7 datasets found
  1. a

    AZGeo Address Locator

    • azgeo-open-data-agic.hub.arcgis.com
    Updated Oct 6, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AZGeo Data Hub (2021). AZGeo Address Locator [Dataset]. https://azgeo-open-data-agic.hub.arcgis.com/content/967cb7db90934c6cab2fc4c51181d3aa
    Explore at:
    Dataset updated
    Oct 6, 2021
    Dataset authored and provided by
    AZGeo Data Hub
    Area covered
    Description

    Arizona composite geocoding service using NextGen 9-1-1 address points and road centerlines datasets. The source data used in creating this web service provides updated information from Arizona local governments based on quarterly, biannual, or annual submission scheduling. ArcGIS desktop or applications can use the geocoding service depending on the intent of use. By default, the input data sources reside in the NAD83 UTM Zone 12N projection but can be translated upon output by desktop software or application settings. Each locator element uses a result hierarchy from the most granular result provided as an output first (Address Points) to the least granular last (Road Centerline). Data is limited to Arizona and cannot guarantee results in other states. For more information about the Arizona geocoder, please visit https://azgeo-data-hub-agic.hub.arcgis.com/If you are using the AZGeo Address Locator in ArcGIS Desktop or ArcGIS Pro you can connect to the AZGeo server via: https://azgeo.az.gov/arcgis/rest/services/ and then look in the 'geocoders' folder and use AZGeo_Address_Locator.

  2. Viewshed

    • rwanda.africageoportal.com
    • africageoportal.com
    • +4more
    Updated Jul 4, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). Viewshed [Dataset]. https://rwanda.africageoportal.com/content/1ff463dbeac14b619b9edbd7a9437037
    Explore at:
    Dataset updated
    Jul 4, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Viewshed analysis layer is used to identify visible areas. You specify the places you are interested in, either from a file or interactively, and the Viewshed service combines this with Esri-curated elevation data to create output polygons of visible areas. Some questions you can answer with the Viewshed task include:What areas can I see from this location? What areas can see me?Can I see the proposed wind farm?What areas can be seen from the proposed fire tower?The maximum number of input features is 1000.Viewshed has the following optional parameters:Maximum Distance: The maximum distance to calculate the viewshed.Maximum Distance Units: The units for the Maximum Distance parameter. The default is meters.DEM Resolution: The source elevation data; the default is 90m resolution SRTM. Other options include 30m, 24m, 10m, and Finest.Observer Height: The height above the surface of the observer. The default value of 1.75 meters is an average height of a person. If you are looking from an elevation location such as an observation tower or a tall building, use that height instead.Observer Height Units: The units for the Observer Height parameter. The default is meters.Surface Offset: The height above the surface of the object you are trying to see. The default value is 0. If you are trying to see buildings or wind turbines add their height here.Surface Offset Units: The units for the Surface Offset parameter. The default is meters.Generalize Viewshed Polygons: Determine if the viewshed polygons are to be generalized or not. The viewshed calculation is based upon a raster elevation model which creates a result with stair-stepped edges. To create a more pleasing appearance, and improve performance, the default behavior is to generalize the polygons. This generalization will not change the accuracy of the result for any location more than one half of the DEM's resolution.By default, this tool currently works worldwide between 60 degrees north and 56 degrees south based on the 3 arc-second (approximately 90 meter) resolution SRTM dataset. Depending upon the DEM resolution pick by the user, different data sources will be used by the tool. For 24m, tool will use global dataset WorldDEM4Ortho (excluding the counties of Azerbaijan, DR Congo and Ukraine) 0.8 arc-second (approximately 24 meter) from Airbus Defence and Space GmbH. For 30m, tool will use 1 arc-second resolution data in North America (Canada, United States, and Mexico) from the USGS National Elevation Dataset (NED), SRTM DEM-S dataset from Geoscience Australia in Australia and SRTM data between 60 degrees north and 56 degrees south in the remaining parts of the world (Africa, South America, most of Europe and continental Asia, the East Indies, New Zealand, and islands of the western Pacific). For 10m, tool will use 1/3 arc-second resolution data in the continental United States from USGS National Elevation Dataset (NED) and approximately 10 meter data covering Netherlands, Norway, Finland, Denmark, Austria, Spain, Japan Estonia, Latvia, Lithuania, Slovakia, Italy, Northern Ireland, Switzerland and Liechtenstein from various authoritative sources.To learn more, read the developer documentation for Viewshed or follow the Learn ArcGIS exercise called I Can See for Miles and Miles. To use this Geoprocessing service in ArcGIS Desktop 10.2.1 and higher, you can either connect to the Ready-to-Use Services, or create an ArcGIS Server connection. Connect to the Ready-to-Use Services by first signing in to your ArcGIS Online Organizational Account:Once you are signed in, the Ready-to-Use Services will appear in the Ready-to-Use Services folder or the Catalog window:If you would like to add a direct connection to the Elevation ArcGIS Server in ArcGIS for Desktop or ArcGIS Pro, use this URL to connect: https://elevation.arcgis.com/arcgis/services. You will also need to provide your account credentials. ArcGIS for Desktop:ArcGIS Pro:The ArcGIS help has additional information about how to do this:Learn how to make a ArcGIS Server Connection in ArcGIS Desktop. Learn more about using geoprocessing services in ArcGIS Desktop.This tool is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  3. r

