79 datasets found
  1. Wildfire Risk to Communities Housing Unit Count

    • s.cnmilf.com
    • agdatacommons.nal.usda.gov
    • +3more
    Updated Apr 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2025). Wildfire Risk to Communities Housing Unit Count [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/wildfire-risk-to-communities-housing-unit-count-image-service
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
    Description

    The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the _location where the adverse effects take place.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2021 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.The specific raster datasets included in this publication include:Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.

  2. A

    ‘2021 World Population (updated daily)’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Jan 29, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘2021 World Population (updated daily)’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-2021-world-population-updated-daily-3a7e/latest
    Explore at:
    Dataset updated
    Jan 29, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    World
    Description

    Analysis of ‘2021 World Population (updated daily)’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/rsrishav/world-population on 28 January 2022.

    --- Dataset description provided by original source is as follows ---

    Context

    2021 World Population dataset which gets updated daily.

    Content

    2021_population.csv: File contains data for only live 2021 population count which gets updated daily. Also contains more information about the country's growth rate, area, etc. timeseries_population_count.csv: File contains data for live population count which gets updated daily but it contains last updated data also. Data in this file is managed day-wise.

    Inspiration

    This type of data can be used for population-related use cases. Like, my own dataset COVID Vaccination in World (updated daily), which requires population data. I believe there are more use cases that I didn't explore yet but might other Kaggler needs this. Time-series related use-case can be implemented on this data but I know it will take time to compile that amount of data. So stay tuned.

    --- Original source retains full ownership of the source dataset ---

  3. Total population of the United States 2027

    • statista.com
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Total population of the United States 2027 [Dataset]. https://www.statista.com/statistics/263762/total-population-of-the-united-states/
    Explore at:
    Dataset updated
    Aug 20, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    The statistic shows the total population in the United States from 2015 to 2021, with projections up until 2027. In 2021, the total population of the U.S. amounted to approximately 332.18 million inhabitants.

    The United States' economy over the last decade

    The United States of America is the world’s largest national economy and the second most prominent trader globally, trailing just behind China. The country is also one of the most populated countries in the world, trailing only China and India. The United States' economy prospers primarily due to having a plentiful amount of natural resources and advanced infrastructure to cope with the production of goods and services, as well as the population and workforce to enable high productivity. Efficient productivity led to a slight growth in GDP almost every year over the past decade, despite undergoing several economic hardships towards the late 2000's.

    In addition, the United States holds arguably one of the most important financial markets, with the majority of countries around the world having commercial connections with American companies. Dependency on a single market like the United States has however caused several global dilemmas, most evidently seen during the 2008 financial crisis. What initially started off as a bursting of the U.S. housing bubble lead to a worldwide recession and the necessity to reform national economics. The global financial crisis affected the United States most drastically, especially within the unemployment market as well as national debt, which continued to rise due to the United States having to borrow money in order to stimulate its economy.

  4. 2021 World Population (updated daily)

    • kaggle.com
    Updated Jul 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rishav Sharma (2021). 2021 World Population (updated daily) [Dataset]. http://doi.org/10.34740/kaggle/dsv/2451580
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 22, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Rishav Sharma
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    Context

    2021 World Population dataset which gets updated daily.

    Content

    2021_population.csv: File contains data for only live 2021 population count which gets updated daily. Also contains more information about the country's growth rate, area, etc. timeseries_population_count.csv: File contains data for live population count which gets updated daily but it contains last updated data also. Data in this file is managed day-wise.

    Inspiration

    This type of data can be used for population-related use cases. Like, my own dataset COVID Vaccination in World (updated daily), which requires population data. I believe there are more use cases that I didn't explore yet but might other Kaggler needs this. Time-series related use-case can be implemented on this data but I know it will take time to compile that amount of data. So stay tuned.

  5. a

    2023 Census population change by age group and RC

    • maps-by-statsnz.hub.arcgis.com
    Updated May 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics New Zealand (2024). 2023 Census population change by age group and RC [Dataset]. https://maps-by-statsnz.hub.arcgis.com/maps/b20dc2acba8247f0b2924befe4082283
    Explore at:
    Dataset updated
    May 29, 2024
    Dataset authored and provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The life-cycle age groups are:under 15 years15 to 29 years30 to 64 years65 years and over.Map shows the percentage change in the census usually resident population count for life-cycle age groups between the 2018 and 2023 Censuses.Download lookup file from Stats NZ ArcGIS Online or Stats NZ geographic data service.FootnotesGeographical boundariesStatistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.Subnational census usually resident populationThe census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city. Caution using time seriesTime series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).About the 2023 Census datasetFor information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings. Data qualityThe quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.Quality rating of a variableThe quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable. Age concept quality ratingAge is rated as very high quality. Age – 2023 Census: Information by concept has more information, for example, definitions and data quality.Using data for goodStats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga".ConfidentialityThe 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

  6. Countries with the largest population 2025

    • statista.com
    • ai-chatbox.pro
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Countries with the largest population 2025 [Dataset]. https://www.statista.com/statistics/262879/countries-with-the-largest-population/
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    World
    Description

    In 2022, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth

  7. w

    Population Projections (City Area) - RTP 2023

    • data.wfrc.org
    Updated May 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2024). Population Projections (City Area) - RTP 2023 [Dataset]. https://data.wfrc.org/datasets/b3b4e6cf89ce469cbbb78fa7fabc311c
    Explore at:
    Dataset updated
    May 17, 2024
    Dataset authored and provided by
    Wasatch Front Regional Council
    Description

    Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.

