https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.
Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.
This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data.
The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.
For more information:
NNDSS Supports the COVID-19 Response | CDC.
The deidentified data in the “COVID-19 Case Surveillance Public Use Data” include demographic characteristics, any exposure history, disease severity indicators and outcomes, clinical data, laboratory diagnostic test results, and presence of any underlying medical conditions and risk behaviors. All data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf.
COVID-19 case reports have been routinely submitted using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19 included. Current versions of these case definitions are available here: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/.
All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for laboratory-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. Case reporting using this new form is ongoing among U.S. states and territories.
To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.
CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:
To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<5) records and indirect identifiers (e.g., date of first positive specimen). Suppression includes rare combinations of demographic characteristics (sex, age group, race/ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.
For questions, please contact Ask SRRG (eocevent394@cdc.gov).
COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These
The COVID Tracking Project collects information from 50 US states, the District of Columbia, and 5 other US territories to provide the most comprehensive testing data we can collect for the novel coronavirus, SARS-CoV-2. We attempt to include positive and negative results, pending tests, and total people tested for each state or district currently reporting that data.
Testing is a crucial part of any public health response, and sharing test data is essential to understanding this outbreak. The CDC is currently not publishing complete testing data, so we’re doing our best to collect it from each state and provide it to the public. The information is patchy and inconsistent, so we’re being transparent about what we find and how we handle it—the spreadsheet includes our live comments about changing data and how we’re working with incomplete information.
From here, you can also learn about our methodology, see who makes this, and find out what information states provide and how we handle it.
As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had been confirmed in almost every country in the world. The virus had infected over 687 million people worldwide, and the number of deaths had reached almost 6.87 million. The most severely affected countries include the U.S., India, and Brazil.
COVID-19: background information COVID-19 is a novel coronavirus that had not previously been identified in humans. The first case was detected in the Hubei province of China at the end of December 2019. The virus is highly transmissible and coughing and sneezing are the most common forms of transmission, which is similar to the outbreak of the SARS coronavirus that began in 2002 and was thought to have spread via cough and sneeze droplets expelled into the air by infected persons.
Naming the coronavirus disease Coronaviruses are a group of viruses that can be transmitted between animals and people, causing illnesses that may range from the common cold to more severe respiratory syndromes. In February 2020, the International Committee on Taxonomy of Viruses and the World Health Organization announced official names for both the virus and the disease it causes: SARS-CoV-2 and COVID-19, respectively. The name of the disease is derived from the words corona, virus, and disease, while the number 19 represents the year that it emerged.
2019 Novel Coronavirus COVID-19 (2019-nCoV) Visual Dashboard and Map:
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
Downloadable data:
https://github.com/CSSEGISandData/COVID-19
Additional Information about the Visual Dashboard:
https://systems.jhu.edu/research/public-health/ncov
The COVID-19 dashboard includes data on city/town COVID-19 activity, confirmed and probable cases of COVID-19, confirmed and probable deaths related to COVID-19, and the demographic characteristics of cases and deaths.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘COVID-19 Coronavirus Dataset’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/vignesh1694/covid19-coronavirus on 14 February 2022.
--- Dataset description provided by original source is as follows ---
A SARS-like virus outbreak originating in Wuhan, China, is spreading into neighboring Asian countries, and as far afield as Australia, the US a and Europe.
On 31 December 2019, the Chinese authorities reported a case of pneumonia with an unknown cause in Wuhan, Hubei province, to the World Health Organisation (WHO)’s China Office. As more and more cases emerged, totaling 44 by 3 January, the country’s National Health Commission isolated the virus causing fever and flu-like symptoms and identified it as a novel coronavirus, now known to the WHO as 2019-nCoV.
The following dataset shows the numbers of spreading coronavirus across the globe.
