Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains Quality of Life indices for various countries around the globe, extracted from the Numbeo website. The data provides valuable metrics for comparing countries based on several aspects of living standards, which can assist in decisions such as choosing a place to live or analyzing global trends in quality of life.
OBS: The code to generate this dataset is presented on: https://www.kaggle.com/code/marcelobatalhah/web-scrapping-quality-of-life-index
Rank:
The global rank of the country based on its Quality of Life Index according to Year (1 = highest quality of life).
Country:
The name of the country.
Quality of Life Index:
A composite index that evaluates the overall quality of life in a country by combining other indices, such as Safety, Purchasing Power, and Health Care.
Purchasing Power Index:
Measures the relative purchasing power of the average consumer in a country compared to New York City (baseline = 100).
Safety Index:
Indicates the safety level of a country. A higher score suggests a safer environment.
Health Care Index:
Evaluates the quality and accessibility of healthcare in the country.
Cost of Living Index:
Measures the relative cost of living in a country compared to New York City (baseline = 100).
Property Price to Income Ratio:
Compares the affordability of real estate by dividing the average property price by the average income.
Traffic Commute Time Index:
Reflects the average time spent commuting due to traffic.
Pollution Index:
Rates the level of pollution in the country (air, water, etc.).
Climate Index:
Rates the favorability of the climate in the country (higher = more favorable).
Year:
Year when the metrics were extracted.
requests for retrieving webpage content.BeautifulSoup for parsing the HTML and extracting relevant information.pandas for organizing and storing the data in a structured format.Relocation Decision Making:
Use the dataset to compare countries and identify destinations with high quality of life, safety, and healthcare.
Global Analysis:
Perform exploratory data analysis (EDA) to identify trends and correlations across quality of life metrics.
Visualization:
Plot global maps, bar charts, or other visualizations to better understand the data.
Predictive Modeling:
Use this dataset as a base for machine learning tasks, like predicting Quality of Life Index based on other metrics.
Facebook
TwitterLuxembourg stands out as the European leader in quality of life for 2025, achieving a score of 220 on the Quality of Life Index. The Netherlands follows closely behind with 211 points, while Albania and Ukraine rank at the bottom with scores of 104 and 115 respectively. This index provides a thorough assessment of living conditions across Europe, reflecting various factors that shape the overall well-being of populations and extending beyond purely economic metrics. Understanding the quality of life index The quality of life index is a multifaceted measure that incorporates factors such as purchasing power, pollution levels, housing affordability, cost of living, safety, healthcare quality, traffic conditions, and climate, to measure the overall quality of life of a Country. Higher overall index scores indicate better living conditions. However, in subindexes such as pollution, cost of living, and traffic commute time, lower values correspond to improved quality of life. Challenges affecting life satisfaction Despite the fact that European countries register high levels of life quality by for example leading the ranking of happiest countries in the world, life satisfaction across the European Union has been on a downward trend since 2018. The EU's overall life satisfaction score dropped from 7.3 out of 10 in 2018 to 7.1 in 2022. This decline can be attributed to various factors, including the COVID-19 pandemic and economic challenges such as high inflation. Rising housing costs, in particular, have emerged as a critical concern, significantly affecting quality of life. This issue has played a central role in shaping voter priorities for the European Parliamentary Elections in 2024 and becoming one of the most pressing challenges for Europeans, profoundly influencing both daily experiences and long-term well-being.
Facebook
TwitterCost of Living Index by Country, 2024 Mid Year data Data scraped from Numbeo: www.numbeo.com/cost-of-living/rankings_by_country.jsp All credits to Numbeo: www.numbeo.com/cost-of-living/
An index of 100 reflects the same living cost as in New York City, United States. As of 2024 Mid Year data, in NYC, A family of four estimated monthly costs are $6,074.40 without rent. A single person's estimated monthly costs are $1,640.90 without rent.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 165 countries was 79.81 index points. The highest value was in Bermuda: 212.7 index points and the lowest value was in Syria: 33.25 index points. The indicator is available from 2017 to 2021. Below is a chart for all countries where data are available.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 41 countries was 107.05 index points. The highest value was in Switzerland: 211.98 index points and the lowest value was in Belarus: 40.99 index points. The indicator is available from 2017 to 2021. Below is a chart for all countries where data are available.