    These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.

    Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.

    As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.

    Wasatch Front Real Estate Market Model (REMM) Projections

    WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:

    Demographic data from the decennial census
    County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
    Current employment locational patterns derived from the Utah Department of Workforce Services
    Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
    Current land use and valuation GIS-based parcel data stewarded by County Assessors
    Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
    Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
    

    ‘Traffic Analysis Zone’ Projections

    The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).

    ‘City Area’ Projections

    The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.

    Summary Variables in the Datasets

    Annual projection counts are available for the following variables (please read Key Exclusions note below):

    Demographics

    Household Population Count (excludes persons living in group quarters) 
    Household Count (excludes group quarters) 
    

    Employment

    Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
    Retail Job Count (retail, food service, hotels, etc)
    Office Job Count (office, health care, government, education, etc)
    Industrial Job Count (manufacturing, wholesale, transport, etc)
    Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count 
    All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
    
    • These variables includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.

    Key Exclusions from TAZ and ‘City Area’ Projections

    As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

    Statewide Projections

    Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.

  8. T

    World - Population, Female (% Of Total)

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 29, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). World - Population, Female (% Of Total) [Dataset]. https://tradingeconomics.com/world/population-female-percent-of-total-wb-data.html
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    May 29, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    World, World
    Description

    Population, female (% of total population) in World was reported at 49.71 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. World - Population, female (% of total) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.

  9. S

    2023 Census population change by regional council

    • datafinder.stats.govt.nz
    csv, dwg, geodatabase +6
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ, 2023 Census population change by regional council [Dataset]. https://datafinder.stats.govt.nz/layer/117597-2023-census-population-change-by-regional-council/
    Explore at:
    dwg, kml, csv, mapinfo mif, pdf, geodatabase, mapinfo tab, shapefile, geopackage / sqliteAvailable download formats
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Area covered
    Description

    Dataset contains census usually resident population counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the population count between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by regional council.

    Map shows the percentage change in the census usually resident population count between the 2018 and 2023 Censuses.

    Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.

    Footnotes

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Subnational census usually resident population

    The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.

    Caution using time series

    Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Quality rating of a variable

    The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.

    Census usually resident population count concept quality rating

    The census usually resident population count is rated as very high quality.

    Census usually resident population count – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

  10. n

    West Africa Coastal Vulnerability Mapping: Population Projections, 2030 and...

    • earthdata.nasa.gov
    • catalog.data.gov
    Updated Jun 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ESDIS (2025). West Africa Coastal Vulnerability Mapping: Population Projections, 2030 and 2050 [Dataset]. http://doi.org/10.7927/H48K7719
    Explore at:
    Dataset updated
    Jun 17, 2025
    Dataset authored and provided by
    ESDIS
    Area covered
    West Africa, Africa
    Description

    The West Africa Coastal Vulnerability Mapping: Population Projections, 2030 and 2050 data set is based on an unreleased working version of the Gridded Population of the World (GPW), Version 4, year 2010 population count raster but at a coarser 5 arc-minute resolution. Bryan Jones of Baruch College produced country-level projections based on the Shared Socioeconomic Pathway 4 (SSP4). SSP4 reflects a divided world where cities that have relatively high standards of living, are attractive to internal and international migrants. In low income countries, rapidly growing rural populations live on shrinking areas of arable land due to both high population pressure and expansion of large-scale mechanized farming by international agricultural firms. This pressure induces large migration flow to the cities, contributing to fast urbanization, although urban areas do not provide many opportUnities for the poor and there is a massive expansion of slums and squatter settlements. This scenario may not be the most likely for the West Africa region, but it has internal coherence and is at least plausible.

