Facebook
TwitterAlthough the Black Death peaked in Europe between 1348 and 1351, plague was almost always present in Britain for the next four centuries. In most years, plague was a dormant threat that affected very few people, and diseases such as smallpox and influenza were much more widespread; however, bubonic plague was prone to outbreaks that could decimate populations in a few short years. In London, plague outbreaks occurred every few decades, usually with death tolls in the tens of thousands. The duration and severity of these epidemics varied, sometimes having high death tolls but subsiding quickly, while others had relatively lower death tolls but could last for a number of years. As London's population and density also grew drastically during this period, plague affected the city differently in the sixteenth and seventeenth centuries. Great Plague of London The final major plague epidemic observed in Britain took place in 1665 and 1666. It became known as the "Great Plague" as it was the last of its kind in Britain, and its death toll eclipsed all other epidemics in the preceding century (although it was much smaller than that of the Black Death). The plague lasted for eighteen months, and had a reported death toll of more than 70,000 in this time; although modern historians estimate that the actual death toll exceeded 100,000. At its peak in September 1665, it is reported that there were more than 7,000 deaths per week, although this may have also been much higher due to the limited records kept at the time. Another reason for the lack of accurate records relating to this epidemic is because of the Great Fire of London in 1666. The fire started on September 02. 1666, and destroyed almost all of the city within the walls, leaving thousands homeless. Historians continue to debate the fire's significance, some citing that it destroyed the unsanitary dwellings where infected rats lived and drove them from the city, while others claim that the timings were purely coincidental and that the epidemic had already begun to subside in February.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional counts of the number of deaths registered in England and Wales, by age, sex, region and Index of Multiple Deprivation (IMD), in the latest weeks for which data are available.
Facebook
TwitterFrom the 1630s to the 1830s, the annual number of smallpox deaths in each decade fluctuated greatly in London. The population of London in 1650 is estimated to have stood at 350,000 inhabitants, with an average annual death toll of roughly 680 people during this time. As London's population grew over the next hundred years, the number of smallpox deaths also increased at varying rates in each decade. Scientific advancements flatten the curve The average number of annual smallpox deaths was between 1.7 and 2.5 thousand in each decade between 1710 and 1799, as the introduction of inoculation (i.e. using a mild dose of smallpox to develop some immunity to the virus) helped to lower the smallpox death rate to some extent. Following Jenner's discovery of vaccination in 1796 (which provided a much safer and more reliable method of protection), the death rate decreases further. London's population at this time was just under one million people, and the average number of deaths in the first decade of the 1800s was 1.4 thousand per year (or 1.4 deaths per thousand inhabitants). Vaccination brought this number down even further in the next quarter century, despite the fact that mandatory vaccination was not implemented by the British government until 1853. Smallpox death rate in other capitals While there is little reliable data for other major cities in the seventeenth or early-eighteenth century, London's death rate can be compared with that of Berlin or Copenhagen at the turn of the nineteenth century, during a time of increased urbanization and industrialization. In 1800, Berlin was estimated to have a population of roughly 170,000 people, and Copenhagen's was 100,000. This gave Berlin a smallpox of death rate of roughly 2.7 deaths per thousand in the first decade of the 1800s, and Copenhagen's was 0.67 deaths per thousand. Berlin's smallpox death rate was consistent between 1770 and 1809, while Copenhagen and London's both decrease after vaccination was introduced (Denmark made it mandatory in 1810). Unfortunately, a lack of information from this time makes it difficult to draw further conclusions about the spread of smallpox in urban centers in these years.