Facebook
TwitterCost of Living - Country Rankings Dataset
The "Cost of Living - Country Rankings Dataset" provides comprehensive information on the cost of living in various countries around the world. Understanding the cost of living is crucial for individuals, businesses, and policymakers alike, as it impacts decisions related to travel, relocation, investment, and economic analysis. This dataset is intended to serve as a valuable resource for researchers, data analysts, and anyone interested in exploring and comparing the cost of living across different nations.
This dataset comprises four primary columns:
1. Countries: This column contains the names of various countries included in the dataset. Each country is identified by its official name.
2. Cost of Living: The "Cost of Living" column represents the cost of living index or score for each country. This index is typically calculated by considering various factors, such as housing, food, transportation, healthcare, and other essential expenses. A higher index value indicates a higher cost of living in that particular country, while a lower value suggests a more affordable cost of living.
3. 2017 Global Rank: This column provides the global ranking of each country's cost of living in the year 2017. The ranking is based on the cost of living index mentioned earlier. A lower rank indicates a lower cost of living relative to other countries, while a higher rank suggests a higher cost of living position.
4. Available Data: The "Available Data" column indicates whether or not data for a specific country and year is available.
This dataset is designed to support various data analysis and visualization tasks. Users can explore trends in the cost of living, identify countries with high or low cost of living, and analyze how rankings have changed over time. Researchers can use this dataset to conduct in-depth studies on the factors influencing the cost of living in different regions and the economic implications of such variations.
Please note that the dataset includes information for the year 2017, and users are encouraged to consider this when interpreting the data, as economic conditions and the cost of living may have changed since then. Additionally, this dataset aims to provide a snapshot of cost of living rankings for countries in 2017 and may not cover every country in the world.
Link: https://www.theglobaleconomy.com/rankings/cost_of_living_wb/
Disclaimer: The accuracy and completeness of the data provided in this dataset are subject to the source from which it was obtained. Users are advised to cross-reference this data with authoritative sources and exercise discretion when making decisions based on it. The dataset creator and Kaggle assume no responsibility for any actions taken based on the information provided herein.
Facebook
TwitterThis dataset provides a detailed view of quality-of-life metrics for various countries, sourced from Numbeo. It includes indicators such as purchasing power, safety, health care, climate, cost of living, property prices, traffic, pollution, and overall quality of life. The data combines both numerical scores and descriptive categories to give a comprehensive understanding of these metrics.
The dataset includes the following columns:
The data from Numbeo, a global database providing cost of living, housing indicators, health care, traffic, crime, and pollution statistics for cities and countries.
This dataset can be used for: - Comparative analysis of quality-of-life indicators across countries. - Data visualization and storytelling for social, economic, or environmental trends. - Statistical modeling or machine learning projects on global living conditions.
The data was collected from Numbeo, which aggregates user-contributed data from individuals worldwide. Proper citation and credit to Numbeo are appreciated when using this dataset.
This data provided under Free Data Usage License by number. """
Facebook
TwitterA table comparing the cost of living in various European Union countries, including expenses for rent, utilities, food, and transportation in major cities
Facebook
TwitterTimor-Leste experienced a fundamental social and economic upheaval after its people voted for independence from Indonesia in a referendum in August 1999. Population was displaced, and public and private infrastructure was destroyed or rendered inoperable. Soon after the violence ceased, the country began rebuilding itself with the support from UN agencies, the international donor community and NGOs. The government laid out a National Development Plan (NDP) with two central goals: to promote rapid, equitable and sustainable economic growth and to reduce poverty.