Sno - Serial number Date - Date of the observation Province / State - Province or state of the observation Country - Country of observation Last Update - Recent update (not accurate in terms of time) Confirmed - Number of confirmed cases Deaths - Number of death cases Recovered - Number of recovered cases
Thanks to John Hopkins CSSE for the live updates on Coronavirus and data streaming. Source: https://github.com/CSSEGISandData/COVID-19 Dashboard: https://public.tableau.com/profile/vignesh.coumarane#!/vizhome/DashboardToupload/Dashboard12
Inspired by the following work: https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset includes CSV files that contain IDs and sentiment scores of the tweets related to the COVID-19 pandemic. The tweets have been collected by an on-going project deployed at https://live.rlamsal.com.np. The model monitors the real-time Twitter feed for coronavirus-related tweets using 90+ different keywords and hashtags that are commonly used while referencing the pandemic. This dataset has been wholly re-designed on March 20, 2020, to comply with the content redistribution policy set by Twitter.The paper associated with this dataset is available here: Design and analysis of a large-scale COVID-19 tweets dataset-------------------------------------Related datasets:(a) Tweets Originating from India During COVID-19 Lockdowns(b) Coronavirus (COVID-19) Tweets Sentiment Trend (Global)-------------------------------------Below is the quick overview of this dataset.— Dataset name: COV19Tweets Dataset— Number of tweets : 857,809,018 tweets— Coverage : Global— Language : English (EN)— Dataset usage terms : By using this dataset, you agree to (i) use the content of this dataset and the data generated from the content of this dataset for non-commercial research only, (ii) remain in compliance with Twitter's Developer Policy and (iii) cite the following paper:Lamsal, R. Design and analysis of a large-scale COVID-19 tweets dataset. Applied Intelligence (2020). https://doi.org/10.1007/s10489-020-02029-z— Geo-tagged Version: Coronavirus (COVID-19) Geo-tagged Tweets Dataset (GeoCOV19Tweets Dataset)— Dataset updates : Everyday— Active keywords and hashtags (archive: keywords.tsv) : "corona", "#corona", "coronavirus", "#coronavirus", "covid", "#covid", "covid19", "#covid19", "covid-19", "#covid-19", "sarscov2", "#sarscov2", "sars cov2", "sars cov 2", "covid_19", "#covid_19", "#ncov", "ncov", "#ncov2019", "ncov2019", "2019-ncov", "#2019-ncov", "pandemic", "#pandemic" "#2019ncov", "2019ncov", "quarantine", "#quarantine", "flatten the curve", "flattening the curve", "#flatteningthecurve", "#flattenthecurve", "hand sanitizer", "#handsanitizer", "#lockdown", "lockdown", "social distancing", "#socialdistancing", "work from home", "#workfromhome", "working from home", "#workingfromhome", "ppe", "n95", "#ppe", "#n95", "#covidiots", "covidiots", "herd immunity", "#herdimmunity", "pneumonia", "#pneumonia", "chinese virus", "#chinesevirus", "wuhan virus", "#wuhanvirus", "kung flu", "#kungflu", "wearamask", "#wearamask", "wear a mask", "vaccine", "vaccines", "#vaccine", "#vaccines", "corona vaccine", "corona vaccines", "#coronavaccine", "#coronavaccines", "face shield", "#faceshield", "face shields", "#faceshields", "health worker", "#healthworker", "health workers", "#healthworkers", "#stayhomestaysafe", "#coronaupdate", "#frontlineheroes", "#coronawarriors", "#homeschool", "#homeschooling", "#hometasking", "#masks4all", "#wfh", "wash ur hands", "wash your hands", "#washurhands", "#washyourhands", "#stayathome", "#stayhome", "#selfisolating", "self isolating"Dataset Files (the local time