    Add GTFS to a Network Dataset

    • opendata.rcmrd.org
    Updated Jun 27, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ArcGIS for Transportation Analytics (2013). Add GTFS to a Network Dataset [Dataset]. https://opendata.rcmrd.org/content/0fa52a75d9ba4abcad6b88bb6285fae1
    Explore at:
    Dataset updated
    Jun 27, 2013
    Dataset authored and provided by
    ArcGIS for Transportation Analytics
    Description

    Deprecation notice: This tool is deprecated because this functionality is now available with out-of-the-box tools in ArcGIS Pro. The tool author will no longer be making further enhancements or fixing major bugs.Use Add GTFS to a Network Dataset to incorporate transit data into a network dataset so you can perform schedule-aware analyses using the Network Analyst tools in ArcMap.After creating your network dataset, you can use the ArcGIS Network Analyst tools, like Service Area and OD Cost Matrix, to perform transit/pedestrian accessibility analyses, make decisions about where to locate new facilities, find populations underserved by transit or particular types of facilities, or visualize the areas reachable from your business at different times of day. You can also publish services in ArcGIS Server that use your network dataset.The Add GTFS to a Network Dataset tool suite consists of a toolbox to pre-process the GTFS data to prepare it for use in the network dataset and a custom GTFS transit evaluator you must install that helps the network dataset read the GTFS schedules. A user's guide is included to help you set up your network dataset and run analyses.Instructions:Download the tool. It will be a zip file.Unzip the file and put it in a permanent location on your machine where you won't lose it. Do not save the unzipped tool folder on a network drive, the Desktop, or any other special reserved Windows folders (like C:\Program Files) because this could cause problems later.The unzipped file contains an installer, AddGTFStoaNetworkDataset_Installer.exe. Double-click this to run it. The installation should proceed quickly, and it should say "Completed" when finished.Read the User's Guide for instructions on creating and using your network dataset.System requirements:ArcMap 10.1 or higher with a Desktop Standard (ArcEditor) license. (You can still use it if you have a Desktop Basic license, but you will have to find an alternate method for one of the pre-processing tools.) ArcMap 10.6 or higher is recommended because you will be able to construct your network dataset much more easily using a template rather than having to do it manually step by step. This tool does not work in ArcGIS Pro. See the User's Guide for more information.Network Analyst extensionThe necessary permissions to install something on your computer.Data requirements:Street data for the area covered by your transit system, preferably data including pedestrian attributes. If you need help preparing high-quality street data for your network, please review this tutorial.A valid GTFS dataset. If your GTFS dataset has blank values for arrival_time and departure_time in stop_times.txt, you will not be able to run this tool. You can download and use the Interpolate Blank Stop Times tool to estimate blank arrival_time and departure_time values for your dataset if you still want to use it.Help forum

  4. Terrain

    • opendata.rcmrd.org
    • data.catchmentbasedapproach.org
    • +4more
    Updated Jul 5, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2013). Terrain [Dataset]. https://opendata.rcmrd.org/datasets/58a541efc59545e6b7137f961d7de883
    Explore at:
    Dataset updated
    Jul 5, 2013
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This dynamic World Elevation Terrain layer returns float values representing ground heights in meters and compiles multi-resolution data from many authoritative data providers from across the globe. Heights are orthometric (sea level = 0), and water bodies that are above sea level have approximated nominal water heights.Height units: MetersUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see World Elevation Coverage Map.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select from numerous additional functions, applied on the server, that return rendered data. For visualizations such as multi-directional hillshade, hillshade, elevation tinted hillshade, and slope, consider using the appropriate server-side function defined on this service.Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis. There is a limit of 5000 rows x 5000 columns.Note: This layer combine data from different sources and resamples the data dynamically to the requested projection, extent and pixel size. For analyses using ArcGIS Desktop, it is recommended to filter a dataset, specify the projection, extent and cell size using the Make Image Server Layer geoprocessing tool. The extent is factor of cell size and rows/columns limit. e.g. if cell size is 10 m, the extent for analysis would be less than 50,000 m x 50,000 m.Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS Pro, server function can be invoked from Layer Properties - Processing Templates.