  11. P

    Pacific Island Populations (from last Census)

    • pacificdata.org
    data
    Updated Feb 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SPC Geoscience, Energy and Maritime Division (GEM) (2022). Pacific Island Populations (from last Census) [Dataset]. https://pacificdata.org/data/dataset/activity/pacific-island-populations-from-last-census
    Explore at:
    dataAvailable download formats
    Dataset updated
    Feb 15, 2022
    Dataset provided by
    SPC Geoscience, Energy and Maritime Division (GEM)
    Description

    Record captures Pacific Island Population based on the last population census as well as projectiond/estimates. Estimates and projections of demographic indicators are for selected years. This spreadsheet was last updated in September 2013. Data captured are:

    • year of the last population census
    • population count at last census
    • total land area (km2)
    • estimated number of people, number of females & males, number of people in different age groups (0-14, 14 - 24, 25 - 59 & 60+).
    • Age dependency ratio, population density, crude birth rate %, number of births, number of deaths, net migrants, annual growth rate.
    • Urban population at last census, average household size
    • Total fertility rate, teenage fertility rate, infant mortality rate, life expectancy at birth based on different reference years.

    Note: all estimates refer to de facto population, except the Cook Islands where estimates refer to resident population only.

    a) refers to Census night defacto Population Count (excl. temporarily absent usual Tokelau residents)

    p) refers to provisional results.

    Data Source: SPC PRISM http://www.spc.int/prism/regional-data-and-tools/demographic-statistics

  12. c

    Caribbean Population Density Estimate 2016

    • caribbeangeoportal.com
    • data.amerigeoss.org
    Updated Mar 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caribbean GeoPortal (2020). Caribbean Population Density Estimate 2016 [Dataset]. https://www.caribbeangeoportal.com/maps/028703e025e34e819a75cc24dbe782f7
    Explore at:
    Dataset updated
    Mar 19, 2020
    Dataset authored and provided by
    Caribbean GeoPortal
    Area covered
    Description

    This map features the World Population Density Estimate 2016 layer for the Caribbean region. The advantage population density affords over raw counts is the ability to compare levels of persons per square kilometer anywhere in the world. Esri calculated density by converting the the World Population Estimate 2016 layer to polygons, then added an attribute for geodesic area, which allowed density to be derived, and that was converted back to raster. A population density raster is better to use for mapping and visualization than a raster of raw population counts because raster cells are square and do not account for area. For instance, compare a cell with 185 people in northern Quito, Ecuador, on the equator to a cell with 185 people in Edmonton, Canada at 53.5 degrees north latitude. This is difficult because the area of the cell in Edmonton is only 35.5% of the area of a cell in Quito. The cell in Edmonton represents a density of 9,810 persons per square kilometer, while the cell in Quito only represents a density of 3,485 persons per square kilometer. Dataset SummaryEach cell in this layer has an integer value with the estimated number of people per square kilometer likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers: World Population Estimate 2016: this layer contains estimates of the count of people living within the the area represented by the cell. World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: https://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is primarily intended for cartography and visualization, but may also be useful for analysis, particularly for estimating where people living above specified densities. There are two processing templates defined for this layer: the default, "World Population Estimated 2016 Density Classes" uses a classification, described above, to show locations of levels of rural and urban populations, and should be used for cartography and visualization; and "None," which provides access to the unclassified density values, and should be used for analysis. The breaks for the classes are at the following levels of persons per square kilometer:100 - Rural (3.2% [0.7%] of all people live at this density or lower) 400 - Settled (13.3% [4.1%] of all people live at this density or lower)1,908 - Urban (59.4% [81.1%] of all people live at this density or higher)16,978 - Heavy Urban (13.0% [24.2%] of all people live at this density or higher)26,331 - Extreme Urban (7.8% [15.4%] of all people live at this density or higher) Values over 50,000 are likely to be erroneous due to spatial inaccuracies in source boundary dataNote the above class breaks were derived from Esri's 2015 estimate, which have been maintained for the sake of comparison. The 2015 percentages are in gray brackets []. The differences are mostly due to improvements in the model and source data. While improvements in the source data will continue, it is hoped the 2017 estimate will produce percentages that shift less.For analysis, Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the average, highest, or lowest density within those zones.

  13. S

    2023 Census internal migration by TALB

    • datafinder.stats.govt.nz
    csv, dbf (dbase iii) +4
    Updated Mar 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats NZ (2023). 2023 Census internal migration by TALB [Dataset]. https://datafinder.stats.govt.nz/table/122425-2023-census-internal-migration-by-talb/
    Explore at:
    csv, geodatabase, mapinfo tab, mapinfo mif, geopackage / sqlite, dbf (dbase iii)Available download formats
    Dataset updated
    Mar 7, 2023
    Dataset provided by
    Statistics New Zealandhttp://www.stats.govt.nz/
    Authors
    Stats NZ
    License

    https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/

    Description

    Dataset contains counts for territorial authority local board area (TALB) of usual residence by TALB of usual residence address one year ago and five years ago, and by life cycle age group, for the census usually resident population count, 2023 Census.

    This dataset compares usual residence at the 2023 Census with usual residence one and five years earlier to show population mobility and internal migration patterns of people within New Zealand.

    ‘Usual residence address’ is the address of the dwelling where a person considers that they usually live.

