Dataset authored and provided by
    Esri’s Disaster Response Program
    Description

    Coronavirus resources: US state and local health deparments (Live Science web page)._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  14. d

    DOHMH Covid-19 Milestone Data: New Cases of Covid-19 (7 Day Average)

    • datasets.ai
    • data.cityofnewyork.us
    • +1more
    23, 40, 55, 8
    Updated Oct 9, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of New York (2024). DOHMH Covid-19 Milestone Data: New Cases of Covid-19 (7 Day Average) [Dataset]. https://datasets.ai/datasets/dohmh-covid-19-milestone-data-new-cases-of-covid-19-7-day-average
    Explore at:
    40, 55, 23, 8Available download formats
    Dataset updated
    Oct 9, 2024
    Dataset authored and provided by
    City of New York
    Description

    This dataset shows daily confirmed and probable cases of COVID-19 in New York City by date of specimen collection. Total cases has been calculated as the sum of daily confirmed and probable cases. Seven-day averages of confirmed, probable, and total cases are also included in the dataset. A person is classified as a confirmed COVID-19 case if they test positive with a nucleic acid amplification test (NAAT, also known as a molecular test; e.g. a PCR test). A probable case is a person who meets the following criteria with no positive molecular test on record: a) test positive with an antigen test, b) have symptoms and an exposure to a confirmed COVID-19 case, or c) died and their cause of death is listed as COVID-19 or similar. As of June 9, 2021, people who meet the definition of a confirmed or probable COVID-19 case >90 days after a previous positive test (date of first positive test) or probable COVID-19 onset date will be counted as a new case. Prior to June 9, 2021, new cases were counted ≥365 days after the first date of specimen collection or clinical diagnosis. Any person with a residence outside of NYC is not included in counts. Data is sourced from electronic laboratory reporting from the New York State Electronic Clinical Laboratory Reporting System to the NYC Health Department. All identifying health information is excluded from the dataset.

    These data are used to evaluate the overall number of confirmed and probable cases by day (seven day average) to track the trajectory of the pandemic. Cases are classified by the date that the case occurred. NYC COVID-19 data include people who live in NYC. Any person with a residence outside of NYC is not included.

  15. COVID-19 cases by city of residence

    • data.sccgov.org
    application/rdfxml +5
    Updated Dec 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Santa Clara Public Health Department (2024). COVID-19 cases by city of residence [Dataset]. https://data.sccgov.org/COVID-19/COVID-19-cases-by-city-of-residence/59wk-iusg
    Explore at:
    application/rdfxml, csv, tsv, application/rssxml, json, xmlAvailable download formats
    Dataset updated
    Dec 14, 2024
    Dataset provided by
    Santa Clara County Public Health Departmenthttps://publichealth.sccgov.org/
    Authors
    County of Santa Clara Public Health Department
    Description

    The dataset summarizes counts and rates of cumulative COVID-19 cases by cities in Santa Clara County. Source: California Reportable Disease Information Exchange

    This dataset is updated every Thursday.

  16. O

    COVID-19 Weekly Surveillance Data Public

    • data.sanantonio.gov
    • cosacovid-cosagis.hub.arcgis.com
    Updated Mar 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    COVID-19 (2024). COVID-19 Weekly Surveillance Data Public [Dataset]. https://data.sanantonio.gov/dataset/covid-19-weekly-surveillance-data-public
    Explore at:
    csv, zip, geojson, arcgis geoservices rest api, html, kmlAvailable download formats
    Dataset updated
    Mar 5, 2024
    Dataset provided by
    City of San Antonio
    Authors
    COVID-19
    Description

    TO DOWNLOAD THE DATASET, CLICK ON THE "Download" BUTTON


    This is the weekly information that is used in the public CoVID-19 Surveillance and Progress and Warnings Dashboards. Each field is updated weekly since the first date the data was tracked. The Surveillance Dashboard is live and available here.

    This data reflects information provided by the City of San Antonio Metro Health Department, and is released weekly on Tuesday evenings; on the City of San Antonio CoVID-19 website.

    Updates:
    • 6/13/2022 - Six new variables were added to the table to be used as the CoVID Community Level Metrics. New CoVID cases per 100,000 population, Change in New CoVID cases per 100,000 population, New CoVID Admissions per 100,000 population, Change in New CoVID Admissions per 100,000 population, Percent of Staffed Inpatient Beds in Use by Patients with Confirmed COVID-19, and Change in Percent of Staffed Inpatient Beds in Use by Patients with Confirmed COVID-19. This data is tracked weekly starting on 5/2/2022.

