Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Death rate, crude (per 1,000 people) in World was reported at 7.5783 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. World - Death rate, crude - actual values, historical data, forecasts and projections were sourced from the World Bank on June of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>India death rate for 2024 was <strong>7.47</strong>, a <strong>0.77% increase</strong> from 2023.</li>
<li>India death rate for 2023 was <strong>7.42</strong>, a <strong>0.49% increase</strong> from 2022.</li>
<li>India death rate for 2022 was <strong>7.38</strong>, a <strong>0.49% increase</strong> from 2021.</li>
</ul>Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.
As of May 2, 2023, the outbreak of the coronavirus disease (COVID-19) had spread to almost every country in the world, and more than 6.86 million people had died after contracting the respiratory virus. Over 1.16 million of these deaths occurred in the United States.
Waves of infections Almost every country and territory worldwide have been affected by the COVID-19 disease. At the end of 2021 the virus was once again circulating at very high rates, even in countries with relatively high vaccination rates such as the United States and Germany. As rates of new infections increased, some countries in Europe, like Germany and Austria, tightened restrictions once again, specifically targeting those who were not yet vaccinated. However, by spring 2022, rates of new infections had decreased in many countries and restrictions were once again lifted.
What are the symptoms of the virus? It can take up to 14 days for symptoms of the illness to start being noticed. The most commonly reported symptoms are a fever and a dry cough, leading to shortness of breath. The early symptoms are similar to other common viruses such as the common cold and flu. These illnesses spread more during cold months, but there is no conclusive evidence to suggest that temperature impacts the spread of the SARS-CoV-2 virus. Medical advice should be sought if you are experiencing any of these symptoms.
Infant Mortality Rate by Maternal Race/Ethnicity for New York City, 2007-2016 Counts of infant deaths (age <1 year) are based on NYC death certificates. The rate is calculated using the counts of infant deaths as the numerator and the count of live births from NYC birth certificates as the denominator.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historical chart and dataset showing World death rate by year from 1950 to 2025.
This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.
The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.
The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.
https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The graph illustrates the number of deaths per day in the United States from 1950 to 2025. The x-axis represents the years, abbreviated from '50 to '24, while the y-axis indicates the daily number of deaths. Over this 75-year period, the number of deaths per day ranges from a low of 4,054 in 1950 to a high of 9,570 in 2021. Notable figures include 6,855 deaths in 2010 and 8,333 in 2024. The data shows a general upward trend in daily deaths over the decades, with recent years experiencing some fluctuations. This information is presented in a line graph format, effectively highlighting the long-term trends and yearly variations in daily deaths across the United States.
The First World War saw the mobilization of more than 65 million soldiers, and the deaths of almost 15 million soldiers and civilians combined. Approximately 8.8 million of these deaths were of military personnel, while six million civilians died as a direct result of the war; mostly through hunger, disease and genocide. The German army suffered the highest number of military losses, totaling at more than two million men. Turkey had the highest civilian death count, largely due to the mass extermination of Armenians, as well as Greeks and Assyrians. Varying estimates suggest that Russia may have suffered the highest number of military and total fatalities in the First World War. However, this is complicated by the subsequent Russian Civil War and Russia's total specific to the First World War remains unclear to this day.
Proportional deaths In 1914, Central and Eastern Europe was largely divided between the empires of Austria-Hungary, Germany and Russia, while the smaller Balkan states had only emerged in prior decades with the decline of the Ottoman Empire. For these reasons, the major powers in the east were able to mobilize millions of men from across their territories, as Britain and France did with their own overseas colonies, and were able to utilize their superior manpower to rotate and replace soldiers, whereas smaller nations did not have this luxury. For example, total military losses for Romania and Serbia are around 12 percent of Germany's total military losses; however, as a share of their total mobilized forces these countries lost roughly 33 percent of their armies, compared to Germany's 15 percent mortality rate. The average mortality rate of all deployed soldiers in the war was around 14 percent.
Unclarity in the totals Despite ending over a century ago, the total number of deaths resulting from the First World War remains unclear. The impact of the Influenza pandemic of 1918, as well as various classifications of when or why fatalities occurred, has resulted in varying totals with differences ranging in the millions. Parallel conflicts, particularly the Russian Civil War, have also made it extremely difficult to define which conflicts the fatalities should be attributed to. Since 2012, the totals given by Hirschfeld et al in Brill's Encyclopedia of the First World War have been viewed by many in the historical community as the most reliable figures on the subject.
