The London Heat Map is a tool designed to help you identify areas of high heat demand, explore opportunities for new and expanding district heat networks and to draw potential heat networks and assess their financial feasibility. The new version of the London Heat Map was created for the Greater London Authority by the Centre for Sustainable Energy (CSE) in July 2019. The London Heat Map is regularly updated with new network data and other datasets. Background datasets such as building heat demand was last updated on 26/06/2023. The London Heatmap is a map-based web application you can use to find and appraise opportunities for decentralised energy (DE) projects in London. The map covers the whole of Greater London, and provides very local information to help you identify and develop DE opportunities, including data such as: Heat demand values for each building Locations of potential heat supply sites Locations of existing and proposed district heating networks A spatial heat demand density map layer The map also includes a user-friendly visual tool for heat network design. This is intended to support preliminary techno-economic appraisal of potential district heat networks. The London Heat Map is used by a wide variety of people in numerous ways: London Boroughs can use the new map to help develop their energy master plans. Property developers can use the map to help them meet the decentralised energy policies in the London Plan. Energy consultants can use the map to gather initial data to inform feasibility studies. More information is available here, and an interactive map is available here. Building-level estimated annual and peak heat demand data from the London Heat Map has been made available through the data extracts below. The data was last updated on 26/06/2023. The data contains Ordnance Survey mapping and the data is published under Ordnance Survey's 'presumption to publish'. © Crown copyright and database rights 2023. The Decentralised Energy Master planning programme (DEMaP) The Decentralised Energy Master planning programme (DEMaP), was completed in October 2010. It included a heat mapping support package for the London boroughs to enable them to carry out high resolution heat mapping for their area. To date, heat maps have been produced for 29 London boroughs with the remaining four boroughs carrying out their own data collection. All of the data collected through this process is provided below. Carbon Calculator Tool Arup have produced a Carbon Calculator Tool to assist projects in their early estimation of the carbon dioxide (CO2) savings which could be realised by a district heating scheme with different sources of heating. The calculator's estimates include the impact of a decarbonising the electrical grid over time, based on projections by the Department for Energy and Climate Change, as well as the Government's Standard Assessment Procedure (SAP). The Excel-based tool can be downloaded below. Borough Heat Maps Data and Reports (2012) In March 2012, all London boroughs did a heat mapping exercise. The data from this includes the following and can be downloaded below: Heat Load for all boroughs Heat Supplies for all boroughs Heat Network LDD 2010 database Complete GIS London Heat Map Data The heat maps contain real heat consumption data for priority buildings such as hospitals, leisure centres and local authority buildings. As part of this work, each of the boroughs developed implementation plans to help them take the DE opportunities identified to the next stages. The implementation plans include barriers and opportunities, actions to be taken by the council, key dates, personnel responsible. These can be downloaded below. Other Useful Documents Other useful documents can be downloaded from the links below: Energy Masterplanning Manual Opportunities for Decentralised Energy in London - Vision Map London Heat Network Manual London Heat Network Manual II
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
For an urban heat island map during an average summer see this dataset. A heatwave refers to a prolonged period of unusually hot weather. While there is no standard definition of a heatwave in England, the Met Office uses the World Meteorological Organization definition of a heatwave, which is "when the daily maximum temperature of more than five consecutive days exceeds the average maximum temperature by 5°C, the normal period being 1961-1990". They are common in the northern and southern hemisphere during summer have historically been associated with health problems and an increase in mortality. The urban heat island (UHI) is the phenomenon where temperatures are relatively higher in cities compared to surrounding rural areas due to, for example, the urban surfaces and anthropogenic heat sources. This urban heat island map was produced using LondUM, a specific set-up of the Met Office Unified Model version 6.1 for London. It uses the Met Office Reading Surface Exchange Scheme (MORUSES), as well as urban morphology data derived from Virtual London. The model was run from May until September 2006 and December 2006. This map shows average surface temperatures over the summer period of 2006 at a 1km by 1km resolution. To find out more about LondUM, see the University of Reading’s website. The hourly outputs from LondUM have