Canada's coastline has a length of ******* kilometers and is considered the longest coastline worldwide. Canada is surrounded by three oceans: the Atlantic Ocean on the east, the Pacific Ocean on the west, and the Arctic Ocean to the north.
The United States has a total coastline measuring approximately ****** miles, and a shoreline measuring ****** miles. Alaska is, by far, the state with the longest individual coastline or shoreline, and its coastline is even considered longer than all other states combined. The mainland's west coast has a combined length of ***** miles (shore: ***** miles), while the southern and eastern coast (from Texas to Maine) have a combined length of ***** miles (shore: ****** miles).
Within the Asia-Pacific region, Indonesia had the largest coastline coverage in 2023 with ***** thousand kilometers, followed by the Philippines with ***** kilometers. Comparatively, Singapore had the coastline coverage of nearly *********** kilometers.
During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The USGS Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion along the southeast US coastline and implications for vulnerability to future storms.
The islands of Andaman and Nicobar had the longest coastline in India in 2021, amounting to just over ***** kilometers. They were followed by Gujarat. The state with the smallest coastline during the measured time period was the union territory of Daman and Diu. The country's coastline amounted to more than ************** kilometers during the measured time period.
[Metadata] Description: Coastlines for the main eight Hawaiian Islands. Source: USGS Digital Line Graphs, 1983 version. Extracted from USGS Digital Line Graphs by Office of Planning staff, 1988. June 2024: Hawaii Statewide GIS Program staff removed extraneous fields that had been added as part of a 2016 GIS database conversion and were no longer needed.For additional information, please refer to complete metadata at https://files.hawaii.gov/dbedt/op/gis/data/coastline.pdf or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, HI 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
The statistic presents the length of coastlines in Japan in 2015, broken down by prefecture. During the measured period, the northern Hokkaido Prefecture had the longest coastlines in Japan. With a length of approximately ***** kilometers, Nagasaki Prefecture had the second longest coast in the Japanese archipelago.
Long-term (78-177 years) rates of shoreline change have been computed for open-ocean shorelines of the conterminous United States and parts of Hawaii ranging from 1800's to 2018. Shorelines were compiled from National Oceanic and Atmospheric Administration T-sheets, air photos, and lidar data. These data are used to calculate rates of shoreline change using a linear regression method for the U.S. Geological Survey's National Assessment Project.
This dataset consists of long-term (100+ years) linear regression shoreline change rates for the North Shore region of Massachusetts. Rates of long-term shoreline change were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 5.0, an ArcGIS extension developed by the U.S. Geological Survey. The baseline is used as a reference line for the transects cast by the DSAS software. The transects intersect each shoreline at the measurement points, which are then used to calculate a linear regression rate for the Massachusetts Office of Coastal Zone Management Shoreline Change Project. Long-term linear regression statistics were calculated with all of the historical shorelines compiled for the Massachusetts Office of Coastal Zone Management Shoreline Change Project. Due to continued coastal population growth and increased threats of erosion, current data on trends and rates of shoreline movement are required to inform shoreline and floodplain management. The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. In the Massachusetts Shoreline Change Mapping and Analysis Project 2013 Update, two oceanfront shorelines for Massachusetts (approximately 1,800 km) were (1) delineated using 2008/09 color aerial orthoimagery, and (2) extracted from topographic LIDAR datasets (2007) obtained from NOAA's Ocean Service, Coastal Services Center. The most recent 2018 data release includes rates that incorporate two new mean high water (MHW) shorelines for the Massachusetts coast extracted from lidar data collected between 2010 and 2014. The new shorelines were integrated with existing Massachusetts Office of Coastal Zone Management and USGS historical shoreline data in order to compute long- and short-term rates using the latest version of the Digital Shoreline Analysis System (DSAS)
This dataset consists of long-term (100+ years) shoreline change rates for the New England South region from Dartmouth, Massachusetts to Napatree Point, Rhode Island. Rate calculations were computed within a GIS using the Digital Shoreline Analysis System (DSAS) version 4.1, an ArcGIS extension developed by the U.S. Geological Survey. Long-term rates of shoreline change were calculated using a linear regression rate based on all available shoreline data. A reference baseline was used as the originating point for the orthogonal transects cast by the DSAS software. The transects intersect each shoreline establishing measurement points, which are then used to calculate long-term rates. Sandy ocean beaches are a popular recreational destination, often surrounded by communities containing valuable real estate. Development is on the rise despite the fact that coastal infrastructure is subjected to flooding and erosion. As a result, there is an increased demand for accurate information regarding past and present shoreline changes. To meet these national needs, the Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) is compiling existing reliable historical shoreline data along open-ocean sandy shores of the conterminous United States and parts of Alaska and Hawaii under the National Assessment of Shoreline Change project. There is no widely accepted standard for analyzing shoreline change. Existing shoreline data measurements and rate calculation methods vary from study to study and prevent combining results into state-wide or regional assessments. The impetus behind the National Assessment project was to develop a standardized method of measuring changes in shoreline position that is consistent from coast to coast. The goal was to facilitate the process of periodically and systematically updating the results in an internally consistent manner.
