Facebook
TwitterDataset used in World Bank Policy Research Working Paper #2876, published in World Bank Economic Review, No. 1, 2005, pp. 21-44.
The effects of globalization on income distribution in rich and poor countries are a matter of controversy. While international trade theory in its most abstract formulation implies that increased trade and foreign investment should make income distribution more equal in poor countries and less equal in rich countries, finding these effects has proved elusive. The author presents another attempt to discern the effects of globalization by using data from household budget surveys and looking at the impact of openness and foreign direct investment on relative income shares of low and high deciles. The author finds some evidence that at very low average income levels, it is the rich who benefit from openness. As income levels rise to those of countries such as Chile, Colombia, or Czech Republic, for example, the situation changes, and it is the relative income of the poor and the middle class that rises compared with the rich. It seems that openness makes income distribution worse before making it better-or differently in that the effect of openness on a country's income distribution depends on the country's initial income level.
Aggregate data [agg]
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about book subjects. It has 7 rows and is filtered where the books is The trickle-up economy : how we take from the poor and middle class and give to the rich. It features 10 columns including number of authors, number of books, earliest publication date, and latest publication date.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
California State Income Limits reflect updated median income and household income levels for acutely low-, extremely low-, very low-, low- and moderate-income households for California’s 58 counties (required by Health and Safety Code Section 50093). These income limits apply to State and local affordable housing programs statutorily linked to HUD income limits and differ from income limits applicable to other specific federal, State, or local programs.
Facebook
TwitterTranscripts of the in-depth interviews conducted with lower-middle class individuals from nine out of fourteen Czech administrative regions in 2023.
Facebook
TwitterIncome statistics by economic family type and income source, annual.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Korea Imports: Low- and Middle-Income Economies: % of Total Goods Imports: Latin America & The Caribbean data was reported at 2.673 % in 2016. This records an increase from the previous number of 2.543 % for 2015. Korea Imports: Low- and Middle-Income Economies: % of Total Goods Imports: Latin America & The Caribbean data is updated yearly, averaging 1.896 % from Dec 1961 (Median) to 2016, with 56 observations. The data reached an all-time high of 5.491 % in 1985 and a record low of 0.012 % in 1972. Korea Imports: Low- and Middle-Income Economies: % of Total Goods Imports: Latin America & The Caribbean data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Korea – Table KR.World Bank: Imports. Merchandise imports from low- and middle-income economies in Latin America and the Caribbean are the sum of merchandise imports by the reporting economy from low- and middle-income economies in the Latin America and the Caribbean region according to the World Bank classification of economies. Data are expressed as a percentage of total merchandise imports by the economy. Data are computed only if at least half of the economies in the partner country group had non-missing data.; ; World Bank staff estimates based data from International Monetary Fund's Direction of Trade database.; Weighted average;
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The political relevance of labor market insecurity has been questioned because a) insider-outsider divides were considered to be a divide within the low-skilled and politically less active working class and b) labor market insecurity runs through the middle of the household. Outsiders might therefore align their preferences with those of insiders. This contribution provides, first, evidence that labor market insecurity extends well into the higher-skilled middle class, in particular to high-skilled young adults and high-skilled women. Second, the contribution sheds light on the “household question”, that is the question whether mixed households dampen the political relevance of labor market insecurity. If labor market insecurity is concentrated in specific social groups (young adults, women) that tend to cohabit with secure insiders, the political relevance of labor market insecurity might depend on whether or not outsiders align their preferences with those of the household. In this contribution, I discuss recent work on the relevance of the household in translating labor market divides into preferences divides presenting recent work that shows that the household does not render insider-outsider divides politically irrelevant. In sum, insider-outsider divides have all the potential to become politically relevant.
Facebook
Twitterhttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets
The World Bank classifies the world's economies into four income groups — high, upper-middle, lower-middle, and low. We base this assignment on Gross National Income (GNI) per capita (current US$) calculated using the Atlas method. The classification is updated each year on July 1st.
The classification of countries is determined by two factors:
A country’s GNI per capita, which can change with economic growth, inflation, exchange rates, and population. Revisions to national accounts methods and data can also influence GNI per capita.
Classification threshold: The thresholds are adjusted for inflation annually using the SDR deflator.
