Facebook
TwitterThis statistics shows a ranking of the metropolitan areas in the United States in 2013 with the highest population density. As of 2013, Los Angeles-Long Beach-Anaheim in California was ranked first with a population density of 1,046 inhabitants per square kilometer.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Laos LA: Population Density: Inhabitants per sq km data was reported at 32.750 Person in 2022. This records an increase from the previous number of 32.290 Person for 2021. Laos LA: Population Density: Inhabitants per sq km data is updated yearly, averaging 25.840 Person from Dec 1990 (Median) to 2022, with 33 observations. The data reached an all-time high of 32.750 Person in 2022 and a record low of 18.680 Person in 1990. Laos LA: Population Density: Inhabitants per sq km data remains active status in CEIC and is reported by Organisation for Economic Co-operation and Development. The data is categorized under Global Database’s Laos – Table LA.OECD.GGI: Social: Demography: Non OECD Member: Annual.
Facebook
TwitterFor the past several censuses, the Census Bureau has invited people to self-respond before following up in-person using census takers. The 2010 Census invited people to self-respond predominately by returning paper questionnaires in the mail. The 2020 Census allows people to self-respond in three ways: online, by phone, or by mail.The 2020 Census self-response rates are self-response rates for current census geographies. These rates are the daily and cumulative self-response rates for all housing units that received invitations to self-respond to the 2020 Census. The 2020 Census self-response rates are available for states, counties, census tracts, congressional districts, towns and townships, consolidated cities, incorporated places, tribal areas, and tribal census tracts.The Self-Response Rate of Los Angeles County is 65.1% for 2020 Census, which is slightly lower than 69.6% of California State rate.More information about these data is available in the Self-Response Rates Map Data and Technical Documentation document associated with the 2020 Self-Response Rates Map or review FAQs.Animated Self-Response Rate 2010 vs 2020 is available at ESRI site SRR Animated Maps and can explore Census 2020 SRR data at ESRI Demographic site Census 2020 SSR Data.Following Demographic Characteristics are included in this data and web maps to visualize their relationships with Census Self-Response Rate (SRR).1. Population Density: 2020 Population per square mile,2. Poverty Rate: Percentage of population under 100% FPL,3. Median Household income: Based on countywide median HH income of $71,538.4. Highschool Education Attainment: Percentage of 18 years and older population without high school graduation.5. English Speaking Ability: Percentage of 18 years and older population with less or none English speaking ability. 6. Household without Internet Access: Percentage of HH without internet access.7. Non-Hispanic White Population: Percentage of Non-Hispanic White population.8. Non-Hispanic African-American Population: Percentage of Non-Hispanic African-American population.9. Non-Hispanic Asian Population: Percentage of Non-Hispanic Asian population.10. Hispanic Population: Percentage of Hispanic population.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Laos LA: Population Density: People per Square Km data was reported at 29.715 Person/sq km in 2017. This records an increase from the previous number of 29.282 Person/sq km for 2016. Laos LA: Population Density: People per Square Km data is updated yearly, averaging 17.931 Person/sq km from Dec 1961 (Median) to 2017, with 57 observations. The data reached an all-time high of 29.715 Person/sq km in 2017 and a record low of 9.404 Person/sq km in 1961. Laos LA: Population Density: People per Square Km data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Laos – Table LA.World Bank: Population and Urbanization Statistics. Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.; ; Food and Agriculture Organization and World Bank population estimates.; Weighted average;
Facebook
TwitterThe Global Human Footprint dataset of the Last of the Wild Project, version 2, 2005 (LWPv2) is the Human Influence Index (HII) normalized by biome and realm. The HII is a global dataset of 1 km grid cells, created from nine global data layers covering human population pressure (population density), human land use and infraestructure (built-up areas, nighttime lights, land use/land cover) and human access (coastlines, roads, navigable rivers).The Human Footprint Index (HF) map, expresses as a percentage the relative human influence in each terrestrial biome. HF values from 0 to 100. A value of zero represents the least influence -the "most wild" part of the biome with value of 100 representing the most influence (least wild) part of the biome.
Facebook
TwitterCalifornia was the state with the highest resident population in the United States in 2024, with 39.43 million people. Wyoming had the lowest population with about 590,000 residents. Living the American Dream Ever since the opening of the West in the United States, California has represented the American Dream for both Americans and immigrants to the U.S. The warm weather, appeal of Hollywood and Silicon Valley, as well as cities that stick in the imagination such as San Francisco and Los Angeles, help to encourage people to move to California. Californian demographics California is an extremely diverse state, as no one ethnicity is in the majority. Additionally, it has the highest percentage of foreign-born residents in the United States. By 2040, the population of California is expected to increase by almost 10 million residents, which goes to show that its appeal, both in reality and the imagination, is going nowhere fast.