    ‘Usual residence one year ago address’ identifies an individual’s usual residence on 7 March 2022, which may be different to their current usual residence on census night 2023 (7 March 2023).

    ‘Usual residence five years ago address’ identifies an individual’s usual residence on 6 March 2018, which may be different to their current usual residence on census night 2023 (7 March 2023).

    Note: This dataset only includes usual residence address information for individuals whose usual residence address one year ago and five years ago is available at TALB.

    Life cycle age groups are categorised as:

    • under 15 years
    • 15–29 years
    • 30–64 years
    • 65 years and over.

    This dataset can be used in conjunction with the following spatial files by joining on the TALB code values:

    Footnotes

    Geographical boundaries

    Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.

    Subnational census usually resident population

    The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city. 

    Population counts

    Stats NZ publishes a number of different population counts, each using a different definition and methodology. Population statistics – user guide has more information about different counts. 

    Rows excluded from the dataset

    Rows show TALB of usual residence by TALB of usual residence one year ago and five years ago, by life cycle age group. Cells with a number less than six have been confidentialised. Responses to categories unable to be mapped, such as response unidentifiable, not stated, and Auckland (not further defined), have also been excluded from this dataset.

    About the 2023 Census dataset

    For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.

    Data quality

    The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.

    Quality rating of a variable

    The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.

    Age quality rating

    Age is rated as very high quality.

    Age – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Census usually resident population quality rating

    The census usually resident population count is rated as very high quality.

    Census usually resident population count – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Usual residence address quality rating

    Usual residence address is rated as high quality.

    Usual residence address – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Usual residence one year ago quality rating

    Usual residence one year ago area is rated as high quality.

    Usual residence one year ago – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Usual residence five years ago quality rating

    Usual residence five years ago area is rated as high quality.

    Usual residence five years ago – 2023 Census: Information by concept has more information, for example, definitions and data quality.

    Using data for good

    Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.

    Confidentiality

    The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.

    Symbol

    -999 Confidential

    Inconsistencies in definitions

    Please note that there may be differences in definitions between census classifications and those used for other data collections.

  14. Africa - Population Estimate

    • data.humdata.org
    geopackage
    Updated Feb 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    3iSolution (2025). Africa - Population Estimate [Dataset]. https://data.humdata.org/dataset/population-of-africa-geopackage
    Explore at:
    geopackage(241664)Available download formats
    Dataset updated
    Feb 24, 2025
    Dataset provided by
    3iSolution
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Africa
    Description

    The Africa Population (Live) counter shows a continuously updated estimate of the current population of Africa delivered by Worldometer's RTS algorithm, which processes data collected from the United Nations Population Division. From https://www.worldometers.info/world-population/africa-population/

  15. w

    Population Projections (TAZ) - RTP 2023

    • data.wfrc.org
    Updated May 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wasatch Front Regional Council (2024). Population Projections (TAZ) - RTP 2023 [Dataset]. https://data.wfrc.org/datasets/population-projections-taz-rtp-2023
    Explore at:
    Dataset updated
    May 16, 2024
    Dataset authored and provided by
    Wasatch Front Regional Council
    Area covered
    Description

    Every four years, the Wasatch Front’s two metropolitan planning organizations (MPOs), Wasatch Front Regional Council (WFRC) and Mountainland Association of Governments (MAG), collaborate to update a set of annual small area -- traffic analysis zone and ‘city area’, see descriptions below) -- population and employment projections for the Salt Lake City-West Valley City (WFRC), Ogden-Layton (WFRC), and Provo-Orem (MAG) urbanized areas.

    These projections are primarily developed for the purpose of informing long-range transportation infrastructure and services planning done as part of the 4 year Regional Transportation Plan update cycle, as well as Utah’s Unified Transportation Plan, 2023-2050. Accordingly, the foundation for these projections is largely data describing existing conditions for a 2019 base year, the first year of the latest RTP process. The projections are included in the official travel models, which are publicly released at the conclusion of the RTP process.

    Projections within the Wasatch Front urban area ( SUBAREAID = 1) were produced with using the Real Estate Market Model as described below. Socioeconomic forecasts produced for Cache MPO (Cache County, SUBAREAID = 2), Dixie MPO (Washington County, SUBAREAID = 3), Summit County (SUBAREAID = 4), and UDOT (other areas of the state, SUBAREAID = 0) all adhere to the University of Utah Gardner Policy Institute's county-level projection controls, but other modeling methods are used to arrive at the TAZ-level forecasts for these areas.

    As these projections may be a valuable input to other analyses, this dataset is made available here as a public service for informational purposes only. It is solely the responsibility of the end user to determine the appropriate use of this dataset for other purposes.