Formulating a national plan and poverty reduction strategy required data on poverty and living standards, and given the profound changes experienced, new data collection had to be undertaken to accurately assess the living conditions in the country. The Planning Commission of the Timor-Leste Transitional Authority undertook a Poverty Assessment Project along with the World Bank, the Asian Development Bank, the United Nations Development Programme and the Japanese International Cooperation Agency (JICA).
This project comprised three data collection activities on different aspects of living standards, which taken together, provide a comprehensive picture of well-being in Timor-Leste. The first component was the Suco Survey, which is a census of all 498 sucos (villages) in the country. It provides an inventory of existing social and physical infrastructure and of the economic characteristics of each suco, in addition to aldeia (hamlet) level population figures. It was carried out between February and April 2001.
A second element was the Timor-Leste Living Standards Measurement Survey (TLSS). This is a household survey with a nationally representative sample of 1,800 families from 100 sucos. It was designed to diagnose the extent, nature and causes of poverty, and to analyze policy options facing the country. It assembles comprehensive information on household demographics, housing and assets, household expenditures and some components of income, agriculture, labor market data, basic health and education, subjective perceptions of poverty and social capital.
Data collection was undertaken between end August and November 2001.
The final component was the Participatory Potential Assessment (PPA), which is a qualitative community survey in 48 aldeias in the 13 districts of the country to take stock of their assets, skills and strengths, identify the main challenges and priorities, and formulate strategies for tackling these within their communities. It was completed between November 2001 and January 2002.
National coverage. Domains: Urban/rural; Agro-ecological zones (Highlands, Lowlands, Western Region, Eastern Region, Central Region)
Sample survey data [ssd]
SAMPLE SIZE AND ANALYTIC DOMAINS
A survey relies on identifying a subgroup of a population that is representative both for the underlying population and for specific analytical domains of interest. The main objective of the TLSS is to derive a poverty profile for the country and salient population groups. The fundamental analytic domains identified are the Major Urban Centers (Dili and Baucau), the Other Urban Centers and the Rural Areas. The survey represents certain important sub-divisions of the Rural Areas, namely two major agro-ecologic zones (Lowlands and Highlands) and three broad geographic regions (West, Center and East). In addition to these domains, we can separate landlocked sucos (Inland) from those with sea access (Coast), and generate categories merging rural and urban strata along the geographic, altitude, and sea access dimensions. However, the TLSS does not provide detailed indicators for narrow geographic areas, such as postos or even districts. [Note: Timor-Leste is divided into 13 major units called districts. These are further subdivided into 67 postos (subdistricts), 498 sucos (villages) and 2,336 aldeias (sub-villages). The administrative structure is uniform throughout the country, including rural and urban areas.]
The survey has a sample size of 1,800 households, or about one percent of the total number of households in Timor-Leste. The experience of Living Standards Measurement Surveys in many countries - most of them substantially larger than Timor-Leste - has shown that samples of that size are sufficient for the requirements of a poverty assessment.
The survey domains were defined as follows. The Urban Area is divided into the Major Urban Centers (the 31 sucos in Dili and the 6 sucos in Baucau) and the Other Urban Centers (the remaining 34 urban sucos outside Dili and Baucau). The rest of the country (427 sucos in total) comprises the Rural Area. The grouping of sucos into urban and rural areas is based on the Indonesian classification. In addition, we separated rural sucos both by agro-ecological zones and geographic areas. With the help of the Geographic Information System developed at the Department of Agriculture, sucos were subsequently qualified as belonging to the Highlands or the Lowlands depending on the share of their surface above and below the 500 m level curve. The three westernmost districts (Oecussi, Bobonaro and Cova Lima) constitute the Western Region, the three easternmost districts (Baucau, Lautem and Viqueque) the Eastern Region, and the remaining seven districts (Aileu, Ainaro, Dili, Ermera, Liquica, Manufahi and Manatuto) belong to the Central Region.