Facebook
TwitterThe EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from California Current Ecosystem (CCE) contains human population density measurements in numberPerKilometerSquared units and were aggregated to a yearly timescale.
Facebook
TwitterThe EcoTrends project was established in 2004 by Dr. Debra Peters (Jornada Basin LTER, USDA-ARS Jornada Experimental Range) and Dr. Ariel Lugo (Luquillo LTER, USDA-FS Luquillo Experimental Forest) to support the collection and analysis of long-term ecological datasets. The project is a large synthesis effort focused on improving the accessibility and use of long-term data. At present, there are ~50 state and federally funded research sites that are participating and contributing to the EcoTrends project, including all 26 Long-Term Ecological Research (LTER) sites and sites funded by the USDA Agriculture Research Service (ARS), USDA Forest Service, US Department of Energy, US Geological Survey (USGS) and numerous universities. Data from the EcoTrends project are available through an exploratory web portal (http://www.ecotrends.info). This web portal enables the continuation of data compilation and accessibility by users through an interactive web application. Ongoing data compilation is updated through both manual and automatic processing as part of the LTER Provenance Aware Synthesis Tracking Architecture (PASTA). The web portal is a collaboration between the Jornada LTER and the LTER Network Office. The following dataset from California Current Ecosystem (CCE) contains percent urban population measurements in percent units and were aggregated to a yearly timescale.
Facebook
TwitterThe 2020 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the urban footprint. There are 2,644 Urban Areas (UAs) in this data release with either a minimum population of 5,000 or a housing unit count of 2,000 units. Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. This file includes revisions made to the 2020 Census New Orleans, LA Urban Area where the territory originally delineated as the 2020 Census Laplace--Lutcher--Gramercy, LA Urban Area was combined with the 2020 Census New Orleans, LA Urban Area to form the current New Orleans, LA Urban Area. This file includes revisions made to the 2020 Census Atlanta, GA Urban Area and Gainesville, GA Urban Area, where some urban territory originally designated to the Gainesville, GA Urban Area was reassigned to the Atlanta, GA Urban Area.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Los Angeles is a city with a population of 3,855,442 and lies in the 3000-5000 (High) density category. The city has an area of 1044.45 km² with a total green space of 16% and a tree coverage of 13%. The city lies in the North Temperate Zone of the world. The city has improved its Urban green space per capita when compared to Global Average and also improved its Urban green space per capita when compared to previous year. Within North America, 9.1% of cities are ranked lower than Los Angeles.
Facebook
TwitterThis data comes from the 2010 Census Profile of General Population and Housing Characteristics. Zip codes are limited to those that fall at least partially within LA city boundaries. The dataset will be updated after the next census in 2020. To view all possible columns and access the data directly, visit http://factfinder.census.gov/faces/affhelp/jsf/pages/metadata.xhtml?lang=en&type=table&id=table.en.DEC_10_SF1_SF1DP1#main_content.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vietnam Population Density: NM: Son La data was reported at 93.100 Person/sq km in 2023. This records an increase from the previous number of 92.000 Person/sq km for 2022. Vietnam Population Density: NM: Son La data is updated yearly, averaging 85.900 Person/sq km from Dec 2011 (Median) to 2023, with 13 observations. The data reached an all-time high of 93.100 Person/sq km in 2023 and a record low of 78.700 Person/sq km in 2011. Vietnam Population Density: NM: Son La data remains active status in CEIC and is reported by General Statistics Office. The data is categorized under Global Database’s Vietnam – Table VN.G003: Population Density: By Provinces.
Facebook
TwitterThis is an update to the MSSA geometries and demographics to reflect the new 2020 Census tract data. The Medical Service Study Area (MSSA) polygon layer represents the best fit mapping of all new 2020 California census tract boundaries to the original 2010 census tract boundaries used in the construction of the original 2010 MSSA file. Each of the state's new 9,129 census tracts was assigned to one of the previously established medical service study areas (excluding tracts with no land area), as identified in this data layer. The MSSA Census tract data is aggregated by HCAI, to create this MSSA data layer. This represents the final re-mapping of 2020 Census tracts to the original 2010 MSSA geometries. The 2010 MSSA were based on U.S. Census 2010 data and public meetings held throughout California.
Facebook
TwitterAssessment of house size and population density in La Primavera.
Facebook
Twitterhttps://koordinates.com/license/attribution-3-0/https://koordinates.com/license/attribution-3-0/
20 year Projected Urban Growth scenarios. Base year is 2000. Projected year in this dataset is 2020.