Facebook
TwitterThe Black Death was the largest and deadliest pandemic of Yersinia pestis recorded in human history, and likely the most infamous individual pandemic ever documented. The plague originated in the Eurasian Steppes, before moving with Mongol hordes to the Black Sea, where it was then brought by Italian merchants to the Mediterranean. From here, the Black Death then spread to almost all corners of Europe, the Middle East, and North Africa. While it was never endemic to these regions, it was constantly re-introduced via trade routes from Asia (such as the Silk Road), and plague was present in Western Europe until the seventeenth century, and the other regions until the nineteenth century. Impact on Europe In Europe, the major port cities and metropolitan areas were hit the hardest. The plague spread through south-western Europe, following the arrival of Italian galleys in Sicily, Genoa, Venice, and Marseilles, at the beginning of 1347. It is claimed that Venice, Florence, and Siena lost up to two thirds of their total population during epidemic's peak, while London, which was hit in 1348, is said to have lost at least half of its population. The plague then made its way around the west of Europe, and arrived in Germany and Scandinavia in 1348, before travelling along the Baltic coast to Russia by 1351 (although data relating to the death tolls east of Germany is scarce). Some areas of Europe remained untouched by the plague for decades; for example, plague did not arrive in Iceland until 1402, however it swept across the island with devastating effect, causing the population to drop from 120,000 to 40,000 within two years. Reliability While the Black Death affected three continents, there is little recorded evidence of its impact outside of Southern or Western Europe. In Europe, however, many sources conflict and contrast with one another, often giving death tolls exceeding the estimated population at the time (such as London, where the death toll is said to be three times larger than the total population). Therefore, the precise death tolls remain uncertain, and any figures given should be treated tentatively.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Number of deaths registered each month by area of usual residence for England and Wales, by region, county, health authorities, local and unitary authority, and London borough.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Annual data on death registrations by area of usual residence in the UK. Summary tables including age-standardised mortality rates.
Facebook
TwitterFor most years between 1603 and 1680, plague was responsible for less than one percent of all deaths in London. However, when epidemics did break out they could often be responsible for more than half of all deaths in the city during those years, even going as high as 86 percent in 1603. This was the highest share of deaths due to plague in London in the given time period, although the final epidemic shown in the graph is remembered as the most devastating, taking almost 70,000 lives during the Great Plague of London in 1665.
Facebook
TwitterOn 1 April 2025 responsibility for fire and rescue transferred from the Home Office to the Ministry of Housing, Communities and Local Government.
This information covers fires, false alarms and other incidents attended by fire crews, and the statistics include the numbers of incidents, fires, fatalities and casualties as well as information on response times to fires. The Ministry of Housing, Communities and Local Government (MHCLG) also collect information on the workforce, fire prevention work, health and safety and firefighter pensions. All data tables on fire statistics are below.
MHCLG has responsibility for fire services in England. The vast majority of data tables produced by the Ministry of Housing, Communities and Local Government are for England but some (0101, 0103, 0201, 0501, 1401) tables are for Great Britain split by nation. In the past the Department for Communities and Local Government (who previously had responsibility for fire services in England) produced data tables for Great Britain and at times the UK. Similar information for devolved administrations are available at https://www.firescotland.gov.uk/about/statistics/">Scotland: Fire and Rescue Statistics, https://statswales.gov.wales/Catalogue/Community-Safety-and-Social-Inclusion/Community-Safety">Wales: Community safety and https://www.nifrs.org/home/about-us/publications/">Northern Ireland: Fire and Rescue Statistics.
If you use assistive technology (for example, a screen reader) and need a version of any of these documents in a more accessible format, please email alternativeformats@communities.gov.uk. Please tell us what format you need. It will help us if you say what assistive technology you use.
Fire statistics guidance
Fire statistics incident level datasets
https://assets.publishing.service.gov.uk/media/68f0f810e8e4040c38a3cf96/FIRE0101.xlsx">FIRE0101: Incidents attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 143 KB) Previous FIRE0101 tables
https://assets.publishing.service.gov.uk/media/68f0ffd528f6872f1663ef77/FIRE0102.xlsx">FIRE0102: Incidents attended by fire and rescue services in England, by incident type and fire and rescue authority (MS Excel Spreadsheet, 2.12 MB) Previous FIRE0102 tables
https://assets.publishing.service.gov.uk/media/68f20a3e06e6515f7914c71c/FIRE0103.xlsx">FIRE0103: Fires attended by fire and rescue services by nation and population (MS Excel Spreadsheet, 197 KB) Previous FIRE0103 tables
https://assets.publishing.service.gov.uk/media/68f20a552f0fc56403a3cfef/FIRE0104.xlsx">FIRE0104: Fire false alarms by reason for false alarm, England (MS Excel Spreadsheet, 443 KB) Previous FIRE0104 tables
https://assets.publishing.service.gov.uk/media/68f100492f0fc56403a3cf94/FIRE0201.xlsx">FIRE0201: Dwelling fires attended by fire and rescue services by motive, population and nation (MS Excel Spreadsheet, 192 KB) Previous FIRE0201 tables
<span class="gem
Facebook
TwitterDue to changes in the collection and availability of data on COVID-19 this page will no longer be updated. The webpage will no longer be available as of 11 May 2023. On-going, reliable sources of data for COVID-19 are available via the COVID-19 dashboard, Office for National Statistics, and the UKHSA
This page provides a weekly summary of data on deaths related to COVID-19 published by NHS England and the Office for National Statistics. More frequent reporting on COVID-19 deaths is now available here, alongside data on cases, hospitalisations, and vaccinations. This update contains data on deaths related to COVID-19 from:
NHS England COVID-19 Daily Deaths - last updated on 28 June 2022 with data up to and including 27 June 2022.