SAMPLING STRATA AND SAMPLE ALLOCATION
Our next step was to ensure that each analytical domain contained a sufficient number of households. Assuming a uniform sampling fraction of approximately 1/100, a non-stratified 1,800-household sample would contain around 240 Major Urban households and 170 Other Urban households -too few to sustain representative and significant analyses. We therefore stratified the sample to separate the two urban areas from the rural areas. The rural strata were large enough so that its implicit stratification along agro-ecological and geographical dimensions was sufficient to ensure that these dimensions were represented proportionally to their share of the population. The final sample design by strata was as follows: 450 households in the Major Urban Centers (378 in Dili and 72 in Baucau), 252 households in the Other Urban Centers and 1,098 households in the Rural Areas.
SAMPLING STRATEGY
The sampling of households in each stratum, with the exception of Urban Dili, followed a 3-stage procedure. In the first stage, a certain number of sucos were selected with probability proportional to size (PPS). Hence 4 sucos were selected in Urban Baucau, 14 in Other Urban Centers and 61 in the Rural Areas. In the second stage, 3 aldeias in each suco were selected, again with probability proportional to size (PPS). In the third stage, 6 households were selected in each aldeia with equal probability (EP). This implies that the sample is approximately selfweighted within the stratum: all households in the stratum had the same chance of being visited by the survey.
A simpler and more efficient 2-stage process was used for Urban Dili. In the first stage, 63 aldeias were selected with PPS and in the second stage 6 households with equal probability in each aldeia (for a total sample of 378 households). This procedure reduces sampling errors since the sample will be spread more than with the standard 3-stage process, but it can only be applied to Urban Dili as only there it was possible to sort the selected aldeias into groups of 3 aldeias located in close proximity of each other.
HOUSEHOLD LISTING
The final sampling stage requires choosing a certain number of households at random with equal probability in each of the aldeias selected by the previous sampling stages. This requires establishing the complete inventory of all households in these aldeias - a field task known as the household listing operation. The household listing operation also acquires importance as a benchmark for assessing the quality of the population data collected by the Suco Survey, which was conducted in February-March 2001. At that time, the number of households currently living in each aldeia was asked from the suco and aldeia chiefs, but there are reasons to suspect that these figures are biased. Specifically, certain suco and aldeia chiefs may have answered about households belonging, rather than currently living, in the aldeias, whereas others may have faced perverse incentives to report figures different from the actual ones. These biases are believed to be more serious in Dili than in the rest of the country.
Two operational approaches were considered for the household listing. One is the classical doorto-door (DTD) method that is generally used in most countries for this kind of operations. The second approach - which is specific of Timor-Leste - depends on the lists of families that are kept by most suco and aldeia chiefs in their offices. The prior-list-dependent (PLD) method is much faster, since it can be completed by a single enumerator in each aldeia, working most of the time in the premises of the suco or aldeia chief; however, it can be prone to biases depending on the accuracy and timeliness of the family lists.
After extensive empirical testing of the weaknesses and strengths of the two alternatives, we decided to use the DTD method in Dili and an improved version of the PLD method elsewhere. The improvements introduced to the PLD consisted in clarifying the concept of a household "currently living in the aldeia", both by intensive training and supervision of the enumerators and by making its meaning explicit in the form's wording (it means that the household members are regularly eating and sleeping in the aldeia at the time of the operation). In addition,
Facebook
TwitterHungary, Czechia, Poland, and Portugal were the countries in Europe where house prices increased the most between 2015 and 2024. The EMF house price index for all four countries measured more than 200 index points, indicating that home prices more than doubled since 2015 — the base year. Property prices are tightly connected with the supply of new homes. France, Poland, and Denmark are some of the countries with the most dwellings completed per 1,000 citizens in Europe.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2021 based on 40 countries was 69.86 index points. The highest value was in Israel: 188.01 index points and the lowest value was in Syria: 33.25 index points. The indicator is available from 2017 to 2021. Below is a chart for all countries where data are available.