been aggregated and mapped by Jonathon Taylor, UCL Institute for Environmental Design and Engineering. Variables include: WSAVGMAX= the average of the maximum daily temperatures across the summer period (May 26th-August 31st) WSAVG=the average temperature across the summer period WSAVGMIN = the average minimum daily temperature across the summer period HWAVGMAX= the average of the maximum daily temperatures across the 2006 heatwave (July 16th-19th) HWAVG=the average temperature across the across the 2006 heatwave HWAVGMIN = the average minimum daily temperature across 2006 heatwave period The maps are also available as one combined PDF. The gif below maps the temperatures across London during the four-day period of 16-19th July, which was considered a heatwave. If you make use of the LondUM data, please use the following citation to acknowledge the data and reference the publication below for model description: LondUM (2011). Model data generated by Sylvia I. Bohnenstengel (), Department of Meteorology, University of Reading and data retrieved from http://www.met.reading.ac.uk/~sws07sib/home/LondUM.html. () Now at Metoffice@Reading, Email: sylvia.bohnenstengel@metoffice.gov.uk Bohnenstengel SI, Evans S, Clark P and Belcher SeE (2011) Simulations of the London Urban Heat island. Quarterly journal of the Royal Meteorological Society, 137(659). pp. 1625-1640. ISSN 1477-870X doi 10.1002/qj.855. LondUM data (2013).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A heatwave refers to a prolonged period of unusually hot weather. While there is no standard definition of a heatwave in England, the Met Office generally uses the World Meteorological Organization definition of a heatwave, which is "when the daily maximum temperature of more than five consecutive days exceeds the average maximum temperature by 5°C, the normal period being 1961-1990". They are common in the northern and southern hemisphere during summer, and have historically been associated with health problems and an increase in mortality. The urban heat island (UHI) is the phenomenon where temperatures are relatively higher in cities compared to surrounding rural areas due to, for example, the urban surfaces and anthropogenic heat sources. For an example of an urban heat island map during an average summer, see this dataset. For an example of an urban heat island map during a warm summer, see this dataset. As well as outdoor temperature, an individual’s heat exposure may also depend on the type of building they are inside, if indoors. Indoor temperature exposure may depend on a number of characteristics, such as the building geometry, construction materials, window sizes, and the ability to add extra ventilation. It is also known that people have different vulnerabilities to heat, with some more prone to negative health issues when exposed to high temperatures. This Triple Jeopardy dataset combines: Urban Heat Island information for London, based on the 55 days between May 26th -July 19th 2006, where the last four days were considered a heatwave An estimate of the indoor temperatures for individual dwellings in London across this time period Population age, as a proxy for heat vulnerability, and distribution From this, local levels of heat-related mortality were estimated using a mortality model derived from epidemiological data. The dataset comprises four layers: Ind_Temp_A – indoor Temperature Anomaly is the difference in degrees Celsius between the estimated indoor temperatures for dwellings and the average indoor temperature estimate for the whole of London, averaged by ward. Positive numbers show dwellings with a greater tendency to overheat in comparison with the London average HeatMortpM – total estimated mortality due to heat (outdoor and indoor) per million population over the entire 55 day period, inclusive of age effects HeatMorUHI – estimated mortality per million population due to increased outdoor temperature exposure caused by the UHI over the 55 day period (excluding the effect of overheating housing), inclusive of age effects HeatMorInd - estimated mortality per million population due to increased temperature exposure caused by heat-vulnerable dwellings (excluding the effect of the UHI) over the 55 day period, inclusive of age effects More information is on this website and in the Triple Jeopardy leaflet. The maps are also available as one combined PDF. More information is on this website and in the Triple Jeopardy leaflet.
The Properties Vulnerable to Heat Impact report, produced by Arup, maps London's heat risk across homes, neighbourhoods, and essential properties in the wake of climate change.
The study focused on essential settings, emphasising areas where occupants are especially vulnerable to heat-related hazards. This included schools, hospitals, care homes residential properties and neighbourhoods.
Properties Vulnerable to Heat Impact Report | London City Hall
A series of London-wide climate risk maps has been produced to analyse climate exposure and vulnerability across Greater London. These maps were produced by Bloomberg Associates in collaboration with the Greater London Authority to help the GLA and other London-based organisations deliver equitable responses to the impacts of climate change and target resources to support communities at highest risk.