mentioned below is GMT+5:45)corona_tweets_01.csv + corona_tweets_02.csv + corona_tweets_03.csv: 2,475,980 tweets (March 20, 2020 01:37 AM - March 21, 2020 09:25 AM)corona_tweets_04.csv: 1,233,340 tweets (March 21, 2020 09:27 AM - March 22, 2020 07:46 AM)corona_tweets_05.csv: 1,782,157 tweets (March 22, 2020 07:50 AM - March 23, 2020 09:08 AM)corona_tweets_06.csv: 1,771,295 tweets (March 23, 2020 09:11 AM - March 24, 2020 11:35 AM)corona_tweets_07.csv: 1,479,651 tweets (March 24, 2020 11:42 AM - March 25, 2020 11:43 AM)corona_tweets_08.csv: 1,272,592 tweets (March 25, 2020 11:47 AM - March 26, 2020 12:46 PM)corona_tweets_09.csv: 1,091,429 tweets (March 26, 2020 12:51 PM - March 27, 2020 11:53 AM)corona_tweets_10.csv: 1,172,013 tweets (March 27, 2020 11:56 AM - March 28, 2020 01:59 PM)corona_tweets_11.csv: 1,141,210 tweets (March 28, 2020 02:03 PM - March 29, 2020 04:01 PM)corona_tweets_12.csv: 793,417 tweets (March 30, 2020 02:01 PM - March 31, 2020 10:16 AM)corona_tweets_13.csv: 1,029,294 tweets (March 31, 2020 10:20 AM - April 01, 2020 10:59 AM)corona_tweets_14.csv: 920,076 tweets (April 01, 2020 11:02 AM - April 02, 2020 12:19 PM)corona_tweets_15.csv: 826,271 tweets (April 02, 2020 12:21 PM - April 03, 2020 02:38 PM)corona_tweets_16.csv: 612,512 tweets (April 03, 2020 02:40 PM - April 04, 2020 11:54 AM)corona_tweets_17.csv: 685,560 tweets (April 04, 2020 11:56 AM - April 05, 2020 12:54 PM)corona_tweets_18.csv: 717,301 tweets (April 05, 2020 12:56 PM - April 06, 2020 10:57 AM)corona_tweets_19.csv: 722,921 tweets (April 06, 2020 10:58 AM - April 07, 2020 12:28 PM)corona_tweets_20.csv: 554,012 tweets (April 07, 2020 12:29 PM - April 08, 2020 12:34 PM)corona_tweets_21.csv: 589,679 tweets (April 08, 2020 12:37 PM - April 09, 2020 12:18 PM)corona_tweets_22.csv: 517,718 tweets (April 09, 2020 12:20 PM - April 10, 2020 09:20 AM)corona_tweets_23.csv: 601,199 tweets (April 10, 2020 09:22 AM - April 11, 2020 10:22 AM)corona_tweets_24.csv: 497,655 tweets (April 11, 2020 10:24 AM - April 12, 2020 10:53 AM)corona_tweets_25.csv: 477,182 tweets (April 12, 2020 10:57 AM - April 13, 2020 11:43 AM)corona_tweets_26.csv: 288,277 tweets (April 13, 2020 11:46 AM - April 14, 2020 12:49 AM)corona_tweets_27.csv: 515,739 tweets (April 14, 2020 11:09 AM - April 15, 2020 12:38 PM)corona_tweets_28.csv: 427,088 tweets (April 15, 2020 12:40 PM - April 16, 2020 10:03 AM)corona_tweets_29.csv: 433,368 tweets (April 16, 2020 10:04 AM - April 17, 2020 10:38 AM)corona_tweets_30.csv: 392,847 tweets (April 17, 2020 10:40 AM - April 18, 2020 10:17 AM)> With the addition of some more coronavirus specific keywords, the number of tweets captured day has increased significantly, therefore, the CSV files hereafter will be zipped. Lets save some bandwidth.corona_tweets_31.csv: 2,671,818 tweets (April 18, 2020 10:19 AM - April 19, 2020 09:34 AM)corona_tweets_32.csv: 2,393,006 tweets (April 19, 2020 09:43 AM - April 20, 2020 10:45 AM)corona_tweets_33.csv: 2,227,579 tweets (April 20, 2020 10:56 AM - April 21, 2020 10:47 AM)corona_tweets_34.csv: 2,211,689 tweets (April 21, 2020 10:54 AM - April 22, 2020 10:33 AM)corona_tweets_35.csv: 2,265,189 tweets (April 22, 2020 10:45 AM - April 23, 2020 10:49 AM)corona_tweets_36.csv: 2,201,138 tweets (April 23, 2020 11:08 AM - April 24, 2020 10:39 AM)corona_tweets_37.csv: 2,338,713 tweets (April 24, 2020 10:51 AM - April 25, 2020 11:50 AM)corona_tweets_38.csv: 1,981,835 tweets (April 25, 2020 12:20 PM - April 26, 2020 09:13 AM)corona_tweets_39.csv: 2,348,827 tweets (April 26, 2020 09:16 AM - April 27, 2020 10:21 AM)corona_tweets_40.csv: 2,212,216 tweets (April 27, 2020 10:33 AM - April 28, 