7 datasets found
  1. h

    LLaVA-Med

    • huggingface.co
    Updated Mar 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    zhanghuan (2025). LLaVA-Med [Dataset]. https://huggingface.co/datasets/acthuan/LLaVA-Med
    Explore at:
    Dataset updated
    Mar 23, 2025
    Authors
    zhanghuan
    Description

    HealthGPT : A Medical Large Vision-Language Model for Unifying Comprehension and Generation via Heterogeneous Knowledge Adaptation

    Tianwei Lin1, Wenqiao Zhang1, Sijing Li1, Yuqian Yuan1, Binhe Yu2, Haoyuan Li3, Wanggui He3, Hao Jiang3,

    Mengze Li4, Xiaohui Song1, Siliang Tang1, Jun Xiao1, Hui Lin1, Yueting Zhuang1, Beng Chin Ooi5

    1Zhejiang University, 2University of Electronic Science and Technology of China, 3Alibaba, 4The Hong Kong University of Science and Technology, 5National… See the full description on the dataset page: https://huggingface.co/datasets/acthuan/LLaVA-Med.

  2. h

    llava-med-zh-eval

    • huggingface.co
    Updated May 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhangchi Feng (2024). llava-med-zh-eval [Dataset]. https://huggingface.co/datasets/BUAADreamer/llava-med-zh-eval
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 22, 2024
    Authors
    Zhangchi Feng
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    BUAADreamer/llava-med-zh-eval dataset hosted on Hugging Face and contributed by the HF Datasets community

  3. h

    LLaVA-Med-60K-IM-text

    • huggingface.co
    Updated Jul 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Myeongkyun Kang (2024). LLaVA-Med-60K-IM-text [Dataset]. https://huggingface.co/datasets/myeongkyunkang/LLaVA-Med-60K-IM-text
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2024
    Authors
    Myeongkyun Kang
    Description

    LLaVA-Med-60K-IM-text

    This dataset is a text format of llava_med_instruct_60k_inline_mention.json. We built this dataset using the Meta-Llama-3-70B-Instruct, and the instruction we used is: Rewrite the question-answer pairs into a paragraph format (Do not use the words 'question' and 'answer' in your responses):.

    PMC articles that failed to download are excluded. Non-medical images (e.g., diagrams) are excluded in an automatic way. Despite these efforts, this dataset is not… See the full description on the dataset page: https://huggingface.co/datasets/myeongkyunkang/LLaVA-Med-60K-IM-text.

  4. f

    Research on the application of LLaVA model based on Q-LoRA fine-tuning in...

    • figshare.com
    zip
    Updated Sep 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shiling Zhou (2025). Research on the application of LLaVA model based on Q-LoRA fine-tuning in medical teaching [Dataset]. http://doi.org/10.6084/m9.figshare.28675511.v7
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 11, 2025
    Dataset provided by
    figshare
    Authors
    Shiling Zhou
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    The Augmented Reality Large Language Model Medical Teaching System integrates Augmented Reality with LLaVA-Med, a medical multimodal large language model based on LLaVA and specifically designed for biomedical applications, employing QLoRA to advance medical education. Deployed on resource-constrained AR devices, such as INMO Air2 glasses, ARLMT overlays real-time visual annotations and textual feedback on medical scenarios to create an immersive and interactive learning environment. Key advancements include a 66\% reduction in memory footprint (from 15.2 GB to 5.1 GB) through QLoRA, enabling efficient operation without compromising performance, and an average response time of 1.009 seconds across various medical imaging categories, surpassing the GPT-4 baseline in both speed and accuracy. The system achieves 98.3% diagnostic accuracy, demonstrating its reliability in real-time applications. By combining visual and textual elements, ARLMT enhances comprehension of complex medical concepts, providing a scalable, real-time solution that bridges technological innovation and pedagogical needs in medical training.