Climate vulnerability relates to people’s exposure to climate impacts like flooding or heatwaves, but also to personal and social factors that affect their ability to cope with and respond to extreme events. High climate risk coincides with areas of income and health inequalities. A series of citywide maps overlays key metrics to identify areas within London that are most exposed to climate impacts with high concentrations of vulnerable populations.
In 2022, Bloomberg Associates updated London’s climate risk maps to include additional data layers at a finer geographic scale (LSOA boundaries). These maps were built upon earlier maps using the Transport for London (Tfl) hexagonal grid (often referred to in this report as the “Hex Grid”). In addition, the map interface was updated to allow users to compare individual data layers to the Overall, Heat and Flooding Climate Risk maps. Users can now also see the specific metrics for each individual LSOA to understand which factors are driving risk throughout the city.
In 2024, Bloomberg Associates further modernized the climate risk maps by updating the social factor layers to employ more recent (2021) census data. In addition, air temperature at the surface was used in place of just surface temperature, as a more accurate assessment of felt heat.
The Mayor is addressing these climate risks and inequalities through the work of the London Recovery Board, which includes projects and programmes to address climate risks and ensure a green recovery from the pandemic. Ambitious policies in the London Environment Strategy and recently published new London Plan are also addressing London’s climate risks.
The data layers at the LSOA level are available here to use in GIS software:
Climate risk scores (overall, heat, and flood): https://cityhall.maps.arcgis.com/home/item.html?id=22484ef240624e149735ca1aaa4c9ade#
Social and physical risk variables: https://cityhall.maps.arcgis.com/home/item.html?id=bc06d80731f146b393f8631a0f98c213#
[Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average percentage change between the 'lower' values before and after this update is -1%.]What does the data show? A Heating Degree Day (HDD) is a day in which the average temperature is below 15.5°C. It is the number of degrees above this threshold that counts as a Heating Degree Day. For example if the average temperature for a specific day is 15°C, this would contribute 0.5 Heating Degree Days to the annual sum, alternatively an average temperature of 10.5°C would contribute 5 Heating Degree Days. Given the data shows the annual sum of Heating Degree Days, this value can be above 365 in some parts of the UK.Annual Heating Degree Days is calculated for two baseline (historical) periods 1981-2000 (corresponding to 0.51°C warming) and 2001-2020 (corresponding to 0.87°C warming) and for global warming levels of 1.5°C, 2.0°C, 2.5°C, 3.0°C, 4.0°C above the pre-industrial (1850-1900) period. This enables users to compare the future number of HDD to previous values.What are the possible societal impacts?Heating Degree Days indicate the energy demand for heating due to cold days. A higher number of HDD means an increase in power consumption for heating, therefore this index is useful for predicting future changes in energy demand for heating.What is a global warming level?Annual Heating Degree Days are calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Annual Heating Degree Days, an average is taken across the 21 year period. Therefore, the Annual Heating Degree Days show the number of heating degree days that could occur each year, for each given level of warming. We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?This data contains a field for each warming level and two baselines. They are named ‘HDD’ (Heating Degree Days), the warming level or baseline, and 'upper' 'median' or 'lower' as per the description below. E.g. 'HDD 2.5 median' is the median value for the 2.5°C projection. Decimal points are included in field aliases but not field names e.g. 'HDD 2.5 median' is 'HDD_25_median'. To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘HDD 2.0°C median’ values.What do the ‘median’, ‘upper’, and ‘lower’ values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future. For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, Annual Heating Degree Days were calculated for each ensemble member and they were then ranked in order from lowest to highest for each location. The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline periods as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksThis dataset was calculated following the methodology in the ‘Future Changes to high impact weather in the UK’ report and uses the same temperature thresholds as the 'State of the UK Climate' report.Further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitationshttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/noLimitations
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This vector dataset represents the calculated, estimated temperature distribution at 100 m depth. Method described in Busby, J., Lewis, M., Reeves, H. and Lawley, R., 2009, August. Initial geological considerations before installing ground source heat pump systems. Geological Society of London.