Estimates for the total death count of the Second World War generally range somewhere between 70 and 85 million people. The Soviet Union suffered the highest number of fatalities of any single nation, with estimates mostly falling between 22 and 27 million deaths. China then suffered the second greatest, at around 20 million, although these figures are less certain and often overlap with the Chinese Civil War. Over 80 percent of all deaths were of those from Allied countries, and the majority of these were civilians. In contrast, 15 to 20 percent were among the Axis powers, and the majority of these were military deaths, as shown in the death ratios of Germany and Japan. Civilian deaths and atrocities It is believed that 60 to 67 percent of all deaths were civilian fatalities, largely resulting from war-related famine or disease, and war crimes or atrocities. Systematic genocide, extermination campaigns, and forced labor, particularly by the Germans, Japanese, and Soviets, led to the deaths of millions. In this regard, Nazi activities alone resulted in 17 million deaths, including six million Jews in what is now known as The Holocaust. Not only was the scale of the conflict larger than any that had come before, but the nature of and reasoning behind this loss make the Second World War stand out as one of the most devastating and cruelest conflicts in history. Problems with these statistics Although the war is considered by many to be the defining event of the 20th century, exact figures for death tolls have proven impossible to determine, for a variety of reasons. Countries such as the U.S. have fairly consistent estimates due to preserved military records and comparatively few civilian casualties, although figures still vary by source. For most of Europe, records are less accurate. Border fluctuations and the upheaval of the interwar period mean that pre-war records were already poor or non-existent for many regions. The rapid and chaotic nature of the war then meant that deaths could not be accurately recorded at the time, and mass displacement or forced relocation resulted in the deaths of many civilians outside of their homeland, which makes country-specific figures more difficult to find. Early estimates of the war’s fatalities were also taken at face value and formed the basis of many historical works; these were often very inaccurate, but the validity of the source means that the figures continue to be cited today, despite contrary evidence.
In comparison to Europe, estimate ranges are often greater across Asia, where populations were larger but pre-war data was in short supply. Many of the Asian countries with high death tolls were European colonies, and the actions of authorities in the metropoles, such as the diversion of resources from Asia to Europe, led to millions of deaths through famine and disease. Additionally, over one million African soldiers were drafted into Europe’s armies during the war, yet individual statistics are unavailable for most of these colonies or successor states (notably Algeria and Libya). Thousands of Asian and African military deaths went unrecorded or are included with European or Japanese figures, and there are no reliable figures for deaths of millions from countries across North Africa or East Asia. Additionally, many concentration camp records were destroyed, and such records in Africa and Asia were even sparser than in Europe. While the Second World War is one of the most studied academic topics of the past century, it is unlikely that we will ever have a clear number for the lives lost in the conflict.
Data is sourced from various health resources. Data is transformed into a BI format and quality assured. Data is consumed by a dashboard created in Power BI. Four reports exist for this dashboard:1. HIV Prevalence and TB Success RateHIV prevalence amongst women attending antenatal clinics in the Western Cape (2012-2015) by district and yearHIV prevalence amongst women attending antenatal clinics in the province (2012-2015) by province and yearTB Programme Success Rate (2013/14-2018/19) by TB Measure2. Births and Maternal MortalitiesNeonatal in facility (0-28 days) mortality rate (2015/16-2018/19); by years and neonatal death rate in facility and mortality rate by 1,000 live births Facility maternal mortality rate (2002, 2005, 2008, 2011, 2014); by triennia (3 years) deaths by 1,000 live births in WC (incl count of maternal deaths, count of live births, and infant maternal mortality ration)(Child (under 5) and Infant (under 1) mortality rate (2011, 2012, 2013); filter years, Infant/Child age band; Years, District, Births and Deaths by age bandDelivery rate in facility to women under 20 years (2013/14-2018/19); filter by financial year (FY); delivery rate by FY, delivery rate, numerator (births to women <20), denominator (total births)3. Deaths and Life ExpectancyLeading underlying causes of death in the Western Cape (2012-2016) by years and cause of deathYears of life lost (YLL) by cause of death in the WC (2012-2016) by years and YLL cause of deathAverage Life Expectency (LE) at birth (2006, 2011, 2016) by year, province, and gender4. Travel time to facilitiesTravel time taken to health facility by households with expenditure less than R1200-SA (2013-2018); by year, province, and travel time to health facilityTravel time taken to health facility by households with expenditure less than R1200-WC (2013-2018); by year, province, population group, and travel time to health facilityPublication Date2 September 2021LineageData from various sources transformed to a BI format and used to develop dynamic Power BI dashboards reflecting Outcome Indicators: HIV prevalence amongst women attending antenatal clinics in the provinceAll DS-TB (drug-susceptible tuberculosis) client treatment success rateNeonatal in facility (0-28 days) mortality rateFacility maternal mortality rateDelivery rate in facility to women under 20 yearsLife Expectancy (LE)Leading underlying causes of death in the Western CapeTravel time taken to health facility by households with expenditure less than R1200 (SA and WC)Data Source2019 National Antenatal Sentinel HIV Survey, National Department of Health 2021;Annual report 2014/15-2020/21, DOH;District Health Information Systems;Mid-year population estimates, Stats SA; Life Expectancy Stats SA calculations;Mortality and Causes of Death in South Africa 2018, June 2021, Stats SA