2020 10:09 AM)corona_tweets_41.csv: 2,118,853 tweets (April 28, 2020 10:20 AM - April 29, 2020 08:48 AM)corona_tweets_42.csv: 2,390,703 tweets (April 29, 2020 09:09 AM - April 30, 2020 10:33 AM)corona_tweets_43.csv: 2,184,439 tweets (April 30, 2020 10:53 AM - May 01, 2020 10:18 AM)corona_tweets_44.csv: 2,223,013 tweets (May 01, 2020 10:23 AM - May 02, 2020 09:54 AM)corona_tweets_45.csv: 2,216,553 tweets (May 02, 2020 10:18 AM - May 03, 2020 09:57 AM)corona_tweets_46.csv: 2,266,373 tweets (May 03, 2020 10:09 AM - May 04, 2020 10:17 AM)corona_tweets_47.csv: 2,227,489 tweets (May 04, 2020 10:32 AM - May 05, 2020 10:17 AM)corona_tweets_48.csv: 2,218,774 tweets (May 05, 2020 10:38 AM - May 06, 2020 10:26 AM)corona_tweets_49.csv: 2,164,251 tweets (May 06, 2020 10:35 AM - May 07, 2020 09:33 AM)corona_tweets_50.csv: 2,203,686 tweets (May 07, 2020 09:55 AM - May 08, 2020 09:35 AM)corona_tweets_51.csv: 2,250,019 tweets (May 08, 2020 09:39 AM - May 09, 2020 09:49 AM)corona_tweets_52.csv: 2,273,705 tweets (May 09, 2020 09:55 AM - May 10, 2020 10:11 AM)corona_tweets_53.csv: 2,208,264 tweets (May 10, 2020 10:23 AM - May 11, 2020 09:57 AM)corona_tweets_54.csv: 2,216,845 tweets (May 11, 2020 10:08 AM - May 12, 2020 09:52 AM)corona_tweets_55.csv: 2,264,472 tweets (May 12, 2020 09:59 AM - May 13, 2020 10:14 AM)corona_tweets_56.csv: 2,339,709 tweets (May 13, 2020 10:24 AM - May 14, 2020 11:21 AM)corona_tweets_57.csv: 2,096,878 tweets (May 14, 2020 11:38 AM - May 15, 2020 09:58 AM)corona_tweets_58.csv: 2,214,205 tweets (May 15, 2020 10:13 AM - May 16, 2020 09:43 AM)> The server and the databases have been optimized; therefore, there is a significant rise in the number of tweets captured per day.corona_tweets_59.csv: 3,389,090 tweets (May 16, 2020 09:58 AM - May 17, 2020 10:34 AM)corona_tweets_60.csv: 3,530,933 tweets (May 17, 2020 10:36 AM - May 18, 2020 10:07 AM)corona_tweets_61.csv: 3,899,631 tweets (May 18, 2020 10:08 AM - May 19, 2020 10:07 AM)corona_tweets_62.csv: 3,767,009 tweets (May 19, 2020 10:08 AM - May 20, 2020 10:06 AM)corona_tweets_63.csv: 3,790,455 tweets (May 20, 2020 10:06 AM - May 21, 2020 10:15 AM)corona_tweets_64.csv: 3,582,020 tweets (May 21, 2020 10:16 AM - May 22, 2020 10:13 AM)corona_tweets_65.csv: 3,461,470 tweets (May 22, 2020 10:14 AM - May 23, 2020 10:08 AM)corona_tweets_66.csv: 3,477,564 tweets (May 23, 2020 10:08 AM - May 24, 2020 10:02 AM)corona_tweets_67.csv: 3,656,446 tweets (May 24, 2020 10:02 AM - May 25, 2020 10:10 AM)corona_tweets_68.csv: 3,474,952 tweets (May 25, 2020 10:11 AM - May 26, 2020 10:22 AM)corona_tweets_69.csv: 3,422,960 tweets (May 26, 2020 10:22 AM - May 27, 2020 10:16 AM)corona_tweets_70.csv: 3,480,999 tweets (May 27, 2020 10:17 AM - May 28, 2020 10:35 AM)corona_tweets_71.csv: 3,446,008 tweets (May 28, 2020 10:36 AM - May 29, 2020 10:07 AM)corona_tweets_72.csv: 3,492,841 tweets (May 29, 2020 10:07 AM - May 30, 2020 10:14 AM)corona_tweets_73.csv: 3,098,817 tweets (May 30, 2020 10:15 AM - May 31, 2020 10:13 AM)corona_tweets_74.csv: 3,234,848 tweets (May 31, 2020 10:13 AM - June 01, 2020 10:14 AM)corona_tweets_75.csv: 3,206,132 tweets (June 01, 2020 10:15 AM - June 02, 2020 10:07 AM)corona_tweets_76.csv: 3,206,417 tweets (June 02, 2020 10:08 AM - June 03, 2020 10:26 AM)corona_tweets_77.csv: 3,256,225 tweets (June 03, 2020