Due to continued coastal population growth and increased threats of erosion, current data on trends and rates of shoreline movement are required to inform shoreline and floodplain management. The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast.
The Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) in cooperation with the Massachusetts Office of Coastal Zone Management, has compiled reliable historical shoreline data along open-facing sections of the Massachusetts coast under the Massachusetts Shoreline Change Mapping and Analysis Project 2013 Update. Two oceanfront shorelines for Massachusetts (approximately 1,800 km in total length) were (1) delineated using 2008/09 color aerial orthoimagery, and (2) extracted from topographic LIDAR datasets (2007) obtained from NOAA's Ocean Service, Coastal Services Center. The new shorelines were integrated with existing Massachusetts Office of Coastal Zone Management and USGS historical shoreline data in order to compute long- and short-term rates using the latest version of the Digital Shoreline Analysis System (DSAS).
During Hurricane Irma in September 2017, Florida and Georgia experienced significant impacts to beaches, dunes, barrier islands, and coral reefs. Extensive erosion and coral losses result in increased immediate and long-term hazards to shorelines that include densely populated regions. These hazards put critical infrastructure at risk to future flooding and erosion and may cause economic losses. The USGS Coastal and Marine Hazards Resources Program (CMHRP) is assessing hurricane-induced coastal erosion along the southeast US coastline and implications for vulnerability to future storms.
Due to continued coastal population growth and increased threats of erosion, current data on trends and rates of shoreline movement are required to inform shoreline and floodplain management. The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. The Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) in cooperation with the Massachusetts Office of Coastal Zone Management, has compiled reliable historical shoreline data along open-facing sections of the Massachusetts coast under the Massachusetts Shoreline Change Mapping and Analysis Project 2013 Update. Two oceanfront shorelines for Massachusetts (approximately 1,800 km) were (1) delineated using 2008/09 color aerial orthoimagery, and (2) extracted from topographic LIDAR datasets (2007) obtained from NOAA's Ocean Service, Coastal Services Center. The new shorelines were integrated with existing Massachusetts Office of Coastal Zone Management and USGS historical shoreline data in order to compute long- and short-term rates using the latest version of the Digital Shoreline Analysis System (DSAS).
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast and support local land-use decisions. Trends of shoreline position over long and short-term timescales provide information to landowners, managers, and potential buyers about possible future impacts to coastal resources and infrastructure. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013 two oceanfront shorelines for Massachusetts were added using 2008-2009 color aerial orthoimagery and 2007 topographic lidar datasets obtained from NOAA's Ocean Service, Coastal Services Center. In 2018, two new mean high water (MHW) shorelines for the Massachusetts coast extracted from lidar data between 2010-2014 were added to the dataset. This 2021 data release includes rates that incorporate one new shoreline extracted from 2018 lidar data collected by the U.S. Army Corps of Engineers (USACE) Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX), added to the existing database of all historical shorelines (1844-2014), for the North Shore, South Shore, Cape Cod Bay, Outer Cape, Buzzard’s Bay, South Cape, Nantucket, and Martha’s Vineyard. 2018 lidar data did not cover the Boston or Elizabeth Islands regions. Included in this data release is a proxy-datum bias reference line that accounts for the positional difference in a proxy shoreline (like a High Water Line shoreline) and a datum shoreline (like a Mean High Water shoreline. This issue is explained further in Ruggiero and List (2009) and in the process steps of the metadata associated with the rates. This release includes both long-term (~150+ years) and short term (~30 years) rates. Files associated with the long-term rates have "LT"; in their names, files associated with short-term rates have "ST"; in their names.