ONS weekly deaths by Local Authority - last updated on 16 August 2022 with data up to and including 05 August 2022.
Summary notes about each these sources are provided at the end of this document.
Note on interpreting deaths data: statistics from the available sources differ in definition, timing and completeness. It is important to understand these differences when interpreting the data or comparing between sources.
Weekly Key Points
An additional 24 deaths in London hospitals of patients who had tested positive for COVID-19 and an additional 5 where COVID-19 was mentioned on the death certificate were announced in the week ending 27 June 2022. This compares with 40 and 3 for the previous week. A total of 306 deaths in hospitals of patients who had tested positive for COVID-19 and 27 where COVID-19 was mentioned on the death certificate were announced for England as whole. This compares with 301 and 26 for the previous week. The total number of COVID-19 deaths reported in London hospitals of patients who had tested positive for COVID-19 is now 19,102. The total number of deaths in London hospitals where COVID-19 was mentioned on the death certificate is now 1,590. This compares to figures of 119,237 and 8,197 for English hospitals as a whole. Due to the delay between death occurrence and reporting, the estimated number of deaths to this point will be revised upwards over coming days These figures do not include deaths that occurred outside of hospitals. Data from ONS has indicated that the majority (79%) of COVID-19 deaths in London have taken place in hospitals.
Recently announced deaths in Hospitals
21 June 22 June 23 June 24 June 25 June 26 June 27 June London No positive test 0 0 1 4 0 0 0 London Positive test 3 7 2 10 0 0 2 Rest of England No positive test 2 6 4 4 0 0 6 Rest of England Positive test 47 49 41 58 6 0 81
16 May 23 May 30 May 06 June 13 June 20 June 27 June London No positive test 14 3 4 0 4 3 5 London Positive test 45 34 55 20 62 40 24 Rest of England No positive test 41 58 33 23 47 23 22 Rest of England Positive test 456 375 266 218 254 261 282 Deaths by date of occurrence
21 June 22 June 23 June 24 June 25 June 26 June 27 June London 20,683 20,686 20,690 20,691 20,692 20,692 20,692 Rest of England 106,604 106,635 106,679 106,697 106,713 106,733 106,742 Interpreting the data The data published by NHS England are incomplete due to:
delays in the occurrence and subsequent reporting of deaths deaths occurring outside of hospitals not being included
The total deaths reported up to a given point are therefore less than the actual number that have occurred by the same point. Delays in reporting NHS provide the following guidance regarding the delay between occurrence and reporting of deaths: Confirmation of COVID-19 diagnosis, death notification and reporting in central figures can take up to several days and the hospitals providing the data are under significant operational pressure. This means that the totals reported at 5pm on each day may not include all deaths that occurred on that day or on recent prior days. The data published by NHS England for reporting periods from April 1st onward includes both date of occurrence and date of reporting and so it is possible to illustrate the distribution of these reporting delays. This data shows that approximately 10% of COVID-19 deaths occurring in London hospitals are included in the reporting period ending on the same day, and that approximately two-thirds of deaths were reported by two days after the date of occurrence.
Deaths outside of hospitals The data published by NHS England does not include deaths that occur outside of hospitals, i.e. those in homes, hospices, and care homes. ONS have published data for deaths by place of occurrence. This shows that, up to 05 August, 79% of deaths in London recorded as involving COVID-19 occurred in hospitals (this compares with 44% for all causes of death). This would suggest that the NHS England data may underestimate overall deaths from COVID-19 by around 20%.
Comparison of data sources
Note on data sources
NHS England provides numbers of patients who have died in hos
Facebook
TwitterAs of January 12, 2023, COVID-19 has been responsible for 202,157 deaths in the UK overall. The North West of England has been the most affected area in terms of deaths at 28,116, followed by the South East of England with 26,221 coronavirus deaths. Furthermore, there have been 22,264 mortalities in London as a result of COVID-19.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterNumber and percentage of deaths, by month and place of residence, 1991 to most recent year.