Check this link for more: https://blogs.worldbank.org/opendata/new-country-classifications-income-level-2019-2020
Facebook
TwitterFor detailed information, visit the Tucson Equity Priority Index StoryMap.Download the layer's data dictionaryWhat is the Tucson Equity Priority Index (TEPI)?The Tucson Equity Priority Index (TEPI) is a tool that describes the distribution of socially vulnerable demographics. It categorizes the dataset into 5 classes that represent the differing prioritization needs based on the presence of social vulnerability: Low (0-20), Low-Moderate (20-40), Moderate (40-60), Moderate-High (60-80) High (80-100). Each class represents 20% of the dataset’s features in order of their values. The features within the Low (0-20) classification represent the areas that, when compared to all other locations in the study area, have the lowest need for prioritization, as they tend to have less socially vulnerable demographics. The features that fall into the High (80-100) classification represent the 20% of locations in the dataset that have the greatest need for prioritization, as they tend to have the highest proportions of socially vulnerable demographics. How is social vulnerability measured?The Tucson Equity Priority Index (TEPI) examines the proportion of vulnerability per feature using 11 demographic indicators:Income Below Poverty: Households with income at or below the federal poverty level (FPL), which in 2023 was $14,500 for an individual and $30,000 for a family of fourUnemployment: Measured as the percentage of unemployed persons in the civilian labor forceHousing Cost Burdened: Homeowners who spend more than 30% of their income on housing expenses, including mortgage, maintenance, and taxesRenter Cost Burdened: Renters who spend more than 30% of their income on rentNo Health Insurance: Those without private health insurance, Medicare, Medicaid, or any other plan or programNo Vehicle Access: Households without automobile, van, or truck accessHigh School Education or Less: Those highest level of educational attainment is a High School diploma, equivalency, or lessLimited English Ability: Those whose ability to speak English is "Less Than Well."People of Color: Those who identify as anything other than Non-Hispanic White Disability: Households with one or more physical or cognitive disabilities Age: Groups that tend to have higher levels of vulnerability, including children (those below 18), and seniors (those 65 and older)An overall percentile value is calculated for each feature based on the total proportion of the above indicators in each area. How are the variables combined?These indicators are divided into two main categories that we call Thematic Indices: Economic and Personal Characteristics. The two thematic indices are further divided into five sub-indices called Tier-2 Sub-Indices. Each Tier-2 Sub-Index contains 2-3 indicators. Indicators are the datasets used to measure vulnerability within each sub-index. The variables for each feature are re-scaled using the percentile normalization method, which converts them to the same scale using values between 0 to 100. The variables are then combined first into each of the five Tier-2 Sub-Indices, then the Thematic Indices, then the overall TEPI using the mean aggregation method and equal weighting. The resulting dataset is then divided into the five classes, where:High Vulnerability (80-100%): Representing the top classification, this category includes the highest 20% of regions that are the most socially vulnerable. These areas require the most focused attention. Moderate-High Vulnerability (60-80%): This upper-middle classification includes areas with higher levels of vulnerability compared to the median. While not the highest, these areas are more vulnerable than a majority of the dataset and should be considered for targeted interventions. Moderate Vulnerability (40-60%): Representing the middle or median quintile, this category includes areas of average vulnerability. These areas may show a balanced mix of high and low vulnerability. Detailed examination of specific indicators is recommended to understand the nuanced needs of these areas. Low-Moderate Vulnerability (20-40%): Falling into the lower-middle classification, this range includes areas that are less vulnerable than most but may still exhibit certain vulnerable characteristics. These areas typically have a mix of lower and higher indicators, with the lower values predominating. Low Vulnerability (0-20%): This category represents the bottom classification, encompassing the lowest 20% of data points. Areas in this range are the least vulnerable, making them the most resilient compared to all other features in the dataset.
Facebook
TwitterLow income cut-offs (LICOs) before and after tax by community size and family size, in current dollars, annual.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Ghana GH: Income Share Held by Lowest 20% data was reported at 5.400 % in 2012. This records an increase from the previous number of 5.200 % for 2005. Ghana GH: Income Share Held by Lowest 20% data is updated yearly, averaging 6.200 % from Dec 1987 (Median) to 2012, with 6 observations. The data reached an all-time high of 7.000 % in 1988 and a record low of 5.200 % in 2005. Ghana GH: Income Share Held by Lowest 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ghana – Table GH.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.