The most common cause of death in Russia in 2023 was diseases of the circulatory system, with approximately *** deaths per 100,000 of the country's population. Furthermore, *** deaths per 100,000 population occurred due to neoplasms, which were the second leading cause of mortality in the country. The third-most common cause was diseases of the nervous system, accounting for nearly ** deaths per 100,000 residents. Are there more births or deaths in Russia per year? In recent years, the annual number of deaths was higher than the count of births in Russia. The natural decrease in the population, calculated as the difference between deaths and births, was around one million in 2021. The number of deaths per one thousand population, also known as the mortality rate, increased from **** in 2021 to **** in 2022. How long do Russians live on average? Russian residents born in 2022 were expected to live an average of ** years. The country had one of the largest gender gaps in life expectancy in the OECD, according to the World Bank's World Development Indicators in 2021. Women were expected to live for approximately ** years longer than men.
A. SUMMARY This archived dataset includes data for population characteristics that are no longer being reported publicly. The date on which each population characteristic type was archived can be found in the field “data_loaded_at”.
To access the dataset that continues to refresh daily, navigate to this page: COVID-19 Deaths by Population Characteristics Over Time. The dataset contains data on the following population characteristics that are no longer being reported publicly:
B. HOW THE DATASET IS CREATED COVID-19 deaths are suspected to be associated with COVID-19. This means COVID-19 is listed as a cause of death or significant condition on the death certificate. Data on the population characteristics of COVID-19 deaths are from: * Case interviews * Laboratories * Medical providers These multiple streams of data are merged, deduplicated, and undergo data verification processes. Skilled Nursing Facility (SNF) occupancy * A Skilled Nursing Facility (SNF) is a type of long-term care facility that provides care to individuals, generally in their 60s and older, who need functional assistance in their daily lives. * This dataset includes data for COVID-19 deaths reported in Skilled Nursing Facilities (SNFs) through 12/31/2022, archived on 1/5/2023. These data were identified where “Characteristic_Type” = ‘Skilled Nursing Facility Occupancy’.
Sexual orientation * The City began asking adults 18 years old or older for their sexual orientation identification during case interviews as of April 28, 2020. Sexual orientation data prior to this date is unavailable. * The City doesn’t collect or report information about sexual orientation for persons under 12 years of age. * Case investigation interviews transitioned to Virtual Assistant information gathering starting December 2021. The California Department of Public Health, Virtual Assistant is only sent to adults who are 18+ years old. Learn more about our data collection guidelines pertaining to sexual orientation.
Comorbidities * Underlying conditions are reported when a person has one or more underlying health conditions at the time of diagnosis or death.
Homelessness Persons are identified as homeless based on several data sources: * self-reported living situation * the location at the time of testing * Department of Public Health homelessness and health databases * Residents in Single-Room Occupancy hotels are not included in these figures. These methods serve as an estimate of persons experiencing homelessness. They may not meet other homelessness definitions.
Single Room Occupancy (SRO) tenancy * SRO buildings are defined by the San Francisco Housing Code as having six or more "residential guest rooms" which may be attached to shared bathrooms, kitchens, and living spaces. * The details of a person's living arrangements are verified during case interviews.
Transmission type * Information on transmission of COVID-19 is based on case interviews with individuals who have a confirmed positive test. Individuals are asked if they have been in close contact with a known COVID-19 case. If they answer yes, transmission category is recorded as contact with a known case. If they report no contact with a known case, transmission category is recorded as community transmission. If the case is not interviewed or was not asked the question, they are counted as unknown.
C. UPDATE PROCESS This dataset will only update when any population characteristics are archived. Data for existing characteristic types will not change but new characteristic types may be added. D. HOW TO USE THIS DATASET This dataset may include different types of characteristics. Filter the “Characteristic Type” column to explore a topic area. Then, the “Characteristic Group” column shows each group or category within that topic area and the number of deaths on each date.
New deaths are the count of deaths within that characteristic group on that specific date. Cumulative deaths are the running total of all San Francisco COVID-19 deaths in that characteristic group up to the date listed.