Facebook
TwitterFor the week ending August 29, 2025, weekly deaths in England and Wales were 985 below the number expected, compared with 855 below what was expected in the previous week. In late 2022 and through early 2023, excess deaths were elevated for a number of weeks, with the excess deaths figure for the week ending January 13, 2023, the highest since February 2021. In the middle of April 2020, at the height of the COVID-19 pandemic, there were almost 12,000 excess deaths a week recorded in England and Wales. It was not until two months later, in the week ending June 19, 2020, that the number of deaths began to be lower than the five-year average for the corresponding week. Most deaths since 1918 in 2020 In 2020, there were 689,629 deaths in the United Kingdom, making that year the deadliest since 1918, at the height of the Spanish influenza pandemic. As seen in the excess death figures, April 2020 was by far the worst month in terms of deaths during the pandemic. The weekly number of deaths for weeks 16 and 17 of that year were 22,351, and 21,997 respectively. Although the number of deaths fell to more usual levels for the rest of that year, a winter wave of the disease led to a high number of deaths in January 2021, with 18,676 deaths recorded in the fourth week of that year. For the whole of 2021, there were 667,479 deaths in the UK, 22,150 fewer than in 2020. Life expectancy in the UK goes into reverse In 2022, life expectancy at birth for women in the UK was 82.6 years, while for men it was 78.6 years. This was the lowest life expectancy in the country for ten years, and came after life expectancy improvements stalled throughout the 2010s, and then declined from 2020 onwards. There is also quite a significant regional difference in life expectancy in the UK. In the London borough of Kensington and Chelsea, for example, the life expectancy for men was 81.5 years, and 86.5 years for women. By contrast, in Blackpool, in North West England, male life expectancy was just 73.1 years, while for women, life expectancy was lowest in Glasgow, at 78 years.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This mapping tool enables you to see how COVID-19 deaths in your area may relate to factors in the local population, which research has shown are associated with COVID-19 mortality. It maps COVID-19 deaths rates for small areas of London (known as MSOAs) and enables you to compare these to a number of other factors including the Index of Multiple Deprivation, the age and ethnicity of the local population, extent of pre-existing health conditions in the local population, and occupational data. Research has shown that the mortality risk from COVID-19 is higher for people of older age groups, for men, for people with pre-existing health conditions, and for people from BAME backgrounds. London boroughs had some of the highest mortality rates from COVID-19 based on data to April 17th 2020, based on data from the Office for National Statistics (ONS). Analysis from the ONS has also shown how mortality is also related to socio-economic issues such as occupations classified ‘at risk’ and area deprivation. There is much about COVID-19-related mortality that is still not fully understood, including the intersection between the different factors e.g. relationship between BAME groups and occupation. On their own, none of these individual factors correlate strongly with deaths for these small areas. This is most likely because the most relevant factors will vary from area to area. In some cases it may relate to the age of the population, in others it may relate to the prevalence of underlying health conditions, area deprivation or the proportion of the population working in ‘at risk occupations’, and in some cases a combination of these or none of them. Further descriptive analysis of the factors in this tool can be found here: https://data.london.gov.uk/dataset/covid-19--socio-economic-risk-factors-briefing
Facebook
TwitterIntroduction The 2023 mid-year estimate (MYE) is the current official estimate of the population for local authorities in England and Wales. Estimates are produced annually by the Office for National Statistics (ONS) and the 2023 MYE was published on 15 July 2024. Comparison to previous MYE data The previous MYE series (for the period 2012-2020) starts with the 2011 census estimate. Each subsequent year’s population is calculated by adding estimates of births, deaths and migration to the previous year’s population. The 2021 MYE represents a break in this series as it uses the 2021 census as its base. The ONS revised the 2012-2020 MYE series to bring it in line with the 2021 MYE, so that comparisons could be made between between this series and the previous series. The values plotted on the chart are the revised values of the previously published estimates for 2011 to 2022, together with the estimates for 2023. Key Points London’s mid-2023 population was 8.945 million London’s population increased by 76,300 persons compared to the previous mid-year value Components of change were as follows: 105,100 births and 53,500 deaths (natural change of 51,600) Net domestic migration was an outflow of 129,200 Net international migration was an inflow of 154,100 Population Change London’s 2023 population was 8,945,310. The first chart below shows the 2023 MYE in the context of previous estimates. There is an uptick after a temporary decrease in population which we attribute to the COVID-19 pandemic. Components of Change Births, deaths