[Updated 28/01/25 to fix an issue in the ‘Lower’ values, which were not fully representing the range of uncertainty. ‘Median’ and ‘Higher’ values remain unchanged. The size of the change varies by grid cell and fixed period/global warming levels but the average difference between the 'lower' values before and after this update is 0.2.]What does the data show? The Annual Count of Hot Summer Days is the number of days per year where the maximum daily temperature is above 30°C. It measures how many times the threshold is exceeded (not by how much) in a year. Note, the term ‘hot summer days’ is used to refer to the threshold and temperatures above 30°C outside the summer months also contribute to the annual count. The results should be interpreted as an approximation of the projected number of days when the threshold is exceeded as there will be many factors such as natural variability and local scale processes that the climate model is unable to represent.The Annual Count of Hot Summer Days is calculated for two baseline (historical) periods 1981-2000 (corresponding to 0.51°C warming) and 2001-2020 (corresponding to 0.87°C warming) and for global warming levels of 1.5°C, 2.0°C, 2.5°C, 3.0°C, 4.0°C above the pre-industrial (1850-1900) period. This enables users to compare the future number of hot summer days to previous values.What are the possible societal impacts?The Annual Count of Hot Summer Days indicates increased health risks, transport disruption and damage to infrastructure from high temperatures. It is based on exceeding a maximum daily temperature of 30°C. Impacts include:Increased heat related illnesses, hospital admissions or death.Transport disruption due to overheating of railway infrastructure. Overhead power lines also become less efficient. Other metrics such as the Annual Count of Summer Days (days above 25°C), Annual Count of Extreme Summer Days (days above 35°C) and the Annual Count of Tropical Nights (where the minimum temperature does not fall below 20°C) also indicate impacts from high temperatures, however they use different temperature thresholds.What is a global warming level?The Annual Count of Hot Summer Days is calculated from the UKCP18 regional climate projections using the high emissions scenario (RCP 8.5) where greenhouse gas emissions continue to grow. Instead of considering future climate change during specific time periods (e.g. decades) for this scenario, the dataset is calculated at various levels of global warming relative to the pre-industrial (1850-1900) period. The world has already warmed by around 1.1°C (between 1850–1900 and 2011–2020), whilst this dataset allows for the exploration of greater levels of warming. The global warming levels available in this dataset are 1.5°C, 2°C, 2.5°C, 3°C and 4°C. The data at each warming level was calculated using a 21 year period. These 21 year periods are calculated by taking 10 years either side of the first year at which the global warming level is reached. This time will be different for different model ensemble members. To calculate the value for the Annual Count of Hot Summer Days, an average is taken across the 21 year period. Therefore, the Annual Count of Hot Summer Days show the number of hot summer days that could occur each year, for each given level of warming. We cannot provide a precise likelihood for particular emission scenarios being followed in the real world future. However, we do note that RCP8.5 corresponds to emissions considerably above those expected with current international policy agreements. The results are also expressed for several global warming levels because we do not yet know which level will be reached in the real climate as it will depend on future greenhouse emission choices and the sensitivity of the climate system, which is uncertain. Estimates based on the assumption of current international agreements on greenhouse gas emissions suggest a median warming level in the region of 2.4-2.8°C, but it could either be higher or lower than this level.What are the naming conventions and how do I explore the data?This data contains a field for each global warming level and two baselines. They are named ‘HSD’ (where HSD means Hot Summer Days), the warming level or baseline, and ‘upper’ ‘median’ or ‘lower’ as per the description below. E.g. ‘Hot Summer Days 2.5 median’ is the median value for the 2.5°C warming level. Decimal points are included in field aliases but not field names e.g. ‘Hot Summer Days 2.5 median’ is ‘HotSummerDays_25_median’. To understand how to explore the data, see this page: https://storymaps.arcgis.com/stories/457e7a2bc73e40b089fac0e47c63a578Please note, if viewing in ArcGIS Map Viewer, the map will default to ‘HSD 2.0°C median’ values.What do the ‘median’, ‘upper’, and ‘lower’ values mean?Climate models are numerical representations of the climate system. To capture uncertainty in projections for the future, an ensemble, or group, of climate models are run. Each ensemble member has slightly different starting conditions or model set-ups. Considering all of the model outcomes gives users a range of plausible conditions which could occur in the future. For this dataset, the model projections consist of 12 separate ensemble members. To select which ensemble members to use, the Annual Count of Hot Summer Days was calculated for each ensemble member and they were then ranked in order from lowest to highest for each location. The ‘lower’ fields are the second lowest ranked ensemble member. The ‘upper’ fields are the second highest ranked ensemble member. The ‘median’ field is the central value of the ensemble.This gives a median value, and a spread of the ensemble members indicating the range of possible outcomes in the projections. This spread of outputs can be used to infer the uncertainty in the projections. The larger the difference between the lower and upper fields, the greater the uncertainty.‘Lower’, ‘median’ and ‘upper’ are also given for the baseline periods as these values also come from the model that was used to produce the projections. This allows a fair comparison between the model projections and recent past. Useful linksThis dataset was calculated following the methodology in the ‘Future Changes to high impact weather in the UK’ report and uses the same temperature thresholds as the 'State of the UK Climate' report.Further information on the UK Climate Projections (UKCP).Further information on understanding climate data within the Met Office Climate Data Portal.