    Wasatch Front Real Estate Market Model (REMM) Projections

    WFRC and MAG have developed a spatial statistical model using the UrbanSim modeling platform to assist in producing these annual projections. This model is called the Real Estate Market Model, or REMM for short. REMM is used for the urban portion of Weber, Davis, Salt Lake, and Utah counties. REMM relies on extensive inputs to simulate future development activity across the greater urbanized region. Key inputs to REMM include:

    Demographic data from the decennial census
    County-level population and employment projections -- used as REMM control totals -- are produced by the University of Utah’s Kem C. Gardner Policy Institute (GPI) funded by the Utah State Legislature
    Current employment locational patterns derived from the Utah Department of Workforce Services
    Land use visioning exercises and feedback, especially in regard to planned urban and local center development, with city and county elected officials and staff
    Current land use and valuation GIS-based parcel data stewarded by County Assessors
    Traffic patterns and transit service from the regional Travel Demand Model that together form the landscape of regional accessibility to workplaces and other destinations
    Calibration of model variables to balance the fit of current conditions and dynamics at the county and regional level
    

    ‘Traffic Analysis Zone’ Projections

    The annual projections are forecasted for each of the Wasatch Front’s 3,546 Traffic Analysis Zone (TAZ) geographic units. TAZ boundaries are set along roads, streams, and other physical features and average about 600 acres (0.94 square miles). TAZ sizes vary, with some TAZs in the densest areas representing only a single city block (25 acres).

    ‘City Area’ Projections

    The TAZ-level output from the model is also available for ‘city areas’ that sum the projections for the TAZ geographies that roughly align with each city’s current boundary. As TAZs do not align perfectly with current city boundaries, the ‘city area’ summaries are not projections specific to a current or future city boundary, but the ‘city area’ summaries may be suitable surrogates or starting points upon which to base city-specific projections.

    Summary Variables in the Datasets

    Annual projection counts are available for the following variables (please read Key Exclusions note below):

    Demographics

    Household Population Count (excludes persons living in group quarters) 
    Household Count (excludes group quarters) 
    

    Employment

    Typical Job Count (includes job types that exhibit typical commuting and other travel/vehicle use patterns)
    Retail Job Count (retail, food service, hotels, etc)
    Office Job Count (office, health care, government, education, etc)
    Industrial Job Count (manufacturing, wholesale, transport, etc)
    Non-Typical Job Count* (includes agriculture, construction, mining, and home-based jobs) This can be calculated by subtracting Typical Job Count from All Employment Count 
    All Employment Count* (all jobs, this sums jobs from typical and non-typical sectors).
    
    • These variables includes REMM’s attempt to estimate construction jobs in areas that experience new and re-development activity. Areas may see short-term fluctuations in Non-Typical and All Employment counts due to the temporary location of construction jobs.

    Key Exclusions from TAZ and ‘City Area’ Projections

    As the primary purpose for the development of these population and employment projections is to model future travel in the region, REMM-based projections do not include population or households that reside in group quarters (prisons, senior centers, dormitories, etc), as residents of these facilities typically have a very low impact on regional travel. USTM-based projections also excludes group quarter populations. Group quarters population estimates are available at the county-level from GPI and at various sub-county geographies from the Census Bureau.

    Statewide Projections

    Population and employment projections for the Wasatch Front area can be combined with those developed by Dixie MPO (St. George area), Cache MPO (Logan area), and the Utah Department of Transportation (for the remainder of the state) into one database for use in the Utah Statewide Travel Model (USTM). While projections for the areas outside of the Wasatch Front use different forecasting methods, they contain the same summary-level population and employment projections making similar TAZ and ‘City Area’ data available statewide. WFRC plans, in the near future, to add additional areas to these projections datasets by including the projections from the USTM model.

  16. Worldwide digital population 2025

    • statista.com
    • ai-chatbox.pro
    Updated Apr 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Worldwide digital population 2025 [Dataset]. https://www.statista.com/statistics/617136/digital-population-worldwide/
    Explore at:
    Dataset updated
    Apr 1, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 2025
    Area covered
    World
    Description

    As of February 2025, 5.56 billion individuals worldwide were internet users, which amounted to 67.9 percent of the global population. Of this total, 5.24 billion, or 63.9 percent of the world's population, were social media users. Global internet usage Connecting billions of people worldwide, the internet is a core pillar of the modern information society. Northern Europe ranked first among worldwide regions by the share of the population using the internet in 20254. In The Netherlands, Norway and Saudi Arabia, 99 percent of the population used the internet as of February 2025. North Korea was at the opposite end of the spectrum, with virtually no internet usage penetration among the general population, ranking last worldwide. Eastern Asia was home to the largest number of online users worldwide – over 1.34 billion at the latest count. Southern Asia ranked second, with around 1.2 billion internet users. China, India, and the United States rank ahead of other countries worldwide by the number of internet users. Worldwide internet user demographics As of 2024, the share of female internet users worldwide was 65 percent, five percent less than that of men. Gender disparity in internet usage was bigger in African countries, with around a ten percent difference. Worldwide regions, like the Commonwealth of Independent States and Europe, showed a smaller usage gap between these two genders. As of 2024, global internet usage was higher among individuals between 15 and 24 years old across all regions, with young people in Europe representing the most significant usage penetration, 98 percent. In comparison, the worldwide average for the age group 15–24 years was 79 percent. The income level of the countries was also an essential factor for internet access, as 93 percent of the population of the countries with high income reportedly used the internet, as opposed to only 27 percent of the low-income markets.