By 2020, most forecasters agree, California will be home to between 43 and 46 million residents-up from 35 million today. Beyond 2020 the size of California's population is less certain. Depending on the composition of the population, and future fertility and migration rates, California's 2050 population could be as little as 50 million or as much as 70 million. One hundred years from now, if present trends continue, California could conceivably have as many as 90 million residents.
Where these future residents will live and work is unclear. For most of the 20th Century, two-thirds of Californians have lived south of the Tehachapi Mountains and west of the San Jacinto Mountains-in that part of the state commonly referred to as Southern California. Yet most of coastal Southern California is already highly urbanized, and there is relatively little vacant land available for new development. More recently, slow-growth policies in Northern California and declining developable land supplies in Southern California are squeezing ever more of the state's population growth into the San Joaquin Valley.
How future Californians will occupy the landscape is also unclear. Over the last fifty years, the state's population has grown increasingly urban. Today, nearly 95 percent of Californians live in metropolitan areas, mostly at densities less than ten persons per acre. Recent growth patterns have strongly favored locations near freeways, most of which where built in the 1950s and 1960s. With few new freeways on the planning horizon, how will California's future growth organize itself in space? By national standards, California's large urban areas are already reasonably dense, and economic theory suggests that densities should increase further as California's urban regions continue to grow. In practice, densities have been rising in some urban counties, but falling in others.
These are important issues as California plans its long-term future. Will California have enough land of the appropriate types and in the right locations to accommodate its projected population growth? Will future population growth consume ever-greater amounts of irreplaceable resource lands and habitat? Will jobs continue decentralizing, pushing out the boundaries of metropolitan areas? Will development densities be sufficient to support mass transit, or will future Californians be stuck in perpetual gridlock? Will urban and resort and recreational growth in the Sierra Nevada and Trinity Mountain regions lead to the over-fragmentation of precious natural habitat? How much water will be needed by California's future industries, farms, and residents, and where will that water be stored? Where should future highway, transit, and high-speed rail facilities and rights-of-way be located? Most of all, how much will all this growth cost, both economically, and in terms of changes in California's quality of life?
Clearly, the more precise our current understanding of how and where California is likely to grow, the sooner and more inexpensively appropriate lands can be acquired for purposes of conservation, recreation, and future facility siting. Similarly, the more clearly future urbanization patterns can be anticipated, the greater our collective ability to undertake sound city, metropolitan, rural, and bioregional planning.
Consider two scenarios for the year 2100. In the first, California's population would grow to 80 million persons and would occupy the landscape at an average density of eight persons per acre, the current statewide urban average. Under this scenario, and assuming that 10% percent of California's future population growth would occur through infill-that is, on existing urban land-California's expanding urban population would consume an additional 5.06 million acres of currently undeveloped land. As an alternative, assume the share of infill development were increased to 30%, and that new population were accommodated at a density of about 12 persons per acre-which is the current average density of the City of Los Angeles. Under this second scenario, California's urban population would consume an additional 2.6 million acres of currently undeveloped land. While both scenarios accommodate the same amount of population growth and generate large increments of additional urban development-indeed, some might say even the second scenario allows far too much growth and development-the second scenario is far kinder to California's unique natural landscape.
This report presents the results of a series of baseline population and urban growth projections for California's 38 urban counties through the year 2100. Presented in map and table form, these projections are based on extrapolations of current population trends and recent urban development trends. The next section, titled Approach, outlines the methodology and data used to develop the various projections. The following section, Baseline Scenario, reviews the projections themselves. A final section, entitled Baseline Impacts, quantitatively assesses the impacts of the baseline projections on wetland, hillside, farmland and habitat loss.