Facebook
TwitterAs of 2022, Israel had the highest price level index among listed countries, amounting to 138, with 100 being the average of OECD countries. Switzerland and Iceland followed on the places behind. On the other hand, Turkey and India had the lowest price levels compared to the OECD average. This price index shows differences in price levels in different countries. Another very popular index indicating the value of money is the Big Mac index, showing how much a Big Mac costs in different countries. This list was also topped by Switzerland in 2023.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset was created by John Trixie Ocampo
Released under Apache 2.0
Facebook
TwitterThe Cost of living rating evaluates how much ordinary living expenses cost in different countries, including food, housing, necessary goods, services, medical insurance and other aspects.
Facebook
TwitterAccording to the survey, as of February 2023, four out of the six countries in the Gulf Cooperation Council ranked amongst the top ** in the world for expatriate quality of life. Qatar and the United Arab Emirates topped the list for quality of life, whereas Saudi Arabia and Kuwait came last in the region. Quality of life; an amalgamation of many metrics Since quality of life is dependent on many indicators, it can give us a good insight into many aspects of state welfare policies and services. Saudi Arabia, where the number of foreign workers in the private sector topped *** million, also ranked as having one of the region's lowest quality of life for expatriates. Qatar, which had the second-highest quality of life for expatriates living in the GCC, was ranked as one of the most challenging countries in the region for ease of settling in. The UAE and Qatar, both of which ranked the highest in the survey, also have the highest average salaries and living standards in the region. Foreign workers are a key pillar of the GCC economy Countries in the GCC all have sizable expatriate populations for which their economies are heavily reliant. Roughly ********** of the workforce in the GCC is foreign. Although the share of foreign workers in the GCC has slightly decreased in recent years, they still considerably outweigh the local workforce. Most of these workers comprise the unskilled portion of the occupational category in the GCC. However, with diversifying investments and programs such as Vision 2030, countries have seen a rise in the number of skilled foreign workers.
Facebook
TwitterIn 1992, Bosnia-Herzegovina, one of the six republics in former Yugoslavia, became an independent nation. A civil war started soon thereafter, lasting until 1995 and causing widespread destruction and losses of lives. Following the Dayton accord, BosniaHerzegovina (BiH) emerged as an independent state comprised of two entities, namely, the Federation of Bosnia-Herzegovina (FBiH) and the Republika Srpska (RS), and the district of Brcko. In addition to the destruction caused to the physical infrastructure, there was considerable social disruption and decline in living standards for a large section of the population. Along side these events, a period of economic transition to a market economy was occurring. The distributive impacts of this transition, both positive and negative, are unknown. In short, while it is clear that welfare levels have changed, there is very little information on poverty and social indicators on which to base policies and programs.
In the post-war process of rebuilding the economic and social base of the country, the government has faced the problems created by having little relevant data at the household level. The three statistical organizations in the country (State Agency for Statistics for BiH –BHAS, the RS Institute of Statistics-RSIS, and the FBiH Institute of Statistics-FIS) have been active in working to improve the data available to policy makers: both at the macro and the household level. One facet of their activities is to design and implement a series of household series. The first of these surveys is the Living Standards Measurement Study survey (LSMS). Later surveys will include the Household Budget Survey (an Income and Expenditure Survey) and a Labor Force Survey. A subset of the LSMS households will be re-interviewed in the two years following the LSMS to create a panel data set.
The three statistical organizations began work on the design of the Living Standards Measurement Study Survey (LSMS) in 1999. The purpose of the survey was to collect data needed for assessing the living standards of the population and for providing the key indicators needed for social and economic policy formulation. The survey was to provide data at the country and the entity level and to allow valid comparisons between entities to be made.
The LSMS survey was carried out in the Fall of 2001 by the three statistical organizations with financial and technical support from the Department for International Development of the British Government (DfID), United Nations Development Program (UNDP), the Japanese Government, and the World Bank (WB). The creation of a Master Sample for the survey was supported by the Swedish Government through SIDA, the European Commission, the Department for International Development of the British Government and the World Bank.
The overall management of the project was carried out by the Steering Board, comprised of the Directors of the RS and FBiH Statistical Institutes, the Management Board of the State Agency for Statistics and representatives from DfID, UNDP and the WB. The day-to-day project activities were carried out by the Survey Mangement Team, made up of two professionals from each of the three statistical organizations.