This layer has been DEPRECATED (last updated12/1/2021). This was formerly a weekly update. Summary The Outbreak-Associated Cases in Congregate Living data dashboard on coronavirus.maryland.gov was redesigned on 11/17/21 to align with other outbreak reporting. Visit https://opendata.maryland.gov/dataset/MD-COVID-19-Congregate-Outbreak/ey5n-qn5s to view Outbreak-Associated Cases in Congregate Living data as reported after 11/17/21. Confirmed COVID-19 deaths among Maryland residents within a single Maryland jurisdiction who live and work in congregate living facilities for the reporting period. Description The MD COVID-19 - Total Deaths in Congregate Facility Settings data layer is a total of deaths confirmed by a positive COVID-19 test result that have been reported to MDH in nursing homes, assisted living facilities, group homes of 10 or more and state and local facilities in each Maryland jurisdiction for the reporting period. Data are reported to MDH by local health departments, the Department of Public Safety and Correctional Services and the Department of Juvenile Services. To appear on the list, facilities report at least one confirmed case of COVID-19 over the prior 14 days. Facilities are removed from the list when health officials determine 14 days have passed with no new cases and no tests pending. The list provides a point-in-time picture of COVID-19 case activity among these facilities. Numbers reported for each facility listed reflect totals ever reported for deaths. Data are updated once weekly. Terms of Use The Spatial Data, and the information therein, (collectively the "Data") is provided "as is" without warranty of any kind, either expressed, implied, or statutory. The user assumes the entire risk as to quality and performance of the Data. No guarantee of accuracy is granted, nor is any responsibility for reliance thereon assumed. In no event shall the State of Maryland be liable for direct, indirect, incidental, consequential or special damages of any kind. The State of Maryland does not accept liability for any damages or misrepresentation caused by inaccuracies in the Data or as a result to changes to the Data, nor is there responsibility assumed to maintain the Data in any manner or form. The Data can be freely distributed as long as the metadata entry is not modified or deleted. Any data derived from the Data must acknowledge the State of Maryland in the metadata.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This dataset compiles daily snapshots of publicly reported data on 2019 Novel Coronavirus (COVID-19) testing in Ontario. Learn how the Government of Ontario is helping to keep Ontarians safe during the 2019 Novel Coronavirus outbreak. Data includes: * reporting date * reporting Public Health Unit (PHU) * case outcomes (active, resolutions and deaths) The last update of this file will occur on Thursday December 1, 2022. For more information about COVID-19 cases and deaths by public health unit, please consult the Public Health Ontario COVID-19 data tool The methodology used to count COVID-19 deaths has changed to exclude deaths not caused by COVID. This impacts data captured in the columns “RESOLVED_CASES” and “DEATHS” starting with the file posted on March 11, 2022. Two new columns have been added to the file “ARCHIVED_RESOLVED_CASES” and “ARCHIVED_DEATHS” which represent the data that were posted publicly prior to the methodological change. This dataset is subject to change. Please review the daily epidemiologic summaries for information on variables, methodology, and technical considerations.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
[ U.S. State-Level Data (Raw CSV) | U.S. County-Level Data (Raw CSV) ]
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real-time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists, and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Data on cumulative coronavirus cases and deaths can be found in two files for states and counties.