Heatwaves are becoming more frequent and intense, yet many countries remain inadequately prepared to manage their impacts. Existing heat risk plans and responses often fail to account for the complex interdependencies among the various causes and impact pathways of heat waves.
Effective planning requires a system-level understanding of these interdependencies to identify strategic entry points for action. This research employs a participatory system mapping approach to explore the interconnections among causes, impacts, and response actions during the UK heatwave events of summer 2022. Cognitive maps were developed shortly after the events, incorporating input from 38 stakeholders across sectors involved in the heatwave response. These maps informed a forensic disaster analysis designed to provide a holistic understanding of the heatwave’s causes, impacts, and adaptation measures.
By analysing the interdependencies among these factors, we identified cascading effects and amplifiers that significantly intensified heat risk in the UK. Notably, we find that the primary heatwave impacts were often indirect, emerging or worsening due to cascading effects such as wildfires, drought, transportation disruptions, and the overburdening of first responders. In many cases, adaptation measures were reactive, addressing isolated, short-term impacts, while proactive, system-level approaches tackling interconnected impacts and root causes—such as vulnerable buildings, at-risk populations, and behavioural barriers—were largely absent. Additionally, we found notable variations in heat risk perceptions among groups. While individual sectors displayed a limited understanding of the broader heat risk system, a system-level perspective emerged through the aggregation of cognitive maps. The implications for adaptation research and policy are discussed.
The Place-Based Climate Action Network (P-CAN) seeks to strengthen the links between national and international climate policy and local delivery through place-based climate action. The Network is innovative in its focus on local decision making. Clear policy signals by the government are essential, but the key to continued climate action increasingly lies at the local level, with the participation of local actors, businesses and citizens. Important decisions about low-carbon business opportunities, renewable energy investment, urban transport, energy management, buildings efficiency and the management of climate risks are decentralised and taken across the UK.
P-CAN is about engagement, impact, and the co-creation and sharing of knowledge. The Network has the following components:
Place-based climate change commissions: We will develop three city-level climate commissions, in Belfast, Edinburgh and Leeds. The concept is currently being piloted in Leeds as an innovative structure for sustained two-way, multi-level engagement between national and local policy and practice. We will work on the replication of these commissions in other local context to further broaden our reach.
Thematic platforms: There will be two theme-based platforms, on business engagement and green finance. These virtual networks will focus on two stakeholder groups that are particularly important for place-based climate action. They will be co-created with representatives from the business and sustainable finance community.
The P-CAN Flexible Fund: We will open the Network to the wider community of climate change researchers and research users by commissioning 20-30 small grants. The grants will be awarded competitively, with a focus on engagement activities, user-oriented analysis, innovative approaches and support for early-career researchers.
Communication and user-oriented research synthesis: An active outreach strategy will connect the place-based activities and inform wider climate action by co-producing, synthesising and communicating decision-relevant analysis. This programme of user-oriented outreach will leverage the work of P-CAN's host institutions and other ESRC investments.
P-CAN is led by an experienced team of senior academics from a diversity of backgrounds. They all have strong track records of engaging with decision processes at the local, national and/or international level. Most of them have combined academic achievements with careers in business, finance, or international development. The Network PI is a former member of the Committee on Climate Change.
The core team is supported by a full-time Network Manager, a Communications Officer and a group of Network Analysts who will provide analytical, administrative and logistics support for the five platforms (three local commissions and two thematic platforms). P-CAN will, to the maximum extent possible, leverage the existing administrative, research and engagement capabilities of its host institutions, including the ESRC Centre for Climate Change Economics and Policy, the Edinburgh Centre for Carbon Innovation, and...