The Living Standard Measurement Survey LSMS, in addition to collecting the information necessary to obtain a comprehensive as possible measure of the basic dimensions of household living standards, has three basic objectives, as follows:
To provide the public sector, government, the business community, scientific institutions, international donor organizations and social organizations with information on different indicators of the population’s living conditions, as well as on available resources for satisfying basic needs.
To provide information for the evaluation of the results of different forms of government policy and programs developed with the aim to improve the population’s living standard. The survey will enable the analysis of the relations between and among different aspects of living standards (housing, consumption, education, health, labor) at a given time, as well as within a household.
To provide key contributions for development of government’s Poverty Reduction Strategy Paper, based on analyzed data.
National coverage. Domains: Urban/rural/mixed; Federation; Republic
Sample survey data [ssd]
A total sample of 5,400 households was determined to be adequate for the needs of the survey: with 2,400 in the Republika Srpska and 3,000 in the Federation of BiH. The difficulty was in selecting a probability sample that would be representative of the country's population. The sample design for any survey depends upon the availability of information on the universe of households and individuals in the country. Usually this comes from a census or administrative records. In the case of BiH the most recent census was done in 1991. The data from this census were rendered obsolete due to both the simple passage of time but, more importantly, due to the massive population displacements that occurred during the war.
At the initial stages of this project it was decided that a master sample should be constructed. Experts from Statistics Sweden developed the plan for the master sample and provided the procedures for its construction. From this master sample, the households for the LSMS were selected.
Master Sample [This section is based on Peter Lynn's note "LSMS Sample Design and Weighting - Summary". April, 2002. Essex University, commissioned by DfID.]
The master sample is based on a selection of municipalities and a full enumeration of the selected municipalities. Optimally, one would prefer smaller units (geographic or administrative) than municipalities. However, while it was considered that the population estimates of municipalities were reasonably accurate, this was not the case for smaller geographic or administrative areas. To avoid the error involved in sampling smaller areas with very uncertain population estimates, municipalities were used as the base unit for the master sample.
The Statistics Sweden team proposed two options based on this same method, with the only difference being in the number of municipalities included and enumerated. For reasons of funding, the smaller option proposed by the team was used, or Option B.
Stratification of Municipalities
The first step in creating the Master Sample was to group the 146 municipalities in the country into three strata- Urban, Rural and Mixed - within each of the two entities. Urban municipalities are those where 65 percent or more of the households are considered to be urban, and rural municipalities are those where the proportion of urban households is below 35 percent. The remaining municipalities were classified as Mixed (Urban and Rural) Municipalities. Brcko was excluded from the sampling frame.
Urban, Rural and Mixed Municipalities: It is worth noting that the urban-rural definitions used in BiH are unusual with such large administrative units as municipalities classified as if they were completely homogeneous. Their classification into urban, rural, mixed comes from the 1991 Census which used the predominant type of income of households in the municipality to define the municipality. This definition is imperfect in two ways. First, the distribution of income sources may have changed dramatically from the pre-war times: populations have shifted, large industries have closed and much agricultural land remains unusable due to the presence of land mines. Second, the definition is not comparable to other countries' where villages, towns and cities are classified by population size into rural or urban or by types of services and infrastructure available. Clearly, the types of communities within a municipality vary substantially in terms of both population and infrastructure.
However, these imperfections are not detrimental to the sample design (the urban/rural definition may not be very useful for analysis purposes, but that is a separate issue). [Note: It may be noted that the percent of LSMS households in each stratum reporting using agricultural land or having livestock is highest in the "rural" municipalities and lowest in the "urban" municipalities. However, the concentration of agricultural households is higher in RS, so the municipality types are not comparable across entities. The percent reporting no land or livestock in RS was 74.7% in "urban" municipalities, 43.4% in "mixed" municipalities and 31.2% in "rural" municipalities. Respective figures for FbiH were 88.7%, 60.4% and 40.0%.]