  17. Z

    Life table data for "Bounce backs amid continued losses: Life expectancy...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 20, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dowd, Jennifer B. (2022). Life table data for "Bounce backs amid continued losses: Life expectancy changes since COVID-19" [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6241024
    Explore at:
    Dataset updated
    Jul 20, 2022
    Dataset provided by
    Kniffka, Maxi S.
    Jaadla, Hannaliis
    Kashyap, Ridhi
    Zhang, Luyin
    Kashnitsky, Ilya
    Dowd, Jennifer B.
    Schöley, Jonas
    Aburto, José Manuel
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Life table data for "Bounce backs amid continued losses: Life expectancy changes since COVID-19"

    cc-by Jonas Schöley, José Manuel Aburto, Ilya Kashnitsky, Maxi S. Kniffka, Luyin Zhang, Hannaliis Jaadla, Jennifer B. Dowd, and Ridhi Kashyap. "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    These are CSV files of life tables over the years 2015 through 2021 across 29 countries analyzed in the paper "Bounce backs amid continued losses: Life expectancy changes since COVID-19".

    40-lifetables.csv

    Life table statistics 2015 through 2021 by sex, region and quarter with uncertainty quantiles based on Poisson replication of death counts. Actual life tables and expected life tables (under the assumption of pre-COVID mortality trend continuation) are provided.

    30-lt_input.csv

    Life table input data.

    id: unique row identifier

    region_iso: iso3166-2 region codes

    sex: Male, Female, Total

    year: iso year

    age_start: start of age group

    age_width: width of age group, Inf for age_start 100, otherwise 1

    nweeks_year: number of weeks in that year, 52 or 53

    death_total: number of deaths by any cause

    population_py: person-years of exposure (adjusted for leap-weeks and missing weeks in input data on all cause deaths)

    death_total_nweeksmiss: number of weeks in the raw input data with at least one missing death count for this region-sex-year stratum. missings are counted when the week is implicitly missing from the input data or if any NAs are encounted in this week or if age groups are implicitly missing for this week in the input data (e.g. 40-45, 50-55)

    death_total_minnageraw: the minimum number of age-groups in the raw input data within this region-sex-year stratum

    death_total_maxnageraw: the maximum number of age-groups in the raw input data within this region-sex-year stratum

    death_total_minopenageraw: the minimum age at the start of the open age group in the raw input data within this region-sex-year stratum

    death_total_maxopenageraw: the maximum age at the start of the open age group in the raw input data within this region-sex-year stratum

    death_total_source: source of the all-cause death data

    death_total_prop_q1: observed proportion of deaths in first quarter of year

    death_total_prop_q2: observed proportion of deaths in second quarter of year

    death_total_prop_q3: observed proportion of deaths in third quarter of year

    death_total_prop_q4: observed proportion of deaths in fourth quarter of year

    death_expected_prop_q1: expected proportion of deaths in first quarter of year

    death_expected_prop_q2: expected proportion of deaths in second quarter of year

    death_expected_prop_q3: expected proportion of deaths in third quarter of year

    death_expected_prop_q4: expected proportion of deaths in fourth quarter of year

    population_midyear: midyear population (July 1st)

    population_source: source of the population count/exposure data

    death_covid: number of deaths due to covid

    death_covid_date: number of deaths due to covid as of

    death_covid_nageraw: the number of age groups in the covid input data

    ex_wpp_estimate: life expectancy estimates from the World Population prospects for a five year period, merged at the midpoint year

    ex_hmd_estimate: life expectancy estimates from the Human Mortality Database

    nmx_hmd_estimate: death rate estimates from the Human Mortality Database

    nmx_cntfc: Lee-Carter death rate projections based on trend in the years 2015 through 2019

    Deaths

    source:

    STMF input data series (https://www.mortality.org/Public/STMF/Outputs/stmf.csv)

    ONS for GB-EAW pre 2020

    CDC for US pre 2020

    STMF:

    harmonized to single ages via pclm

    pclm iterates over country, sex, year, and within-year age grouping pattern and converts irregular age groupings, which may vary by country, year and week into a regular age grouping of 0:110

    smoothing parameters estimated via BIC grid search seperately for every pclm iteration

    last age group set to [110,111)

    ages 100:110+ are then summed into 100+ to be consistent with mid-year population information

    deaths in unknown weeks are considered; deaths in unknown ages are not considered

