Find details of R And R Export Import Specialities Buyer/importer data in US (United States) with product description, price, shipment date, quantity, imported products list, major us ports name, overseas suppliers/exporters name etc. at sear.co.in.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
31452 Global import shipment records of R Diesel Engine with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
588 Global import shipment records of R Lume with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
This R script can be used to analyze SELDM results. The script is specifically tailored for the SELDM simulations used in the publication: Stonewall, A.J., and Granato, G.E., 2018, Assessing potential effects of highway and urban runoff on receiving streams in total maximum daily load watersheds in Oregon using the Stochastic Empirical Loading and Dilution Model: U.S. Geological Survey Scientific Investigations Report 2019-5053, 116 p., https://doi.org/10.3133/sir20195053
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Customs records of are available for CERAMICS R. US CORP LTD.Learn about its suppliers,trading situations,countries of origin of products and trading ports
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project abstract: Many situations involve processing social and non-social information simultaneously. However, is not known how performance is affected in such situations. Here, we examined how our ability to process social information is affected by the need to keep track of non-social information. Participants were instructed to carry out two tasks within each trial. The social task involved referential communication – requiring participants to use social cues to guide their decisions. At the same time, cognitive load was manipulated by requiring participants to remember non-social information in the form of either one or three two-digit numbers visually presented before each social task stimulus. Results indicate that the cognitive demands of simultaneously processing social and non-social information impair social information processing. Specifically, keeping in mind three numbers slowed participants' ability to use another person's perspective to guide decisions. These results suggest that social information processing requires domain-general resources that are depleted under cognitive load. Data: These files include our dataset, as well as the scripts used to analyze the data and create graphs of the results. You will need to download R (http://www.r-project.org/) to use these files. Data are from 29 adult participants. Participants completed an adapted version of the “Director Task” (Dumontheil, Hillebrandt, Apperly, & Blakemore, 2012) with an embedded working memory (WM) Task component. Afterwards, participants completed a verbal reverse digit-span task as a measure of WM capacity and the Interpersonal Reactivity Index questionnaire to assess individual differences in trait perspective taking (Davis, 1980). Data Analysis: We used the lme4 package in R (Bates, Maechler, & Bolker, 2013) to perform a linear mixed effects analysis on the relationship between our factors of interest and accuracy and RT for both tasks. RT data from correct trials only were analyzed. To create approximately normally distributed residuals, we used a log or reciprocal function to transform RT data. We performed a two-step procedure: first, we created a global model including main and interactive effects of cognitive load (low vs. high), condition (Director Present vs. Director Absent), trial type (1-object vs. 3-object), and perspective (same vs. different) as fixed effects, and each model included a random intercept for each participant. We then compared all possible combinations[1] of the variables within our global model using an automated model selection procedure (MuMIn1.9.0; Barton, 2013). Models were ranked using Second-order Akaike Information Criterion (AICc; Burnham & Anderson, 2002). Second, after determining the best fitting model for each outcome of interest, we tested whether WM capacity or trait perspective taking explained any additional variance through likelihood ratio tests. All p-values were obtained by likelihood ratio tests comparing the best fitting model against a baseline model.[1] Interactions were always accompanied by their respective main effects and all lower order terms
Update (August 8, 2013): There was a minor error in the original SocialDualTaskData.R file, which has now been corrected.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
816 Global import shipment records of R Diesel Engine with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