Facebook
TwitterThe Global Consumption Database (GCD) contains information on consumption patterns at the national level, by urban/rural area, and by income level (4 categories: lowest, low, middle, higher with thresholds based on a global income distribution), for 92 low and middle-income countries, as of 2010. The data were extracted from national household surveys. The consumption is presented by category of products and services of the International Comparison Program (ICP) 2005, which mostly corresponds to COICOP. For three countries, sub-national data are also available (Brazil, India, and South Africa). Data on population estimates are also included. The data file can be used for the production of the following tables (by urban/rural and income class/consumption segment): - Sample Size by Country, Area and Consumption Segment (Number of Households) - Population 2010 by Country, Area and Consumption Segment - Population 2010 by Country, Area and Consumption Segment, as a Percentage of the National Population - Population 2010 by Country, Area and Consumption Segment, as a Percentage of the Area Population - Population 2010 by Country, Age Group, Sex and Consumption Segment - Household Consumption 2010 by Country, Sector, Area and Consumption Segment in Local Currency (Million) - Household Consumption 2010 by Country, Sector, Area and Consumption Segment in $PPP (Million) - Household Consumption 2010 by Country, Sector, Area and Consumption Segment in US$ (Million) - Household Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in Local Currency (Million) - Household Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in $PPP (Million) - Household Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in US$ (Million) - Household Consumption 2010 by Country, Product/Service, Area and Consumption Segment in Local Currency (Million) - Household Consumption 2010 by Country, Product/Service, Area and Consumption Segment in $PPP (Million) - Household Consumption 2010 by Country, Product/Service, Area and Consumption Segment in US$ (Million) - Per Capita Consumption 2010 by Country, Sector, Area and Consumption Segment in Local Currency - Per Capita Consumption 2010 by Country, Sector, Area and Consumption Segment in US$ - Per Capita Consumption 2010 by Country, Sector, Area and Consumption Segment in $PPP - Per Capita Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in Local Currency - Per Capita Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in US$ - Per Capita Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in $PPP - Per Capita Consumption 2010 by Country, Product or Service, Area and Consumption Segment in Local Currency - Per Capita Consumption 2010 by Country, Product or Service, Area and Consumption Segment in US$ - Per Capita Consumption 2010 by Country, Product or Service, Area and Consumption Segment in $PPP - Consumption Shares 2010 by Country, Sector, Area and Consumption Segment (Percent) - Consumption Shares 2010 by Country, Category of Products/Services, Area and Consumption Segment (Percent) - Consumption Shares 2010 by Country, Product/Service, Area and Consumption Segment (Percent) - Percentage of Households who Reported Having Consumed the Product or Service by Country, Consumption Segment and Area (as of Survey Year)
Facebook
TwitterDo electorates hold governments accountable for the distribution of economic welfare? Building on the finding of “class-biased economic voting” in the United States, we examine how OECD electorates respond to alternative distributions of income gains and losses. Drawing on individual-level electoral data and aggregate election results across 15 advanced democracies, we examine whether lower- and middle-income voters defend their distributive interests by punishing governments for concentrating income gains among the rich. We find no indication that non-rich voters punish rising inequality, and substantial evidence that electorates positively reward the concentration of aggregate income growth at the top. Our results suggest that governments commonly face political incentives systematically skewed in favor of inegalitarian economic outcomes. At the same time, we find that the electorate’s tolerance of rising inequality has its limits: class biases in economic voting diminish as the income shares of the rich grow in magnitude.
Facebook
TwitterA comprehensive overview on the contents, the structure and basiccoding rules of both data files can be found in the following guide: Guide for the ISSP ´Social Inequality´ cumulation of the years 1987,1992, 1999 and 2009 Attitudes to social inequality. Themes: Importance of social background and other factors asprerequisites for personal success in society (wealthy family,well-educated parents, good education, ambitions, natural ability, hardwork, knowing the right people, political connections, person´s raceand religion, the part of a country a person comes from, gender andpolitical beliefs); chances to increase personal standard of living(social mobility); corruption as criteria for social mobility;importance of differentiated payment; higher payment with acceptance ofincreased responsibility; higher payment as incentive for additionalqualification of workers; avoidability of inequality of society;increased income expectation as motivation for taking up studies; goodprofits for entrepreneurs as best prerequisite for increase in generalstandard of living; insufficient solidarity of the average populationas reason for the persistence of social inequalities; opinion about ownsalary: actual occupational earning is adequate; income differences aretoo large in the respondent´s country; responsibility of government toreduce income differences; government should provide chances for poorchildren to go to university; jobs for everyone who wants one;government should provide a decent living standard for the unemployedand spend less on benefits for poor people; demand for basic income forall; opinion on taxes for people with high incomes; judgement on totaltaxation for recipients of high, middle and low incomes; justificationof better medical supply and better education for richer people;perception of class conflicts between social groups in the country(poor and rich people, working class and middle class, unemployed andemployed people, management and workers, farmers and city people,people at the top of society and people at the bottom, young people andolder people); salary criteria (scale: job responsibility, years ofeducation and training, supervising others, needed support for familiyand children, quality of job performance or hard work at the job);feeling of a just payment; perceived and desired social structure ofcountry; self-placement within social structure of society; number ofbooks in the parental home in the respondent´s youth (culturalresources); self-assessment of social class; level of status ofrespondent´s job compared to father (social mobility); self-employment,employee of a private company or business or government, occupation(ILO, ISCO 1988), type of job of respondent´s father in therespondent´s youth; mother´s occupation (ILO, ISCO 1988) in therespondent´s youth; respondent´s type of job in first and current(last) job; self-employment of respondent´ first job or worked forsomeone else. Demograpy: sex; age; marital status; steady life partner; education ofrespondent: years of schooling and highest education level; currentemployment status; hours worked weekly; occupation (ILO, ISCO 1988);self-employment; supervising function at work; working-type: workingfor private or public sector or self-employed; if self-employed: numberof employees; trade union membership; highest education level of fatherand mother; education of spouse or partner: years of schooling andhighest education level; current employment status of spouse orpartner; occupation of spouse or partner (ILO, ISCO 1988);self-employment of spouse or partner; size of household; householdcomposition (children and adults); type of housing; party affiliation(left-right (derived from affiliation to a certain party); partyaffiliation (derived from question on left-right placement); partypreference; participation in last election; perceived position of partyvoted for on left-right-scale; attendance of religious services;religious main groups (derived); self-placement on a top-bottom scale;region. Additionally coded: several country variables; weighting factor.