E. CHANGE LOG
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>U.S. death rate for 2024 was <strong>9.23</strong>, a <strong>0.28% increase</strong> from 2023.</li>
<li>U.S. death rate for 2023 was <strong>9.20</strong>, a <strong>6.12% decline</strong> from 2022.</li>
<li>U.S. death rate for 2022 was <strong>9.80</strong>, a <strong>5.77% decline</strong> from 2021.</li>
</ul>Crude death rate indicates the number of deaths occurring during the year, per 1,000 population estimated at midyear. Subtracting the crude death rate from the crude birth rate provides the rate of natural increase, which is equal to the rate of population change in the absence of migration.
This dataset presents the number of neonatal deaths per 1,000 live births, using data from the UNICEF Data Warehouse. Neonatal mortality refers to the death of a baby within the first 28 days of life and is a critical indicator of newborn health and health system performance. Monitoring this rate supports efforts to improve the quality of care around birth and during the early postnatal period, and to reduce preventable newborn deaths through timely, skilled interventions.Data Source:UNICEF Data Warehouse: https://data.unicef.org/resources/data_explorer/unicef_f/?ag=UNICEF&df=GLOBAL_DATAFLOW&ver=1.0&dq=.CME_MRM0.&startPeriod=1990&endPeriod=2024Data Dictionary: The data is collated with the following columns:Column headingContent of this columnPossible valuesRefNumerical counter for each row of data, for ease of identification1+CountryShort name for the country195 countries in total – all 194 WHO member states plus PalestineISO3Three-digit alphabetical codes International Standard ISO 3166-1 assigned by the International Organization for Standardization (ISO). e.g. AFG (Afghanistan)ISO22 letter identifier code for the countrye.g. AF (Afghanistan)ICM_regionICM Region for countryAFR (Africa), AMR (Americas), EMR (Eastern Mediterranean), EUR (Europe), SEAR (South east Asia) or WPR (Western Pacific)CodeUnique project code for each indicator:GGTXXnnnGG=data group e.g. OU for outcomeT = N for novice or E for ExpertXX = identifier number 00 to 30nnn = identifier name eg mmre.g. OUN01sbafor Outcome Novice Indicator 01 skilled birth attendance Short_nameIndicator namee.g. maternal mortality ratioDescriptionText description of the indicator to be used on websitee.g. Maternal mortality ratio (maternal deaths per 100,000 live births)Value_typeDescribes the indicator typeNumeric: decimal numberPercentage: value between 0 & 100Text: value from list of text optionsY/N: yes or noValue_categoryExpect this to be ‘total’ for all indicators for Phase 1, but this could allow future disaggregation, e.g. male/female; urban/ruraltotalYearThe year that the indicator value was reported. For most indicators, we will only report if 2014 or more recente.g. 2020Latest_Value‘LATEST’ if this is the most recent reported value for the indicator since 2014, otherwise ‘No’. Useful for indicators with time trend data.LATEST or NOValueIndicator valuee.g. 99.8. NB Some indicators are calculated to several decimal places. We present the value to the number of decimal places that should be displayed on the Hub.SourceFor Caesarean birth rate [OUN13cbr] ONLY, this column indicates the source of the data, either OECD when reported, or UNICEF otherwise.OECD or UNICEFTargetHow does the latest value compare with Global guidelines / targets?meets targetdoes not meet targetmeets global standarddoes not meet global standardRankGlobal rank for indicator, i.e. the country with the best global score for this indicator will have rank = 1, next = 2, etc. This ranking is only appropriate for a few indicators, others will show ‘na’1-195Rank out ofThe total number of countries who have reported a value for this indicator. Ranking scores will only go as high as this number.Up to 195TrendIf historic data is available, an indication of the change over time. If there is a global target, then the trend is either getting better, static or getting worse. For mmr [OUN04mmr] and nmr [OUN05nmr] the average annual rate of reduction (arr) between 2016 and latest value is used to determine the trend:arr <-1.0 = getting worsearr >=-1.0 AND <=1.0 = staticarr >1.0 = getting betterFor other indicators, the trend is estimated by comparing the average of the last three years with the average ten years ago:decreasing if now < 95% 10 yrs agoincreasing if now > 105% 10 yrs agostatic otherwiseincreasingdecreasing Or, if there is a global target: getting better,static,getting worseNotesClarification comments, when necessary LongitudeFor use with mapping LatitudeFor use with mapping DateDate data uploaded to the Hubthe following codes are also possible values:not reported does not apply don’t knowThis is one of many datasets featured on the Midwives’ Data Hub, a digital platform designed to strengthen midwifery and advocate for better maternal and newborn health services.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Infant Mortality’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/c733d231-f584-43ce-833b-796dd1803208 on 27 January 2022.