This child page contains a zipped folder which contains all of the items necessary to run load estimation using R-LOADEST to produce results that are published in U.S. Geological Survey Investigations Report 2021-XXXX [Tatge, W.S., Nustad, R.A., and Galloway, J.M., 2021, Evaluation of Salinity and Nutrient Conditions in the Heart River Basin, North Dakota, 1970-2020: U.S. Geological Survey Scientific Investigations Report 2021-XXXX, XX p]. The folder contains an allsiteinfo.table.csv file, a "datain" folder, and a "scripts" folder. The allsiteinfo.table.csv file can be used to cross reference the sites with the main report (Tatge and others, 2021). The "datain" folder contains all the input data necessary to reproduce the load estimation results. The naming convention in the "datain" folder is site_MI_rloadest or site_NUT_rloadest for either the major ion loads or the nutrient loads. The .Rdata files are used in the scripts to run the estimations and the .csv files can be used to look at the data. The "scripts" folder contains the written R scripts to produce the results of the load estimation from the main report. R-LOADEST is a software package for analyzing loads in streams and an accompanying report (Runkel and others, 2004) serves as the formal documentation for R-LOADEST. The package is a collection of functions written in R (R Development Core Team, 2019), an open source language and a general environment for statistical computing and graphics. The following system requirements are necessary for producing results: Windows 10 operating system R (version 3.4 or later; 64-bit recommended) RStudio (version 1.1.456 or later) R-LOADEST program (available at https://github.com/USGS-R/rloadest). Runkel, R.L., Crawford, C.G., and Cohn, T.A., 2004, Load Estimator (LOADEST): A FORTRAN Program for Estimating Constituent Loads in Streams and Rivers: U.S. Geological Survey Techniques and Methods Book 4, Chapter A5, 69 p., [Also available at https://pubs.usgs.gov/tm/2005/tm4A5/pdf/508final.pdf.] R Development Core Team, 2019, R—A language and environment for statistical computing: Vienna, Austria, R Foundation for Statistical Computing, accessed December 7, 2020, at https://www.r-project.org.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
description: This dataset was developed by NREL's distributed energy systems integration group as part of a study on high penetrations of distributed solar PV [1]. It consists of hourly load data in CSV format for use with the PNNL taxonomy of distribution feeders [2]. These feeders were developed in the open source GridLAB-D modelling language [3]. In this dataset each of the load points in the taxonomy feeders is populated with hourly averaged load data from a utility in the feeder s geographical region, scaled and randomized to emulate real load profiles. For more information on the scaling and randomization process, see [1]. The taxonomy feeders are statistically representative of the various types of distribution feeders found in five geographical regions of the U.S. Efforts are underway (possibly complete) to translate these feeders into the OpenDSS modelling language. This data set consists of one large CSV file for each feeder. Within each CSV, each column represents one load bus on the feeder. The header row lists the name of the load bus. The subsequent 8760 rows represent the loads for each hour of the year. The loads were scaled and randomized using a Python script, so each load series represents only one of many possible randomizations. In the header row, "rl" = residential load and "cl" = commercial load. Commercial loads are followed by a phase letter (A, B, or C). For regions 1-3, the data is from 2009. For regions 4-5, the data is from 2000. For use in GridLAB-D, each column will need to be separated into its own CSV file without a header. The load value goes in the second column, and corresponding datetime values go in the first column, as shown in the sample file, sample_individual_load_file.csv. Only the first value in the time column needs to written as an absolute time; subsequent times may be written in relative format (i.e. "+1h", as in the sample). The load should be written in P+Qj format, as seen in the sample CSV, in units of Watts (W) and Volt-amps reactive (VAr). This dataset was derived from metered load data and hence includes only real power; reactive power can be generated by assuming an appropriate power factor. These loads were used with GridLAB-D version 2.2. Browse files in this dataset, accessible as individual files and as a single ZIP file. This dataset is approximately 242MB compressed or 475MB uncompressed. For questions about this dataset, contact andy.hoke@nrel.gov. If you find this dataset useful, please mention NREL and cite [1] in your work. References: [1] A. Hoke, R. Butler, J. Hambrick, and B. Kroposki, Steady-State Analysis of Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders, IEEE Transactions on Sustainable Energy, April 2013, available at http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6357275 . [2] K. Schneider, D. P. Chassin, R. Pratt, D. Engel, and S. Thompson, Modern Grid Initiative Distribution Taxonomy Final Report, PNNL, Nov. 2008. Accessed April 27, 2012: http://www.gridlabd.org/models/feeders/taxonomy of prototypical feeders.pdf [3] K. Schneider, D. Chassin, Y. Pratt, and J. C. Fuller, Distribution power flow for smart grid technologies, IEEE/PES Power Systems Conference and Exposition, Seattle, WA, Mar. 2009, pp. 1-7, 15-18.; abstract: This dataset was developed by NREL's distributed energy systems integration group as part of a study on high penetrations of distributed solar PV [1]. It consists of hourly load data in CSV format for use with the PNNL taxonomy of distribution feeders [2]. These feeders were developed in the open source GridLAB-D modelling language [3]. In this dataset each of the load points in the taxonomy feeders is populated with hourly averaged load data from a utility in the feeder s geographical region, scaled and randomized to emulate real load profiles. For more information on the scaling and randomization process, see [1]. The taxonomy feeders are statistically representative of the various types of distribution feeders found in five geographical regions of the U.S. Efforts are underway (possibly complete) to translate these feeders into the OpenDSS modelling language. This data set consists of one large CSV file for each feeder. Within each CSV, each column represents one load bus on the feeder. The header row lists the name of the load bus. The subsequent 8760 rows represent the loads for each hour of the year. The loads were scaled and randomized using a Python script, so each load series represents only one of many possible randomizations. In the header row, "rl" = residential load and "cl" = commercial load. Commercial loads are followed by a phase letter (A, B, or C). For regions 1-3, the data is from 2009. For regions 4-5, the data is from 2000. For use in GridLAB-D, each column will need to be separated into its own CSV file without a header. The load value goes in the second column, and corresponding datetime values go in the first column, as shown in the sample file, sample_individual_load_file.csv. Only the first value in the time column needs to written as an absolute time; subsequent times may be written in relative format (i.e. "+1h", as in the sample). The load should be written in P+Qj format, as seen in the sample CSV, in units of Watts (W) and Volt-amps reactive (VAr). This dataset was derived from metered load data and hence includes only real power; reactive power can be generated by assuming an appropriate power factor. These loads were used with GridLAB-D version 2.2. Browse files in this dataset, accessible as individual files and as a single ZIP file. This dataset is approximately 242MB compressed or 475MB uncompressed. For questions about this dataset, contact andy.hoke@nrel.gov. If you find this dataset useful, please mention NREL and cite [1] in your work. References: [1] A. Hoke, R. Butler, J. Hambrick, and B. Kroposki, Steady-State Analysis of Maximum Photovoltaic Penetration Levels on Typical Distribution Feeders, IEEE Transactions on Sustainable Energy, April 2013, available at http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6357275 . [2] K. Schneider, D. P. Chassin, R. Pratt, D. Engel, and S. Thompson, Modern Grid Initiative Distribution Taxonomy Final Report, PNNL, Nov. 2008. Accessed April 27, 2012: http://www.gridlabd.org/models/feeders/taxonomy of prototypical feeders.pdf [3] K. Schneider, D. Chassin, Y. Pratt, and J. C. Fuller, Distribution power flow for smart grid technologies, IEEE/PES Power Systems Conference and Exposition, Seattle, WA, Mar. 2009, pp. 1-7, 15-18.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
134 Global import shipment records of R Tyre with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
65 Global import shipment records of Motorcycle R with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
3004 Global import shipment records of R Cin with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
1290 Global import shipment records of Code R Red with prices, volume & current Buyer's suppliers relationships based on actual Global export trade database.
Subscribers can find out export and import data of 23 countries by HS code or product’s name. This demo is helpful for market analysis.
Find details of R And R Export Import Specialities Buyer/importer data in US (United States) with product description, price, shipment date, quantity, imported products list, major us ports name, overseas suppliers/exporters name etc. at sear.co.in.