  5. p

    Data from: LLaVA-Rad MIMIC-CXR Annotations

    • physionet.org
    Updated Jan 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juan Manuel Zambrano Chaves; Shih-Cheng Huang; Yanbo Xu; Hanwen Xu; Naoto Usuyama; Sheng Zhang; Fei Wang; Yujia Xie; Mahmoud Khademi; Ziyi Yang; Hany Awadalla; Julia Gong; Houdong Hu; Jianwei Yang; Chunyuan Li; Jianfeng Gao; Yu Gu; Cliff Wong; Mu-Hsin Wei; Tristan Naumann; Muhao Chen; Matthew Lungren; Akshay Chaudhari; Serena Yeung; Curtis Langlotz; Sheng Wang; Hoifung Poon (2025). LLaVA-Rad MIMIC-CXR Annotations [Dataset]. http://doi.org/10.13026/4ma4-k740
    Explore at:
    Dataset updated
    Jan 24, 2025
    Authors
    Juan Manuel Zambrano Chaves; Shih-Cheng Huang; Yanbo Xu; Hanwen Xu; Naoto Usuyama; Sheng Zhang; Fei Wang; Yujia Xie; Mahmoud Khademi; Ziyi Yang; Hany Awadalla; Julia Gong; Houdong Hu; Jianwei Yang; Chunyuan Li; Jianfeng Gao; Yu Gu; Cliff Wong; Mu-Hsin Wei; Tristan Naumann; Muhao Chen; Matthew Lungren; Akshay Chaudhari; Serena Yeung; Curtis Langlotz; Sheng Wang; Hoifung Poon
    License

    https://github.com/MIT-LCP/license-and-dua/tree/master/draftshttps://github.com/MIT-LCP/license-and-dua/tree/master/drafts

    Description

    LLaVA-Rad MIMIC-CXR features more accurate section extractions from MIMIC-CXR free-text radiology reports. Traditionally, rule-based methods were used to extract sections such as the reason for exam, findings, and impression. However, these approaches often fail due to inconsistencies in report structure and clinical language. In this work, we leverage GPT-4 to extract these sections more reliably, adding 237,073 image-text pairs to the training split and 1,952 pairs to the validation split. This enhancement afforded the development and fine-tuning of LLaVA-Rad, a multimodal large language model (LLM) tailored for radiology applications, achieving improved performance on report generation tasks.

    This resource is provided to support reproducibility and for the benefit of the research community, enabling further exploration in vision–language modeling. For more details, please refer to the accompanying paper [1].

  6. h

    cxr-10k-reasoning-dataset

    • huggingface.co
    Updated Aug 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thakor (2025). cxr-10k-reasoning-dataset [Dataset]. https://huggingface.co/datasets/Manusinhh/cxr-10k-reasoning-dataset
    Explore at:
    Dataset updated
    Aug 3, 2025
    Authors
    Thakor
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    🫁 CXR-10K Reasoning Dataset

    A dataset of 10,000 chest X-ray images paired with step-by-step clinical reasoning and radiology impression summaries, curated for training and evaluating medical vision-language models like MedGEMMA, LLaVA-Med, and others.

      📂 Dataset Structure
    

    This dataset is saved in Arrow format and was built using the Hugging Face datasets library. Each sample includes:

    image: Chest X-ray image (PNG or JPEG) reasoning: Step-wise radiological reasoning in… See the full description on the dataset page: https://huggingface.co/datasets/Manusinhh/cxr-10k-reasoning-dataset.

  7. c

    Finansijski podaci za LAVA MEDICAL DOO

    • companywall.rs
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agencija za privredne registre - APR, Finansijski podaci za LAVA MEDICAL DOO [Dataset]. https://www.companywall.rs/firma/lava-medical-doo/MMx0AjE1D
    Explore at:
    Dataset authored and provided by
    Agencija za privredne registre - APR
    License

    http://www.companywall.rs/Home/Licencehttp://www.companywall.rs/Home/Licence

    Description

    Ovaj skup podataka uključuje finansijske izvještaje, račune i blokade, te nekretnine. Podaci uključuju prihode, rashode, dobit, imovinu, obaveze i informacije o nekretninama u vlasništvu kompanije. Finansijski podaci, finansijski sažetak, sažetak kompanije, preduzetnik, zanatlija, udruženje, poslovni subjekti.

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
zhanghuan (2025). LLaVA-Med [Dataset]. https://huggingface.co/datasets/acthuan/LLaVA-Med

LLaVA-Med

acthuan/LLaVA-Med

Explore at:
Dataset updated
Mar 23, 2025
Authors
zhanghuan
Description

HealthGPT : A Medical Large Vision-Language Model for Unifying Comprehension and Generation via Heterogeneous Knowledge Adaptation

Tianwei Lin1, Wenqiao Zhang1, Sijing Li1, Yuqian Yuan1, Binhe Yu2, Haoyuan Li3, Wanggui He3, Hao Jiang3,

Mengze Li4, Xiaohui Song1, Siliang Tang1, Jun Xiao1, Hui Lin1, Yueting Zhuang1, Beng Chin Ooi5

1Zhejiang University, 2University of Electronic Science and Technology of China, 3Alibaba, 4The Hong Kong University of Science and Technology, 5National… See the full description on the dataset page: https://huggingface.co/datasets/acthuan/LLaVA-Med.

Search
Clear search
Close search
Google apps
Main menu