Facebook
TwitterOverviewThese are the Homeless Counts for 2020 as provided by the Los Angeles Homeless Services Authority (LAHSA), and the cities of Glendale, Pasadena, and Long Beach. The majority of this data comes from LAHSA using tract-level counts; the cities of Glendale, Pasadena, and Long Beach did not have tract-level counts available. The purpose of this layer is to depict homeless density at a community scale. Please read the note from LAHSA below regarding the tract level counts. In this layer LAHSA's tract-level population count was rounded to the nearest whole number, and density was determined per square mile of each community. It should be noted that not all of the sub-populations captured from LAHSA (eg. people living in vans, unaccompanied minors, etc.) are not captured here; only sheltered, unsheltered, and total population. Data generated on 12/2/20.Countywide Statistical AreasLos Angeles County's 'Countywide Statistical Areas' layer was used to classify the city / community names. Since this is tract-level data there are several times where a tract is in more than one city/community. Whatever the majority of the coverage of a tract is, that is the community that got coded. The boundaries of these communities follow aggregated tract boundaries and will therefore often deviate from the 'Countywide Statistical Area' boundaries.Note from LAHSALAHSA does not recommend aggregating census tract-level data to calculate numbers for other geographic levels. Due to rounding, the census tract-level data may not add up to the total for Los Angeles City Council District, Supervisorial District, Service Planning Area, or the Los Angeles Continuum of Care.The Los Angeles Continuum of Care does not include the Cities of Long Beach, Glendale, and Pasadena and will not equal the countywide Homeless Count Total.Street Count Data include persons found outside, including persons found living in cars, vans, campers/RVs, tents, and makeshift shelters. A conversion factor list can be found at https://www.lahsa.org/homeless-count/Please visit https://www.lahsa.org/homeless-count/home to view and download data.Last updated 07/16/2020
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
California offers a uniquely diverse case study for analyzing hospital readmission rates due to its population diversity and socioeconomic disparities. As the most populous state in the United States, with over 39 million residents, it encompasses urban hubs like Los Angeles and San Francisco, rural farming regions in the Central Valley, and varied coastal and mountainous communities. This diversity in population density, income, and healthcare access mirrors the broader challenges of the U.S. healthcare system.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Recent advances in quantitative tools for examining urban morphology enable the development of morphometrics that can characterize the size, shape, and placement of buildings; the relationships between them; and their association with broader patterns of development. Although these methods have the potential to provide substantial insight into the ways in which neighborhood morphology shapes the socioeconomic and demographic characteristics of neighborhoods and communities, this question is largely unexplored. Using building footprints in five of the ten largest U.S. metropolitan areas (Atlanta, Boston, Chicago, Houston, and Los Angeles) and the open-source R package, foot, we examine how neighborhood morphology differs across U.S. metropolitan areas and across the urban-exurban landscape. Principal components analysis, unsupervised classification (K-means), and Ordinary Least Squares regression analysis are used to develop a morphological typology of neighborhoods and to examine its association with the spatial, socioeconomic, and demographic characteristics of census tracts. Our findings illustrate substantial variation in the morphology of neighborhoods, both across the five metropolitan areas as well as between central cities, suburbs, and the urban fringe within each metropolitan area. We identify five different types of neighborhoods indicative of different stages of development and distributed unevenly across the urban landscape: these include low-density neighborhoods on the urban fringe; mixed use and high-density residential areas in central cities; and uniform residential neighborhoods in suburban cities. Results from regression analysis illustrate that the prevalence of each of these forms is closely associated with variation in socioeconomic and demographic characteristics such as population density, the prevalence of multifamily housing, and income, race/ethnicity, homeownership, and commuting by car. We conclude by discussing the implications of our findings and suggesting avenues for future research on neighborhood morphology, including ways that it might provide insight into issues such as zoning and land use, housing policy, and residential segregation.
Facebook
TwitterDensité de la population 2021 (habitants par km²), Lorraine: 2019
Unités territoriales: arrondissements (Lorraine, Wallonie), cantons (Luxembourg), Kreise (Saarland, Rheinland-Pfalz)
Sources des données statistiques: Destatis, Eurostat, INSEE, Statbel, STATEC. Harmonisation: IBA / OIE 2022
Sources des données géographiques: GeoBasis-DE / BKG 2017, IGN France 2017, NGI-Belgium 2017, ACT Luxembourg 2017. Harmonisation: SIG-GR / GIS-GR 2022
Facebook
TwitterAbstract: Dataset includes population, by age group, within ¼ mile buffer around each intersection. This can be used to calculate population density at each intersection, or compare the distribution of age around a particular intersection. These values were derived using the proportional sum calculation on census tracts. Relations: Join to the Intersection Table using the “boeint_fkey” field. Source: ACS 2014 5-Year Estimatesboeint_fkeyUnique identifier for the intersection as part of the Bureau of Engineering’s Centerline networkpopsum_aunder5Population under 5 years of age within ¼ mi. of the intersectionpopsum_a5to9Population between 5 and 9 years of age within ¼ mile of the intersectionpopsum_a10to17Population between 10 and 17 years of age within ¼ mi. of the intersectionpopsum_a18to29Population between 18 and 29 years of age within ¼ mi. of the intersectionpopsum_a30to61Population between 30 and 61 years of age within ¼ mi. of the intersectionpopsum_a62to69Population between 62 and 69 years of age within ¼ mi. of the intersection popsum_a70upPopulation 70 and greater years of age within ¼ mi. of the intersectionpopsum_totalTotal population within ¼ mi. of the intersection
Facebook
TwitterThis statistics shows a ranking of the metropolitan areas in the United States in 2013 with the highest population density. As of 2013, Los Angeles-Long Beach-Anaheim in California was ranked first with a population density of 1,046 inhabitants per square kilometer.