and migration form the components of population change. The 2023 MYE value for births was 4% lower than that in 2022, and for deaths 3% higher. The consequent value for natural change (births - deaths) was 10% lower than in 2022. At -129,000, the value for domestic migration (migration within the UK) was nearly 3% higher than the 2022 value, so still significantly lower than the peak net outflow during the COVID-19 pandemic of -186,000. An outflow of domestic migrants from London is normal and this has been the case each year for the last two decades. This flow is partly because many international in-migrants initially settle in London before moving out to other parts of the UK. The second move in this sequence is counted as a domestic migration. There has been a marked change in immigration since 2021. This can be attributed to the end of free movement for EU nationals, easing of travel restrictions following the COVID 19 pandemic, and the war in Ukraine. At over 150,000, the 2023 MYE value for London’s net international migration was more than 18% higher than 2022, and represents a considerable increase from 78,000 in 2021. Age structure of the population Future Updates The release of the next mid-year estimates is expected in July 2025. The full ONS mid-year population estimates release and back series can be found on the ONS website: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates. For information relating to London’s population see the demography pages of the London Datastore: https://data.london.gov.uk/demography/ or email demography@london.gov.uk. An in-depth review of the available evidence for population change in London since the start of the coronavirus pandemic has been produced by GLA Demography: https://data.london.gov.uk/dataset/population-change-in-london-during-the-pandemic.
Facebook
TwitterThere were 11,480 deaths registered in England and Wales for the week ending November 14, 2025, compared with 11,297 in the previous week. During this time period, the two weeks with the highest number of weekly deaths were in April 2020, with the week ending April 17, 2020, having 22,351 deaths, and the following week 21,997 deaths, a direct result of the COVID-19 pandemic in the UK. Death and life expectancy As of 2022, the life expectancy for women in the UK was just over 82.5 years, and almost 78.6 years for men. Compared with 1765, when average life expectancy was under 39 years, this is a huge improvement in historical terms. Even in the more recent past, life expectancy was less than 47 years at the start of the 20th Century, and was under 70 as recently as the 1950s. Despite these significant developments in the long-term, improvements in life expectancy stalled between 2009/11 and 2015/17, and have even gone into decline since 2020. Between 2020 and 2022, for example, life expectancy at birth fell by 23 weeks for females, and 37 weeks for males. COVID-19 in the UK The first cases of COVID-19 in the United Kingdom were recorded on January 31, 2020, but it was not until a month later that cases began to rise exponentially. By March 5 of this year there were more than 100 cases, rising to 1,000 days later and passing 10,000 cumulative cases by March 26. At the height of the pandemic in late April and early May, there were around six thousand new cases being recorded daily. As of January 2023, there were more than 24.2 million confirmed cumulative cases of COVID-19 recorded in the United Kingdom, resulting in 202,156 deaths.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This is the number of people of all ages killed or seriously injured (KSI) in road traffic accidents, in an area, adjusted. This indicator includes only casualties who are fatally or seriously injured and these categories are defined as follows:
Fatal casualties are those who sustained injuries which caused death less than 30 days after the accident; confirmed suicides are excluded.
Seriously injured casualties are those who sustained an injury for which they are detained in hospital as an in-patient, or any of the following injuries, whether or not they are admitted to hospital: fractures, concussion, internal injuries, crushings, burns (excluding friction burns), severe cuts and lacerations, severe general shock requiring medical treatment and injuries causing death 30 or more days after the accident.
An injured casualty is recorded as seriously or slightly injured by the police on the basis of information available within a short time of the collision. This generally will not reflect the results of a medical examination, but may be influenced according to whether the casualty is hospitalised or not. Hospitalisation procedures will vary regionally.
Slight injuries are excluded from the total, such as a sprain (including neck whiplash injury), bruise or cut which are not judged to be severe, or slight shock requiring roadside attention.
Police forces use one of two systems for recording reported road traffic collisions; the CRaSH (Collision Recording and Sharing) or COPA (Case Overview Preparation Application). Estimates are calculated from figures which are as reported by police. Since 2016, changes in severity reporting systems for a large number of police forces mean that serious injury figures, and to a lesser extent slight injuries, are not comparable with earlier years. As a result, both adjusted and unadjusted killed or seriously injured statistics are available. Further information about the reporting systems can be found here.