    Slope Degrees Slope Percent Aspect Ellipsoidal height Hillshade Multi-Directional Hillshade Dark Multi-Directional Hillshade Elevation Tinted Hillshade Slope Map Aspect Map Mosaic Method: This image service uses a default mosaic method of "By Attribute”, using Field 'Best' and target of 0. Each of the rasters has been attributed with ‘Best’ field value that is generally a function of the pixel size such that higher resolution datasets are displayed at higher priority. Other mosaic methods can be set, but care should be taken as the order of the rasters may change. Where required, queries can also be set to display only specific datasets such as only NED or the lock raster mosaic rule used to lock to a specific dataset.Accuracy: Accuracy will vary as a function of location and data source. Please refer to the metadata available in the layer, and follow the links to the original sources for further details. An estimate of CE90 and LE90 are included as attributes, where available.This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single request.This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks.

  5. TopoBathy

    • opendata.rcmrd.org
    • ai-climate-hackathon-global-community.hub.arcgis.com
    • +2more
    Updated Apr 11, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2014). TopoBathy [Dataset]. https://opendata.rcmrd.org/datasets/c753e5bfadb54d46b69c3e68922483bc
    Explore at:
    Dataset updated
    Apr 11, 2014
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    This World Elevation TopoBathy service combines topography (land elevation) and bathymetry (water depths) from various authoritative sources from across the globe. Heights are orthometric (sea level = 0), and bathymetric values are negative downward from sea level. The source data of land elevation in this service is same as in the Terrain layer. When possible, the water areas are represented by the best available bathymetry. Height/Depth units: MetersUpdate Frequency: QuarterlyCoverage: World/GlobalData Sources: This layer is compiled from a variety of best available sources from several data providers. To see the coverage and extents of various datasets comprising this service in an interactive map, see Elevation Coverage Map.What can you do with this layer?Use for Visualization: This layer is generally not optimal for direct visualization. By default, 32 bit floating point values are returned, resulting in higher bandwidth requirements. Therefore, usage should be limited to applications requiring elevation data values. Alternatively, client applications can select additional functions, applied on the server, that return rendered data. For visualizations such as hillshade or elevation tinted hillshade, consider using the appropriate server-side function defined on this service. Use for Analysis: Yes. This layer provides data as floating point elevation values suitable for use in analysis. There is a limit of 5000 rows x 5000 columns. NOTE: This image services combine data from different sources and resample the data dynamically to the requested projection, extent and pixel size. For analyses using ArcGIS Desktop, it is recommended to filter a dataset, specify the projection, extent and cell size using the Make Image Server Layer geoprocessing tool. The extent is factor of cell size and rows/columns limit. e.g. if cell size is 10 m, the max extent for analysis would be less than 50,000 m x 50,000 m.Server Functions: This layer has server functions defined for the following elevation derivatives. In ArcGIS Pro, server function can be invoked from Layer Properties - Processing Templates.

    Slope Degrees Slope Percentage Hillshade Multi-Directional Hillshade Elevation Tinted HillshadeSlope MapMosaic Method: This image service uses a default mosaic method of "By Attribute”, using Field 'Best' and target of 0. Each of the rasters has been attributed with ‘Best’ field value that is generally a function of the pixel size such that higher resolution datasets are displayed at higher priority. Other mosaic methods can be set, but care should be taken as the order of the rasters may change. Where required, queries can also be set to display only specific datasets such as only NED or the lock raster mosaic rule used to lock to a specific dataset.Accuracy: Accuracy will vary as a function of location and data source. Please refer to the metadata available in the layer, and follow the links to the original sources for further details. An estimate of CE90 and LE90 is included as attributes, where available.This layer allows query, identify, and export image requests. The layer is restricted to a 5,000 x 5,000 pixel limit in a single request. This layer is part of a larger collection of elevation layers that you can use to perform a variety of mapping analysis tasks. Disclaimer: Bathymetry data sources are not to be used for navigation/safety at sea.