The classification is used simply for stratification. The stratification is likely to have some small impact on the variance of survey estimates, but it does not introduce any bias.
Selection of Municipalities
Option B of the Master Sample involved sampling municipalities independently from each of the six strata described in the previous section. Municipalities were selected with probability proportional to estimated population size (PPES) within each stratum, so as to select approximately 50% of the mostly urban municipalities, 20% of the mixed and 10% of the mostly rural ones. Overall, 25 municipalities were selected (out of 146) with 14 in the FbiH and 11 in the RS. The distribution of selected municipalities over the sampling strata is shown below.
Stratum / Total municipalities Mi / Sampled municipalities mi 1. Federation, mostly urban / 10 / 5 2. Federation, mostly mixed / 26 / 4 3. Federation, mostly rural / 48 / 5 4. RS, mostly urban /4 / 2 5. RS, mostly mixed /29 / 5 6. RS, mostly rural / 29 / 4
Note: Mi is the total number of municipalities in stratum i (i=1, … , 6); mi is the number of municipalities selected from stratum
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This Subnational Human Development Index Database contains for the period 1990-2017 for 1625 regions within 161 countries the national and subnational values of the Subnational Human Development Index (SHDI), for the three dimension indices on the basis of which the SHDI is constructed – education, health and standard of living --, and for the four indicators needed to create the dimension indices -- expected years of schooling, mean years of schooling, life expectancy and gross national income per capita.
Facebook
TwitterThere is more to housing affordability than the rent or mortgage you pay. Transportation costs are the second-biggest budget item for most families, but it can be difficult for people to fully factor transportation costs into decisions about where to live and work. The Location Affordability Index (LAI) is a user-friendly source of standardized data at the neighborhood (census tract) level on combined housing and transportation costs to help consumers, policymakers, and developers make more informed decisions about where to live, work, and invest. Compare eight household profiles (see table below) —which vary by household income, size, and number of commuters—and see the impact of the built environment on affordability in a given location while holding household demographics constant.*$11,880 for a single person household in 2016 according to US Dept. of Health and Human Services: https://aspe.hhs.gov/computations-2016-poverty-guidelinesThis layer is symbolized by the percentage of housing and transportation costs as a percentage of income for the Median-Income Family profile, but the costs as a percentage of income for all household profiles are listed in the pop-up:Also available is a gallery of 8 web maps (one for each household profile) all symbolized the same way for easy comparison: Median-Income Family, Very Low-Income Individual, Working Individual, Single Professional, Retired Couple, Single-Parent Family, Moderate-Income Family, and Dual-Professional Family.An accompanying story map provides side-by-side comparisons and additional context.--Variables used in HUD's calculations include 24 measures such as people per household, average number of rooms per housing unit, monthly housing costs (mortgage/rent as well as utility and maintenance expenses), average number of cars per household, median commute distance, vehicle miles traveled per year, percent of trips taken on transit, street connectivity and walkability (measured by block density), and many more.To learn more about the Location Affordability Index (v.3) visit: https://www.hudexchange.info/programs/location-affordability-index/. There you will find some background and an FAQ page, which includes the question:"Manhattan, San Francisco, and downtown Boston are some of the most expensive places to live in the country, yet the LAI shows them as affordable for the typical regional household. Why?" These areas have some of the lowest transportation costs in the country, which helps offset the high cost of housing. The area median income (AMI) in these regions is also high, so when costs are shown as a percent of income for the typical regional household these neighborhoods appear affordable; however, they are generally unaffordable to households earning less than the AMI.Date of Coverage: 2012-2016 Date Released: March 2019Date Downloaded from HUD Open Data: 4/18/19Further Documentation:LAI Version 3 Data and MethodologyLAI Version 3 Technical Documentation_**The documentation below is in reference to this items placement in the NM Supply Chain Data Hub. The documentation is of use to understanding the source of this item, and how to reproduce it for updates**
Title: Location Affordability Index - NMCDC Copy
Summary: This layer contains the Location Affordability Index from U.S. Dept. of Housing and Urban Development (HUD) - standardized household, housing, and transportation cost estimates by census tract for 8 household profiles.