--- Dataset description provided by original source is as follows ---
Infant Mortality Rate by Maternal Race/Ethnicity for New York City, 2007-2016
Counts of infant deaths (age <1 year) are based on NYC death certificates. The rate is calculated using the counts of infant deaths as the numerator and the count of live births from NYC birth certificates as the denominator.--- Original source retains full ownership of the source dataset ---
In 2023, the death rate in India remained nearly unchanged at around **** deaths per 1,000 inhabitants. The crude death rate is the annual number of deaths in a given population, expressed per 1,000 people. When looked at in unison with the crude birth rate, the rate of natural increase can be determined.Find more statistics on other topics about India with key insights such as life expectancy of women at birth, total fertility rate, and crude birth rate.
This multi-scale map shows life expectancy - a widely-used measure of health and mortality. From the 2020 County Health Rankings page about Life Expectancy:
Life Expectancy measures the average number of years from birth a person can expect to live, according to the current mortality experience (age-specific death rates) of the population. Life Expectancy takes into account the number of deaths in a given time period and the average number of people at risk of dying during that period, allowing us to compare data across counties with different population sizes.
Life Expectancy is Age-AdjustedAge is a non-modifiable risk factor, and as age increases, poor health outcomes are more likely. Life Expectancy is age-adjusted in order to fairly compare counties with differing age structures.
What Deaths Count Toward Life Expectancy?Deaths are counted in the county where the individual lived. So, even if an individual dies in a car crash on the other side of the state, that death is attributed to his/her home county.
Some Data are SuppressedA missing value is reported for counties with fewer than 5,000 population-years-at-risk in the time frame.
Measure LimitationsLife Expectancy includes mortality of all age groups in a population instead of focusing just on premature deaths and thus can be dominated by deaths of the elderly.[1] This could draw attention to areas with higher mortality rates among the oldest segment of the population, where there may be little that can be done to change chronic health problems that have developed over many years. However, this captures the burden of chronic disease in a population better than premature death measures.[2]
Furthermore, the calculation of life expectancy is complex and not easy to communicate. Methodologically, it can produce misleading results caused by hidden differences in age structure, is sensitive to infant and child mortality, and tends to be overestimated in small populations."
This multi-scale map shows life expectancy - a widely-used measure of health and mortality. From the County Health Rankings page about Life Expectancy:"Life Expectancy is an AverageLife Expectancy measures the average number of years from birth a person can expect to live, according to the current mortality experience (age-specific death rates) of the population. Life Expectancy takes into account the number of deaths in a given time period and the average number of people at risk of dying during that period, allowing us to compare data across counties with different population sizes.Life Expectancy is Age-AdjustedAge is a non-modifiable risk factor, and as age increases, poor health outcomes are more likely. Life Expectancy is age-adjusted in order to fairly compare counties with differing age structures.What Deaths Count Toward Life Expectancy?Deaths are counted in the county where the individual lived. So, even if an individual dies in a car crash on the other side of the state, that death is attributed to his/her home county.Some Data are SuppressedA missing value is reported for counties with fewer than 5,000 population-years-at-risk in the time frame.Measure LimitationsLife Expectancy includes mortality of all age groups in a population instead of focusing just on premature deaths and thus can be dominated by deaths of the elderly.[1] This could draw attention to areas with higher mortality rates among the oldest segment of the population, where there may be little that can be done to change chronic health problems that have developed over many years. However, this captures the burden of chronic disease in a population better than premature death measures.[2]Furthermore, the calculation of life expectancy is complex and not easy to communicate. Methodologically, it can produce misleading results caused by hidden differences in age structure, is sensitive to infant and child mortality, and tends to be overestimated in small populations."Breakdown by race/ethnicity in pop-up: (This map has been updated with new data, so figures may vary from those in this image.)There are many factors that play into life expectancy: rates of noncommunicable diseases such as cancer, diabetes, and obesity, prevalence of tobacco use, prevalence of domestic violence, and many more.Proven strategies to improve life expectancy and health in general A database of dozens of strategies can be found at County Health Rankings' What Works for Health site, sorted by Health Behaviors, Clinical Care, Social & Economic Factors, and Physical Environment. Policies and Programs listed here have been evaluated as to their effectiveness. For example, consumer-directed health plans received an evidence rating of "mixed evidence" whereas cultural competence training for health care professionals received a rating of "scientifically supported." Data from County Health Rankings (layer referenced below), available for nation, state, and county, and available in ArcGIS Living Atlas of the World.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.