  6. v

    Virginia LiDAR Inventory Project Footprints

    • vgin.vdem.virginia.gov
    Updated Mar 31, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virginia Geographic Information Network (2022). Virginia LiDAR Inventory Project Footprints [Dataset]. https://vgin.vdem.virginia.gov/items/415824b40f154be1b93dffd0d2434f4f
    Explore at:
    Dataset updated
    Mar 31, 2022
    Dataset authored and provided by
    Virginia Geographic Information Network
    Area covered
    Description

    The Virginia LiDAR Inventory Web Mapping Application provides access to LiDAR point cloud and individual project metadata collected in the Commonwealth of Virginia according to the USGS 3DEP specification. Data is obtained from NOAA, USGS, and VGIN data portals. LiDAR Point Clouds are compressed for file storage and transfer. USGS and NOAA utilize the compressed .LAZ format. This dataset will provide the end user a necessary set of geographic extents that can be used with an ArcGIS Desktop or Pro session to select by location specific areas of download. The downloads can either be batch processed by the analysis with scripting and modeling or individual tiles can be downloaded. This is the tile data powering VGIN ArcGIS server services utilized in the VGIN LiDAR Download Application.

  7. a

    Refuse Structures

    • conservation-abra.hub.arcgis.com
    Updated Mar 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Allegheny-Blue Ridge Alliance (2024). Refuse Structures [Dataset]. https://conservation-abra.hub.arcgis.com/maps/abra::refuse-structures-1
    Explore at:
    Dataset updated
    Mar 12, 2024
    Dataset authored and provided by
    Allegheny-Blue Ridge Alliance
    Area covered
    Description

    Purpose:

    This feature layer shows refuse structures associated with mining activities that may impact designated Critical Habitat of the endangered Guyandotte Crayfish along Pinnacle Creek in Wyoming County, WV.

    Source & Date:

    Data was downloaded from the West Virginia Department of Environmental Protection (WVDEP) Geographic Information Server data download page on 3/12/2024.

    Processing:

    Mining permit areas, NPDES outlet locations and refuse structures within and surrounding Pinnacle Creek watershed were all extracted, via Select by Location, using the Pinnacle Creek watershed boundary, and saved as shapefiles. The Pinnacle Creek watershed boundary was extracted from the Watershed Boundary Dataset geodatabase and exported to shapefile. All mining-related layers were symbolized as shown on the WVDEP TAGIS Mining Reclamation map service, hosted by WVDEP. The layers were published together as a feature layer from ArcGIS Pro.

    Symbology:

    Refuse Structures:
    • Fill - Dark grey polygon, darker grey outline
    • Impoundment - Dark blue-grey polygon, dark grey outline


    From Original Metadata:

    Coal refuse is a byproduct of coal preparation prior to shipment, and typically is placed in permanent structures near coal preparation plants. The dataset includes pre-SMCRA dumps identified from lidar hillshade and historically compiled information, as well as active and reclaimed dry fills and impoundments.

  8. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
AZGeo Data Hub (2021). AZGeo Address Locator [Dataset]. https://azgeo-open-data-agic.hub.arcgis.com/content/967cb7db90934c6cab2fc4c51181d3aa

AZGeo Address Locator

Explore at:
Dataset updated
Oct 6, 2021
Dataset authored and provided by
AZGeo Data Hub
Area covered
Description

Arizona composite geocoding service using NextGen 9-1-1 address points and road centerlines datasets. The source data used in creating this web service provides updated information from Arizona local governments based on quarterly, biannual, or annual submission scheduling. ArcGIS desktop or applications can use the geocoding service depending on the intent of use. By default, the input data sources reside in the NAD83 UTM Zone 12N projection but can be translated upon output by desktop software or application settings. Each locator element uses a result hierarchy from the most granular result provided as an output first (Address Points) to the least granular last (Road Centerline). Data is limited to Arizona and cannot guarantee results in other states. For more information about the Arizona geocoder, please visit https://azgeo-data-hub-agic.hub.arcgis.com/If you are using the AZGeo Address Locator in ArcGIS Desktop or ArcGIS Pro you can connect to the AZGeo server via: https://azgeo.az.gov/arcgis/rest/services/ and then look in the 'geocoders' folder and use AZGeo_Address_Locator.

Search
Clear search
Close search
Google apps
Main menu