Due to continued coastal population growth and increased threats of erosion, current data on trends and rates of shoreline movement are required to inform shoreline and floodplain management. The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. The Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) in cooperation with the Massachusetts Office of Coastal Zone Management, has compiled reliable historical shoreline data along open-facing sections of the Massachusetts coast under the Massachusetts Shoreline Change Mapping and Analysis Project 2013 Update. Two oceanfront shorelines for Massachusetts (approximately 1,800 km) were (1) delineated using 2008/09 color aerial orthoimagery, and (2) extracted from topographic LIDAR datasets (2007) obtained from NOAA's Ocean Service, Coastal Services Center. The new shorelines were integrated with existing Massachusetts Office of Coastal Zone Management and USGS historical shoreline data in order to compute long- and short-term rates using the latest version of the Digital Shoreline Analysis System (DSAS).
During the measured time period, the length of the coast in Sabah state in Malaysia was approximately ******* kilometers, the longest among all other states. Meanwhile, the length of the coast in Sarawak state was around ******* kilometers.
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate two new mean high water (MHW) shorelines for the Massachusetts coast extracted from lidar data collected between 2010 and 2014. The first new shoreline for the State includes data from 2010 along the North Shore and South Coast from lidar data collected by the U.S. Army Corps of Engineers (USACE) Joint Airborne Lidar Bathymetry Technical Center of Expertise. Shorelines along the South Shore and Outer Cape are from 2011 lidar data collected by the U.S. Geological Survey's (USGS) National Geospatial Program Office. Shorelines along Nantucket and Martha’s Vineyard are from a 2012 USACE Post Sandy Topographic lidar survey. The second new shoreline for the North Shore, Boston, South Shore, Cape Cod Bay, Outer Cape, South Cape, Nantucket, Martha’s Vineyard, and the South Coast (around Buzzards Bay to the Rhode Island Border) is from 2013-14 lidar data collected by the (USGS) Coastal and Marine Geology Program. This 2018 update of the rate of shoreline change in Massachusetts includes two types of rates. Some of the rates include a proxy-datum bias correction, this is indicated in the filename with “PDB”. The rates that do not account for this correction have “NB” in their file names. The proxy-datum bias is applied because in some areas a proxy shoreline (like a High Water Line shoreline) has a bias when compared to a datum shoreline (like a Mean High Water shoreline). In areas where it exists, this bias should be accounted for when calculating rates using a mix of proxy and datum shorelines. This issue is explained further in Ruggiero and List (2009) and in the process steps of the metadata associated with the rates. This release includes both long-term (~150 years) and short term (~30 years) rates. Files associated with the long-term rates have “LT” in their names, files associated with short-term rates have “ST” in their names.
This dataset includes shorelines from 165 years ranging from 1844 to 2009 within the Buzzards Bay coastal region of Massachusetts from Nobska Point in Woods Hole to Westport at the Rhode Island border. Shorelines were compiled from T-sheets and air-photos obtained from the National Oceanic and Atmospheric Administration (NOAA) and the Massachusetts Office of Coastal Zone Management (MA CZM), and lidar obtained from the US Geological Survey (USGS). Historical shoreline positions serve as easily understood features that can be used to describe the movement of beaches through time. These data are used to calculate rates of shoreline change for the MA CZM Shoreline Change Project. Rates of long-term and short-term shoreline change were generated in a GIS using the Digital Shoreline Analysis System (DSAS) version 4.3. DSAS uses a measurement baseline method to calculate rate-of-change statistics. Transects are cast from the reference baseline to intersect each shoreline, establishing measurement points used to calculate shoreline change rates. For publication purposes, the shoreline data for Massachusetts were organized by region in order match the extent of previously published uncertainty files used in shoreline change calculations. Due to continued coastal population growth and increased threats of erosion, current data on trends and rates of shoreline movement are required to inform shoreline and floodplain management. The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. The Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) in cooperation with the Massachusetts Office of Coastal Zone Management, has compiled reliable historical shoreline data along open-facing sections of the Massachusetts coast under the Massachusetts Shoreline Change Mapping and Analysis Project 2013 Update. Two oceanfront shorelines for Massachusetts (approximately 1,800 km) were (1) delineated using 2008/09 color aerial orthoimagery, and (2) extracted from topographic LIDAR datasets (2007) obtained from NOAA's Ocean Service, Coastal Services Center. The new shorelines were integrated with existing Massachusetts Office of Coastal Zone Management (MA CZM) and USGS historical shoreline data in order to compute long- and short-term rates using the latest version of the Digital Shoreline Analysis System (DSAS). .