    ONS:

    data already in single ages

    ages 100:105+ are summed into 100+ to be consistent with mid-year population information

    PCLM smoothing applied to for consistency reasons

    CDC:

    The CDC data comes in single ages 0:100 for the US. For 2020 we only have the STMF data in a much coarser age grouping, i.e. (0, 1, 5, 15, 25, 35, 45, 55, 65, 75, 85+). In order to calculate life-tables in a manner consistent with 2020, we summarise the pre 2020 US death counts into the 2020 age grouping and then apply the pclm ungrouping into single year ages, mirroring the approach to the 2020 data

    Population

    source:

    for years 2000 to 2019: World Population Prospects 2019 single year-age population estimates 1950-2019

    for year 2020: World Population Prospects 2019 single year-age population projections 2020-2100

    mid-year population

    mid-year population translated into exposures:

    if a region reports annual deaths using the Gregorian calendar definition of a year (365 or 366 days long) set exposures equal to mid year population estimates

    if a region reports annual deaths using the iso-week-year definition of a year (364 or 371 days long), and if there is a leap-week in that year, set exposures equal to 371/364*mid_year_population to account for the longer reporting period. in years without leap-weeks set exposures equal to mid year population estimates. further multiply by fraction of observed weeks on all weeks in a year.

    COVID deaths

    source: COVerAGE-DB (https://osf.io/mpwjq/)

    the data base reports cumulative numbers of COVID deaths over days of a year, we extract the most up to date yearly total

    External life expectancy estimates

    source:

    World Population Prospects (https://population.un.org/wpp/Download/Files/1_Indicators%20(Standard)/CSV_FILES/WPP2019_Life_Table_Medium.csv), estimates for the five year period 2015-2019

    Human Mortality Database (https://mortality.org/), single year and age tables

  18. Data from: Complex transient dynamics of stage-structured populations in...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    txt, zip
    Updated Jun 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexei Ryabov; Bernd Blasius; Guntram Weithoff; Ursula Gaedke; Thomas Michael Massie; Alexei Ryabov; Bernd Blasius; Guntram Weithoff; Ursula Gaedke; Thomas Michael Massie (2022). Data from: Complex transient dynamics of stage-structured populations in response to environmental changes [Dataset]. http://doi.org/10.5061/dryad.bb5t3
    Explore at:
    zip, txtAvailable download formats
    Dataset updated
    Jun 1, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alexei Ryabov; Bernd Blasius; Guntram Weithoff; Ursula Gaedke; Thomas Michael Massie; Alexei Ryabov; Bernd Blasius; Guntram Weithoff; Ursula Gaedke; Thomas Michael Massie
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Stage structures of populations can have a profound influence on their dynamics. However, not much is known about the transient dynamics that follow a disturbance in such systems. Here we combined chemostat experiments with dynamical modeling to study the response of the phytoplankton species Chlorella vulgaris to press perturbations. From an initially stable steady state, we altered either the concentration or dilution rate of a growth-limiting resource. This disturbance induced a complex transient response—characterized by the possible onset of oscillations—before population numbers relaxed to a new steady state. Thus, cell numbers could initially change in the opposite direction of the long-term change. We present quantitative indexes to characterize the transients and to show that the dynamic response is dependent on the degree of synchronization among life stages, which itself depends on the state of the population before perturbation. That is, we show how identical future steady states can be approached via different transients depending on the initial population structure. Our experimental results are supported by a size-structured model that accounts for interplay between cell-cycle and population-level processes and that includes resource-dependent variability in cell size. Our results should be relevant to other populations with a stage structure including organisms of higher order.

  19. c

    Caribbean Population Estimate 2016

    • caribbeangeoportal.com
    • data.amerigeoss.org
    Updated Mar 19, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caribbean GeoPortal (2020). Caribbean Population Estimate 2016 [Dataset]. https://www.caribbeangeoportal.com/maps/Caribbean::caribbean-population-estimate-2016/about
    Explore at:
    Dataset updated
    Mar 19, 2020
    Dataset authored and provided by
    Caribbean GeoPortal
    Area covered
    Description

    This map features a global estimate of human population for 2016 with a focus on the Caribbean region . Esri created this estimate by modeling a footprint of where people live as a dasymetric settlement likelihood surface, and then assigned 2016 population estimates stored on polygons of the finest level of geography available onto the settlement surface. Where people live means where their homes are, as in where people sleep most of the time, and this is opposed to where they work. Another way to think of this estimate is a night-time estimate, as opposed to a day-time estimate.Knowledge of population distribution helps us understand how humans affect the natural world and how natural events such as storms and earthquakes, and other phenomena affect humans. This layer represents the footprint of where people live, and how many people live there.Dataset SummaryEach cell in this layer has an integer value with the estimated number of people likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Population Density Estimate 2016: this layer is represented as population density in units of persons per square kilometer.World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: https://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is unsuitable for mapping or cartographic use, and thus it does not include a convenient legend. Instead, this layer is useful for analysis, particularly for estimating counts of people living within watersheds, coastal areas, and other areas that do not have standard boundaries. Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the count of population within those zones.