Areas with low resident populations but have high inflows of people or traffic may have artificially high rates because the at-risk resident population is not an accurate measure of exposure to transport. This is likely to affect the results for employment centres e.g. City of London and sparsely populated rural areas which have high numbers of visitors or through traffic. Counts for Heathrow Airport are included in the London Region and England totals only.
From the publication of the 2023 statistics onwards, casualty rates shown in table RAS0403 to include rates based on motor vehicle traffic only. This is because the department does not consider pedal cycle traffic to be robust at the local authority level.
Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
An active discussion about the mortality data in Moscow has erupted in the days. The Moscow Times newspaper drew attention to a significant increase in official mortality rates in April 2020: "Moscow recorded 20% more fatalities in April 2020 compared to its average April mortality total over the past decade, according to newly published preliminary data from Moscow’s civil registry office. The data comes as Russia sees the fastest growth in coronavirus infections in Europe, while its mortality rate remains much lower than in many countries. Moscow, the epicenter of Russia’s coronavirus outbreak, has continued to see daily spikes in new cases despite being under lockdown since March 30. According to the official data, 11,846 people died in Russia’s capital in April of this year, roughly a 20% increase from the 10-year average for April deaths, which is 9,866. The numbers suggest that the city’s statistics of coronavirus deaths may be higher in reality than official numbers indicate. Russia boasts a relatively low coronavirus mortality rate of 0.9%, which experts believe is linked to the way coronavirus-related deaths are counted."
After this publication have been realesed The Moscow Department of Health has denied the statement of the inaccuracy of counting.:
First, Moscow is a region that openly publishes mortality data on its websites. Moscow on an initiative basis published data for April before the federal structures did it. Secondly, the comparison of mortality rates in the monthly dynamics is incorrect and is not a clear evidence of any trends. In April 2020, indeed, according to the Civil Registry Office in Moscow, 11,846 death certificates were issued. So, the increase compared to April 2019 amounted to 1841 people, and compared to the same month of 2018 - 985 people, i.e. 2 times less. Thirdly, the diagnosis of coronavirus-infected deaths in Moscow is established after a mandatory autopsy is performed in strict accordance with the Provisional Guidelines of the Russian Ministry of Health.Of the total number of deaths in April 2020, 639 are people whose cause of death is coronavirus infection and its complications, most often pneumonia.It should be emphasized that the pathological autopsy of the dead with suspected CoV-19 in Russia and Moscow is carried out in 100% of cases, unlike most other countries.It is impossible to name the cause of death of COVID-19 in other cases. For example, over 60% of deaths occurred from obvious alternative causes, such as vascular accidents (myocardial infarction and stroke), stage 4 malignant diseases (essentially palliative patients), leukemia, systemic diseases with the development of organ failure (e.g. amyloidosis and terminal renal insufficiency) and other non-curable deadly diseases. Fourth, any seasonal increase in the incidence of SARS, not to mention the pandemic caused by the spread of the new coronavirus, is always accompanied by an increase in mortality. This is due to the appearance of the dead directly from an infectious disease, but to an even greater extent from other diseases, the exacerbation of which and the decompensation of the condition of patients suffering from these diseases also leads to death. In these cases, the infectious onset is a catalyst for the rapid progression of chronic diseases and the manifestation of new diseases. Fifthly, a similar situation with statistics is observed in other countries - mortality from COVID-19 is lower than the overall increase in mortality. According to the official sites of cities:In New York, mortality from coronavirus in April amounted to 11,861 people. At the same time, the total increase in mortality compared to the same period in 2019 is 15709.In London, in April, 3,589 people died with a diagnosis of coronavirus, while the total increase was 5531 Sixth, even if all the additional mortality for April in Moscow is attributed to coronavirus, the mortality from COVID will be slightly more than 3%, which is lower than the official mortality in New York and London (10% and 23%, respectively). Moreover, if you make such a recount in these cities, the mortality rate in them will be 13% and 32%, respectively. Seventh, Moscow is open for discussion and is ready to share experience with both Russian and foreign experts.
I think community members would be interested in studying the data on mortality in the Russian capital themselves and conducting a competent statistical check.