Due to continued coastal population growth and increased threats of erosion, current data on trends and rates of shoreline movement are required to inform shoreline and floodplain management. The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. In 2001, a 1994 shoreline was added to calculate both long- and short-term shoreline change rates at 40-meter intervals along ocean-facing sections of the Massachusetts coast. The Coastal and Marine Geology Program of the U.S. Geological Survey (USGS) in cooperation with the Massachusetts Office of Coastal Zone Management, has compiled reliable historical shoreline data along open-facing sections of the Massachusetts coast under the Massachusetts Shoreline Change Mapping and Analysis Project 2013 Update. Two oceanfront shorelines for Massachusetts (approximately 1,800 km) were (1) delineated using 2008/09 color aerial orthoimagery, and (2) extracted from topographic LIDAR datasets (2007) obtained from NOAA's Ocean Service, Coastal Services Center. The new shorelines were integrated with existing Massachusetts Office of Coastal Zone Management and USGS historical shoreline data in order to compute long- and short-term rates using the latest version of the Digital Shoreline Analysis System (DSAS).
The Massachusetts Office of Coastal Zone Management launched the Shoreline Change Project in 1989 to identify erosion-prone areas of the coast. The shoreline position and change rate are used to inform management decisions regarding the erosion of coastal resources. In 2001, a shoreline from 1994 was added to calculate both long- and short-term shoreline change rates along ocean-facing sections of the Massachusetts coast. In 2013, two oceanfront shorelines for Massachusetts were added using 2008-9 color aerial orthoimagery and 2007 topographic lidar datasets obtained from the National Oceanic and Atmospheric Administration's Ocean Service, Coastal Services Center. This 2018 data release includes rates that incorporate two new mean high water (MHW) shorelines for the Massachusetts coast extracted from lidar data collected between 2010 and 2014. The first new shoreline for the State includes data from 2010 along the North Shore and South Coast from lidar data collected by the U.S. Army Corps of Engineers (USACE) Joint Airborne Lidar Bathymetry Technical Center of Expertise. Shorelines along the South Shore and Outer Cape are from 2011 lidar data collected by the U.S. Geological Survey's (USGS) National Geospatial Program Office. Shorelines along Nantucket and Martha’s Vineyard are from a 2012 USACE Post Sandy Topographic lidar survey. The second new shoreline for the North Shore, Boston, South Shore, Cape Cod Bay, Outer Cape, South Cape, Nantucket, Martha’s Vineyard, and the South Coast (around Buzzards Bay to the Rhode Island Border) is from 2013-14 lidar data collected by the (USGS) Coastal and Marine Geology Program. This 2018 update of the rate of shoreline change in Massachusetts includes two types of rates. Some of the rates include a proxy-datum bias correction, this is indicated in the filename with “PDB”. The rates that do not account for this correction have “NB” in their file names. The proxy-datum bias is applied because in some areas a proxy shoreline (like a High Water Line shoreline) has a bias when compared to a datum shoreline (like a Mean High Water shoreline). In areas where it exists, this bias should be accounted for when calculating rates using a mix of proxy and datum shorelines. This issue is explained further in Ruggiero and List (2009) and in the process steps of the metadata associated with the rates. This release includes both long-term (~150 years) and short term (~30 years) rates. Files associated with the long-term rates have “LT” in their names, files associated with short-term rates have “ST” in their names.
Canada's coastline has a length of ******* kilometers and is considered the longest coastline worldwide. Canada is surrounded by three oceans: the Atlantic Ocean on the east, the Pacific Ocean on the west, and the Arctic Ocean to the north.