The highest average temperature recorded in 2024 until November was in August, at 16.8 degrees Celsius. Since 2015, the highest average daily temperature in the UK was registered in July 2018, at 18.7 degrees Celsius. The summer of 2018 was the joint hottest since institutions began recording temperatures in 1910. One noticeable anomaly during this period was in December 2015, when the average daily temperature reached 9.5 degrees Celsius. This month also experienced the highest monthly rainfall in the UK since before 2014, with England, Wales, and Scotland suffering widespread flooding. Daily hours of sunshine Unsurprisingly, the heat wave that spread across the British Isles in 2018 was the result of particularly sunny weather. July 2018 saw an average of 8.7 daily sun hours in the United Kingdom. This was more hours of sun than was recorded in July 2024, which only saw 5.8 hours of sun. Temperatures are on the rise Since the 1960s, there has been an increase in regional temperatures across the UK. Between 1961 and 1990, temperatures in England averaged nine degrees Celsius, and from 2013 to 2022, average temperatures in the country had increased to 10.3 degrees Celsius. Due to its relatively southern location, England continues to rank as the warmest country in the UK.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
The London Heat Map is a tool designed to help you identify areas of high heat demand, explore opportunities for new and expanding district heat networks and to draw potential heat networks and assess their financial feasibility. The new version of the London Heat Map was created for the Greater London Authority by the Centre for Sustainable Energy (CSE) in July 2019. The London Heat Map is regularly updated with new network data and other datasets. Background datasets such as building heat demand was last updated on 26/06/2023. The London Heatmap is a map-based web application you can use to find and appraise opportunities for decentralised energy (DE) projects in London. The map covers the whole of Greater London, and provides very local information to help you identify and develop DE opportunities, including data such as: Heat demand values for each building Locations of potential heat supply sites Locations of existing and proposed district heating networks A spatial heat demand density map layer The map also includes a user-friendly visual tool for heat network design. This is intended to support preliminary techno-economic appraisal of potential district heat networks. The London Heat Map is used by a wide variety of people in numerous ways: London Boroughs can use the new map to help develop their energy master plans. Property developers can use the map to help them meet the decentralised energy policies in the London Plan. Energy consultants can use the map to gather initial data to inform feasibility studies. More information is available here, and an interactive map is available here. Building-level estimated annual and peak heat demand data from the London Heat Map has been made available through the data extracts below. The data was last updated on 26/06/2023. The data contains Ordnance Survey mapping and the data is published under Ordnance Survey's 'presumption to publish'. © Crown copyright and database rights 2023. The Decentralised Energy Master planning programme (DEMaP) The Decentralised Energy Master planning programme (DEMaP), was completed in October 2010. It included a heat mapping support package for the London boroughs to enable them to carry out high resolution heat mapping for their area. To date, heat maps have been produced for 29 London boroughs with the remaining four boroughs carrying out their own data collection. All of the data collected through this process is provided below. Carbon Calculator Tool Arup have produced a Carbon Calculator Tool to assist projects in their early estimation of the carbon dioxide (CO2) savings which could be realised by a district heating scheme with different sources of heating. The calculator's estimates include the impact of a decarbonising the electrical grid over time, based on projections by the Department for Energy and Climate Change, as well as the Government's Standard Assessment Procedure (SAP). The Excel-based tool can be downloaded below. Borough Heat Maps Data and Reports (2012) In March 2012, all London boroughs did a heat mapping exercise. The data from this includes the following and can be downloaded below: Heat Load for all boroughs Heat Supplies for all boroughs Heat Network LDD 2010 database Complete GIS London Heat Map Data The heat maps contain real heat consumption data for priority buildings such as hospitals, leisure centres and local authority buildings. As part of this work, each of the boroughs developed implementation plans to help them take the DE opportunities identified to the next stages. The implementation plans include barriers and opportunities, actions to be taken by the council, key dates, personnel responsible. These can be downloaded below. Other Useful Documents Other useful documents can be downloaded from the links below: Energy Masterplanning Manual Opportunities for Decentralised Energy in London - Vision Map London Heat Network Manual London Heat Network Manual II