This may be of particular interest in connection with that he [US announced a grant of $ 250 thousand to "expose the disinformation of health care" in Russia](https://www....
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Killed or Seriously Injured (KSI) Road Traffic Accidents Indicator: This indicator measures the percentage change in the number of people killed or seriously injured in road traffic accidents, based on a 3-year rolling average up to the current year. A positive figure indicates improved performance (i.e., a reduction in casualties compared to the previous 3-year period).
Performance Target: For comparability, performance is also assessed against a target to reduce KSI numbers by 40% over 10 years.
Scope: Includes people of all ages killed or seriously injured on the roads. Previously reported as NI 047.
Definitions:
Fatal Casualties: Deaths occurring within 30 days of the accident (excluding confirmed suicides). Seriously Injured Casualties: Injuries requiring hospitalisation or involving fractures, concussion, internal injuries, crushings, burns (excluding friction burns), severe cuts/lacerations, severe shock requiring medical treatment, or injuries causing death 30+ days after the accident. Slight Injuries: Excluded from totals. Includes sprains (e.g., whiplash), bruises, minor cuts, or slight shock requiring roadside attention.
Recording Practices: Police record injuries based on initial information, not medical examination. Hospitalisation practices vary regionally.
Systems Used: Police forces use either CRaSH (Collision Recording and Sharing) or COPA (Case Overview Preparation Application). Estimates are based on police-reported figures.
Data Comparability: Since 2016, changes in severity reporting systems affect comparability of serious and slight injury data. Both adjusted and unadjusted KSI statistics are available.
Further Information: Road Accidents and Considerations: Areas with low resident populations but high traffic inflows (e.g., City of London, rural tourist areas) may show artificially high rates. Heathrow Airport counts are included in London Region and England totals only.
Data is Powered by LG Inform Plus and automatically checked for new data on the 3rd of each month.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Demographic characteristics of all cancer deaths in London from 2001–2010.
Facebook
TwitterOn March 4, 2020, the first death as a result of coronavirus (COVID-19) was recorded in the United Kingdom (UK). The number of deaths in the UK has increased significantly since then. As of January 13, 2023, the number of confirmed deaths due to coronavirus in the UK amounted to 202,157. On January 21, 2021, 1,370 deaths were recorded, which was the highest total in single day in the UK since the outbreak began.
Number of deaths among highest in Europe
The UK has had the highest number of deaths from coronavirus in western Europe. In terms of rate of coronavirus deaths, the UK has recorded 297.8 deaths per 100,000 population.
Cases in the UK The number of confirmed cases of coronavirus in the UK was 24,243,393 as of January 13, 2023. The South East has the highest number of first-episode confirmed cases of the virus in the UK with 3,123,050 cases, while London and the North West have 2,912,859 and 2,580,090 confirmed cases respectively. As of January 16, the UK has had 50 new cases per 100,000 in the last seven days.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterAlthough the Black Death peaked in Europe between 1348 and 1351, plague was almost always present in Britain for the next four centuries. In most years, plague was a dormant threat that affected very few people, and diseases such as smallpox and influenza were much more widespread; however, bubonic plague was prone to outbreaks that could decimate populations in a few short years. In London, plague outbreaks occurred every few decades, usually with death tolls in the tens of thousands. The duration and severity of these epidemics varied, sometimes having high death tolls but subsiding quickly, while others had relatively lower death tolls but could last for a number of years. As London's population and density also grew drastically during this period, plague affected the city differently in the sixteenth and seventeenth centuries. Great Plague of London The final major plague epidemic observed in Britain took place in 1665 and 1666. It became known as the "Great Plague" as it was the last of its kind in Britain, and its death toll eclipsed all other epidemics in the preceding century (although it was much smaller than that of the Black Death). The plague lasted for eighteen months, and had a reported death toll of more than 70,000 in this time; although modern historians estimate that the actual death toll exceeded 100,000. At its peak in September 1665, it is reported that there were more than 7,000 deaths per week, although this may have also been much higher due to the limited records kept at the time. Another reason for the lack of accurate records relating to this epidemic is because of the Great Fire of London in 1666. The fire started on September 02. 1666, and destroyed almost all of the city within the walls, leaving thousands homeless. Historians continue to debate the fire's significance, some citing that it destroyed the unsanitary dwellings where infected rats lived and drove them from the city, while others claim that the timings were purely coincidental and that the epidemic had already begun to subside in February.