Notes: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas.
Prepared by: dianaclavery_uo, copied by EMcRae_NMCDC
Source: This map is copied from source map: https://nmcdc.maps.arcgis.com/home/item.html?id=de341c1338c5447da400c4e8c51ae1f6, created by dianaclavery_uo, and identified in Living Atlas. Check the source documentation or other details above for more information about data sources.
Feature Service: https://nmcdc.maps.arcgis.com/home/item.html?id=447a461f048845979f30a2478b9e65bb
UID: 73
Data Requested: Family income spent on basic need
Method of Acquisition: Search for Location Affordability Index in the Living Atlas. Make a copy of most recent map available. To update this map, copy the most recent map available. In a new tab, open the AGOL Assistant Portal tool and use the functions in the portal to copy the new maps JSON, and paste it over the old map (this map with item id
Date Acquired: Map copied on May 10, 2022
Priority rank as Identified in 2022 (scale of 1 being the highest priority, to 11 being the lowest priority): 6
Tags: PENDING
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
"Cost of living and purchasing power related to average income
We adjusted the average cost of living inside the USA (based on 2021 and 2022) to an index of 100. All other countries are related to this index. Therefore with an index of e.g. 80, the usual expenses in another country are 20% less then in the United States.
The monthly income (please do not confuse this with a wage or salary) is calculated from the gross national income per capita.
The calculated purchasing power index is again based on a value of 100 for the United States. If it is higher, people can afford more based on the cost of living in relation to income. If it is lower, the population is less wealthy.
The example of Switzerland: With a cost of living index of 142 all goods are on average about 42% more expensive than in the USA. But the average income in Switzerland of 7,550 USD is also 28% higher, which means that citizens can also afford more goods. Now you calculate the 42% higher costs against the 28% higher income. In the result, people in Switzerland can afford about 10 percent less than a US citizen."
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains Quality of Life indices for various countries around the globe, extracted from the Numbeo website. The data provides valuable metrics for comparing countries based on several aspects of living standards, which can assist in decisions such as choosing a place to live or analyzing global trends in quality of life.
OBS: The code to generate this dataset is presented on: https://www.kaggle.com/code/marcelobatalhah/web-scrapping-quality-of-life-index
Rank:
The global rank of the country based on its Quality of Life Index according to Year (1 = highest quality of life).
Country:
The name of the country.
Quality of Life Index:
A composite index that evaluates the overall quality of life in a country by combining other indices, such as Safety, Purchasing Power, and Health Care.
Purchasing Power Index:
Measures the relative purchasing power of the average consumer in a country compared to New York City (baseline = 100).
Safety Index:
Indicates the safety level of a country. A higher score suggests a safer environment.
Health Care Index:
Evaluates the quality and accessibility of healthcare in the country.
Cost of Living Index:
Measures the relative cost of living in a country compared to New York City (baseline = 100).
Property Price to Income Ratio:
Compares the affordability of real estate by dividing the average property price by the average income.
Traffic Commute Time Index:
Reflects the average time spent commuting due to traffic.
Pollution Index:
Rates the level of pollution in the country (air, water, etc.).
Climate Index:
Rates the favorability of the climate in the country (higher = more favorable).
Year:
Year when the metrics were extracted.
requests for retrieving webpage content.BeautifulSoup for parsing the HTML and extracting relevant information.pandas for organizing and storing the data in a structured format.Relocation Decision Making:
Use the dataset to compare countries and identify destinations with high quality of life, safety, and healthcare.
Global Analysis:
Perform exploratory data analysis (EDA) to identify trends and correlations across quality of life metrics.
Visualization:
Plot global maps, bar charts, or other visualizations to better understand the data.
Predictive Modeling:
Use this dataset as a base for machine learning tasks, like predicting Quality of Life Index based on other metrics.