  17. O

    COVID-19 Daily Surveillance Data Public

    • data.sanantonio.gov
    • cosacovid-cosagis.hub.arcgis.com
    Updated Jan 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    COVID-19 (2023). COVID-19 Daily Surveillance Data Public [Dataset]. https://data.sanantonio.gov/dataset/covid-19-daily-surveillance-data-public
    Explore at:
    gpkg, kml, gdb, txt, geojson, zip, html, xlsx, csv, arcgis geoservices rest apiAvailable download formats
    Dataset updated
    Jan 18, 2023
    Dataset provided by
    City of San Antonio
    Authors
    COVID-19
    Description
    This is the daily information that are used in the public CoVID-19 Surveillance, Trends, and Progress and Warnings Dashboards. Each field is updated after 6pm CST Monday through Friday. Weekend data is added on Monday as individual records, along with Monday's reported data. The Surveillance Dashboard is live and available here.

    Backlog CoVID-19 cases are cases that are reported more than 14-days after the event date (date of Test or date of onset of symptoms). Backlog cases are reported along with the Monday Cumulative Cases, but are not included in in the daily Case Change.

    This data reflects information provided by the City of San Antonio Metro Health Department, and is released Monday through Friday at 6PM on the City of San Antonio CoVID-19 website.
  18. T

    CORONAVIRUS DEATHS by Country Dataset

    • tradingeconomics.com
    csv, excel, json, xml
    Updated Mar 4, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CORONAVIRUS DEATHS by Country Dataset [Dataset]. https://tradingeconomics.com/country-list/coronavirus-deaths
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Mar 4, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    World
    Description

    This dataset provides values for CORONAVIRUS DEATHS reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.

  19. A

    ‘MD COVID-19 - Total Deaths in Congregate Facility Settings (Nursing Homes,...

    • analyst-2.ai
    Updated Nov 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘MD COVID-19 - Total Deaths in Congregate Facility Settings (Nursing Homes, Assisted Living, State and Local Facilities and Group Homes +10 Residents)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-md-covid-19-total-deaths-in-congregate-facility-settings-nursing-homes-assisted-living-state-and-local-facilities-and-group-homes-10-residents-c169/b064d66b/?iid=004-441&v=presentation
    Explore at:
    Dataset updated
    Nov 30, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘MD COVID-19 - Total Deaths in Congregate Facility Settings (Nursing Homes, Assisted Living, State and Local Facilities and Group Homes +10 Residents)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/3159b65d-6682-4094-a74f-e25654b6e6d6 on 26 January 2022.

    --- Dataset description provided by original source is as follows ---

    Summary This layer has been DEPRECATED. The Outbreak-Associated Cases in Congregate Living data dashboard on coronavirus.maryland.gov was redesigned on 11/17/21 to align with other outbreak reporting. Visit https://opendata.maryland.gov/dataset/MD-COVID-19-Congregate-Outbreak/ey5n-qn5s to view Outbreak-Associated Cases in Congregate Living data as reported after 11/17/21.

    Confirmed COVID-19 deaths among Maryland residents who live and work in congregate living facilities in Maryland for the reporting period.

    Description The MD COVID-19 - Total Deaths in Congregate Facility Settings data layer is a total of deaths confirmed by a positive COVID-19 test result that have been reported to MDH in nursing homes, assisted living facilities, group homes of 10 or more and state and local facilities for the reporting period. Data are reported to MDH by local health departments, the Department of Public Safety and Correctional Services and the Department of Juvenile Services. To appear on the list, facilities report at least one confirmed case of COVID-19 over the prior 14 days. Facilities are removed from the list when health officials determine 14 days have passed with no new cases and no tests pending. The list provides a point-in-time picture of COVID-19 case activity among these facilities. Numbers reported for each facility listed reflect totals ever reported for deaths. Data are updated once weekly.

    Terms of Use The Spatial Data, and the information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.

    --- Original source retains full ownership of the source dataset ---

  20. Personal health concerns of healthcare workers during COVID-19 in the UK...

    • flwrdeptvarieties.store
    • statista.com
    Updated Dec 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2023). Personal health concerns of healthcare workers during COVID-19 in the UK 2020 [Dataset]. https://flwrdeptvarieties.store/?_=%2Ftopics%2F6112%2Fcoronavirus-covid-19-in-the-uk%2F%23zUpilBfjadnZ6q5i9BcSHcxNYoVKuimb
    Explore at:
    Dataset updated
    Dec 20, 2023
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Area covered
    United Kingdom
    Description

    In April 2020, a survey of healthcare workers in the United Kingdom (UK) found that majority are worried about their personal health as well as the health of those they live with during the coronavirus (COVID-19) outbreak. 28 percent of healthcare workers reported to be very worried about their personal health, while 37 percent were very worried about the health of those in their household.

    The latest number of cases in the UK can be found here. For further information about the coronavirus pandemic, please visit our dedicated Facts and Figures page.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
New York Times, Coronavirus (Covid-19) Data in the United States [Dataset]. https://github.com/nytimes/covid-19-data

Coronavirus (Covid-19) Data in the United States

Explore at:
csvAvailable download formats
Dataset provided by
New York Times
License

https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE

Description

The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.

Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.

We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.

The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.

Search
Clear search
Close search
Google apps
Main menu