  20. c

    Wildfire Risk to Communities Housing Unit Density (Image Service)

    • resilience.climate.gov
    • agdatacommons.nal.usda.gov
    • +7more
    Updated Apr 14, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Forest Service (2021). Wildfire Risk to Communities Housing Unit Density (Image Service) [Dataset]. https://resilience.climate.gov/datasets/6f49e46d5a2743c8bef156f1d7157121
    Explore at:
    Dataset updated
    Apr 14, 2021
    Dataset authored and provided by
    U.S. Forest Service
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the location where the adverse effects take place.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2021 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.The specific raster datasets included in this publication include:Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.Additional methodology documentation is provided with the data publication download. Metadata and Downloads.Note: Pixel values in this image service have been altered from the original raster dataset due to data requirements in web services. The service is intended primarily for data visualization. Relative values and spatial patterns have been largely preserved in the service, but users are encouraged to download the source data for quantitative analysis.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Forest Service (2025). Wildfire Risk to Communities Housing Unit Count [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/wildfire-risk-to-communities-housing-unit-count-image-service
Organization logo

Wildfire Risk to Communities Housing Unit Count

Explore at:
Dataset updated
Apr 21, 2025
Dataset provided by
U.S. Department of Agriculture Forest Servicehttp://fs.fed.us/
Description

The data included in this publication depict components of wildfire risk specifically for populated areas in the United States. These datasets represent where people live in the United States and the in situ risk from wildfire, i.e., the risk at the _location where the adverse effects take place.National wildfire hazard datasets of annual burn probability and fire intensity, generated by the USDA Forest Service, Rocky Mountain Research Station and Pyrologix LLC, form the foundation of the Wildfire Risk to Communities data. Vegetation and wildland fuels data from LANDFIRE 2020 (version 2.2.0) were used as input to two different but related geospatial fire simulation systems. Annual burn probability was produced with the USFS geospatial fire simulator (FSim) at a relatively coarse cell size of 270 meters (m). To bring the burn probability raster data down to a finer resolution more useful for assessing hazard and risk to communities, we upsampled them to the native 30 m resolution of the LANDFIRE fuel and vegetation data. In this upsampling process, we also spread values of modeled burn probability into developed areas represented in LANDFIRE fuels data as non-burnable. Burn probability rasters represent landscape conditions as of the end of 2020. Fire intensity characteristics were modeled at 30 m resolution using a process that performs a comprehensive set of FlamMap runs spanning the full range of weather-related characteristics that occur during a fire season and then integrates those runs into a variety of results based on the likelihood of those weather types occurring. Before the fire intensity modeling, the LANDFIRE 2020 data were updated to reflect fuels disturbances occurring in 2021 and 2022. As such, the fire intensity datasets represent landscape conditions as of the end of 2022. The data products in this publication that represent where people live, reflect 2021 estimates of housing unit and population counts from the U.S. Census Bureau, combined with building footprint data from Onegeo and USA Structures, both reflecting 2022 conditions.The specific raster datasets included in this publication include:Building Count: Building Count is a 30-m raster representing the count of buildings in the building footprint dataset located within each 30-m pixel.Building Density: Building Density is a 30-m raster representing the density of buildings in the building footprint dataset (buildings per square kilometer [km²]).Building Coverage: Building Coverage is a 30-m raster depicting the percentage of habitable land area covered by building footprints.Population Count (PopCount): PopCount is a 30-m raster with pixel values representing residential population count (persons) in each pixel.Population Density (PopDen): PopDen is a 30-m raster of residential population density (people/km²).Housing Unit Count (HUCount): HUCount is a 30-m raster representing the number of housing units in each pixel.Housing Unit Density (HUDen): HUDen is a 30-m raster of housing-unit density (housing units/km²).Housing Unit Exposure (HUExposure): HUExposure is a 30-m raster that represents the expected number of housing units within a pixel potentially exposed to wildfire in a year. This is a long-term annual average and not intended to represent the actual number of housing units exposed in any specific year.Housing Unit Impact (HUImpact): HUImpact is a 30-m raster that represents the relative potential impact of fire to housing units at any pixel, if a fire were to occur. It is an index that incorporates the general consequences of fire on a home as a function of fire intensity and uses flame length probabilities from wildfire modeling to capture likely intensity of fire.Housing Unit Risk (HURisk): HURisk is a 30-m raster that integrates all four primary elements of wildfire risk - likelihood, intensity, susceptibility, and exposure - on pixels where housing unit density is greater than zero.

Search
Clear search
Close search
Google apps
Main menu