Each row of data reports cumulative counts based on our best reporting up to the moment we publish an update. We do our best to revise earlier entries in the data when we receive new information.
Both files contain FIPS codes, a standard geographic identifier, to make it easier for an analyst to combine this data with other data sets like a map file or population data.
Download all the data or clone this repository by clicking the green "Clone or download" button above.
State-level data can be found in the states.csv file. (Raw CSV file here.)
date,state,fips,cases,deaths
2020-01-21,Washington,53,1,0
...
County-level data can be found in the counties.csv file. (Raw CSV file here.)
date,county,state,fips,cases,deaths
2020-01-21,Snohomish,Washington,53061,1,0
...
In some cases, the geographies where cases are reported do not map to standard county boundaries. See the list of geographic exceptions for more detail on these.
The data is the product of dozens of journalists working across several time zones to monitor news conferences, analyze data releases and seek clarification from public officials on how they categorize cases.
It is also a response to a fragmented American public health system in which overwhelmed public servants at the state, county and territorial levels have sometimes struggled to report information accurately, consistently and speedily. On several occasions, officials have corrected information hours or days after first reporting it. At times, cases have disappeared from a local government database, or officials have moved a patient first identified in one state or county to another, often with no explanation. In those instances, which have become more common as the number of cases has grown, our team has made every effort to update the data to reflect the most current, accurate information while ensuring that every known case is counted.
When the information is available, we count patients where they are being treated, not necessarily where they live.
In most instances, the process of recording cases has been straightforward. But because of the patchwork of reporting methods for this data across more than 50 state and territorial governments and hundreds of local health departments, our journalists sometimes had to make difficult interpretations about how to count and record cases.
For those reasons, our data will in some cases not exactly match the information reported by states and counties. Those differences include these cases: When the federal government arranged flights to the United States for Americans exposed to the coronavirus in China and Japan, our team recorded those cases in the states where the patients subsequently were treated, even though local health departments generally did not. When a resident of Florida died in Los Angeles, we recorded her death as having occurred in California rather than Florida, though officials in Florida counted her case in their...
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: U.S. Centers for Disease Control and Prevention (CDC)For more information, visit the Johns Hopkins Coronavirus Resource Center.Trends represent the day-to-day rate of new cases with a focus on the most recent 10 to 14 days. Includes Puerto Rico, Guam, Northern Marianas, and U.S. Virgin Islands. Daily new case counts are volatile for many reasons and sometimes the trends reflect that volatility. Thus, we decided to include longer-term summaries here. County Trends as of 9 Mar 20230 (-0) in Emergent1135 (+51) in Spreading1664 (-63) in Epidemic230 (+10) in Controlled110 (+2) in End StageNotes: Many states now only report once per week, and FL only once every two weeks. On 3/7/2022 we adjusted the formula for active cases to reflect the Omicron Variant which is documented to cause lower rates of serious and severe illness. To produce these trends we analyze daily updates from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.For more information about COVID-19 trends, see our country level trends story map and the full methodology.Data Source: Johns Hopkins University CSSE US Cases by County dashboard and USAFacts for Utah County level Data.Feature layer generated from running the Join Features solution that is the basis for daily updates for the U.S. County COVID-19 Tends Story Map.
http://www.cis.es/cis/opencms/ES/Avisolegal.htmlhttp://www.cis.es/cis/opencms/ES/Avisolegal.html
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
To make it easy to see what content is being shared on social media about the virus, we’ve built a set of CrowdTangle Live Displays and made them public so everyone can have access. Use them to keep track of some of the biggest content about coronavirus on Facebook and Instagram from local news outlets, regional World Health Organization Pages, government agencies, local politicians, and more.
Click the Download button to access these Live Displays, or go here: https://apps.crowdtangle.com/public-hub/covid19
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We are releasing a Twitter dataset connected to our project Digital Narratives of Covid-19 (DHCOVID) that -among other goals- aims to explore during one year (May 2020-2021) the narratives behind data about the coronavirus pandemic.In this first version, we deliver a Twitter dataset organized as follows:
Each folder corresponds to daily data (one folder for each day): YEAR-MONTH-DAYIn every folder there are 9 different plain text files named with ""dhcovid"", followed by date (YEAR-MONTH-DAY), language (""en"" for English, and ""es"" for Spanish), and region abbreviation (""fl"", ""ar"", ""mx"", ""co"", ""pe"", ""ec"", ""es""):dhcovid_YEAR-MONTH-DAY_es_fl.txt: Dataset containing tweets geolocalized in South Florida. The geo-localization is tracked by tweet coordinates, by place, or by user information.dhcovid_YEAR-MONTH-DAY_en_fl.txt: We are gathering only tweets in English that refer to the area of Miami and South Florida. The reason behind this choice is that there are multiple projects harvesting English data, and, our project is particularly interested in this area because of our home institution (University of Miami) and because we aim to study public conversations from a bilingual (EN/ES) point of view.dhcovid_YEAR-MONTH-DAY_es_ar.txt: Dataset containing tweets from Argentina.dhcovid_YEAR-MONTH-DAY_es_mx.txt: Dataset containing tweets from Mexico.dhcovid_YEAR-MONTH-DAY_es_co.txt: Dataset containing tweets from Colombia.dhcovid_YEAR-MONTH-DAY_es_pe.txt: Dataset containing tweets from Perú.dhcovid_YEAR-MONTH-DAY_es_ec.txt: Dataset containing tweets from Ecuador.dhcovid_YEAR-MONTH-DAY_es_es.txt: Dataset containing tweets from Spain.dhcovid_YEAR-MONTH-DAY_es.txt: This dataset contains all tweets in Spanish, regardless of its geolocation.
For English, we collect all tweets with the following keywords and hashtags: covid, coronavirus, pandemic, quarantine, stayathome, outbreak, lockdown, socialdistancing. For Spanish, we search for: covid, coronavirus, pandemia, quarentena, confinamiento, quedateencasa, desescalada, distanciamiento social.The corpus of tweets consists of a list of Tweet Ids; to obtain the original tweets, you can use ""Twitter hydratator"" which takes the id and download for you all metadata in a csv file.We started collecting this Twitter dataset on April 24th, 2020 and we are adding daily data to our GitHub repository. There is a detected problem with file 2020-04-24/dhcovid_2020-04-24_es.txt, which we couldn't gather the data due to technical reasons.For more information about our project visit https://covid.dh.miami.edu/ For more updated datasets and detailed criteria, check our GitHub Repository: https://github.com/dh-miami/narratives_covid19/
This dataset gives a cursory glimpse at the overall sentiment trend of the public discourse regarding the COVID-19 pandemic on Twitter. The live scatter plot of this dataset is available as The Overall Trend block at https://live.rlamsal.com.np. The trend graph reveals multiple peaks and drops that need further analysis. The n-grams during those peaks and drops can prove beneficial for better understanding the discourse. The dataset will be updated weekly and will continue until the development of the Coronavirus (COVID-19) Tweets Dataset is ongoing.
Updated weekly on Thursdays Older adults and people with disabilities who live in long term care facilities are at high risk for COVID-19 illness and death. The data below describes the impacts of COVID-19 on the residents and staff of Long Term Care Facilities licensed by the State Department of Social and Health Services (DSHS), including Skilled Nursing Facilities (nursing homes); Adult Family Homes and Assisted Living Facilities. Cases and deaths are also occurring in other forms of senior housing not licensed by DSHS, including subsidized housing for people age 50+, Permanent Supportive Housing, and naturally occurring retirement communities (NORCs) and among people with disabilities living in Supportive Living Facilities (also licensed by DSHS).
http://www.cis.es/cis/opencms/ES/Avisolegal.htmlhttp://www.cis.es/cis/opencms/ES/Avisolegal.html
https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.