Facebook
TwitterIncome of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.
Facebook
TwitterThe Global Consumption Database (GCD) contains information on consumption patterns at the national level, by urban/rural area, and by income level (4 categories: lowest, low, middle, higher with thresholds based on a global income distribution), for 92 low and middle-income countries, as of 2010. The data were extracted from national household surveys. The consumption is presented by category of products and services of the International Comparison Program (ICP) 2005, which mostly corresponds to COICOP. For three countries, sub-national data are also available (Brazil, India, and South Africa). Data on population estimates are also included.
The data file can be used for the production of the following tables (by urban/rural and income class/consumption segment):
- Sample Size by Country, Area and Consumption Segment (Number of Households)
- Population 2010 by Country, Area and Consumption Segment
- Population 2010 by Country, Area and Consumption Segment, as a Percentage of the National Population
- Population 2010 by Country, Area and Consumption Segment, as a Percentage of the Area Population
- Population 2010 by Country, Age Group, Sex and Consumption Segment
- Household Consumption 2010 by Country, Sector, Area and Consumption Segment in Local Currency (Million)
- Household Consumption 2010 by Country, Sector, Area and Consumption Segment in $PPP (Million)
- Household Consumption 2010 by Country, Sector, Area and Consumption Segment in US$ (Million)
- Household Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in Local Currency (Million)
- Household Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in $PPP (Million)
- Household Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in US$ (Million)
- Household Consumption 2010 by Country, Product/Service, Area and Consumption Segment in Local Currency (Million)
- Household Consumption 2010 by Country, Product/Service, Area and Consumption Segment in $PPP (Million)
- Household Consumption 2010 by Country, Product/Service, Area and Consumption Segment in US$ (Million)
- Per Capita Consumption 2010 by Country, Sector, Area and Consumption Segment in Local Currency
- Per Capita Consumption 2010 by Country, Sector, Area and Consumption Segment in US$
- Per Capita Consumption 2010 by Country, Sector, Area and Consumption Segment in $PPP
- Per Capita Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in Local Currency
- Per Capita Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in US$
- Per Capita Consumption 2010 by Country, Category of Product/Service, Area and Consumption Segment in $PPP
- Per Capita Consumption 2010 by Country, Product or Service, Area and Consumption Segment in Local Currency
- Per Capita Consumption 2010 by Country, Product or Service, Area and Consumption Segment in US$
- Per Capita Consumption 2010 by Country, Product or Service, Area and Consumption Segment in $PPP
- Consumption Shares 2010 by Country, Sector, Area and Consumption Segment (Percent)
- Consumption Shares 2010 by Country, Category of Products/Services, Area and Consumption Segment (Percent)
- Consumption Shares 2010 by Country, Product/Service, Area and Consumption Segment (Percent)
- Percentage of Households who Reported Having Consumed the Product or Service by Country, Consumption Segment and Area (as of Survey Year)
For all countries, estimates are provided at the national level and at the urban/rural levels. For Brazil, India, and South Africa, data are also provided at the sub-national level (admin 1): - Brazil: ACR, Alagoas, Amapa, Amazonas, Bahia, Ceara, Distrito Federal, Espirito Santo, Goias, Maranhao, Mato Grosso, Mato Grosso do Sul, Minas Gerais, Para, Paraiba, Parana, Pernambuco, Piaji, Rio de Janeiro, Rio Grande do Norte, Rio Grande do Sul, Rondonia, Roraima, Santa Catarina, Sao Paolo, Sergipe, Tocatins - India: Andaman and Nicobar Islands, Andhra Pradesh, Arinachal Pradesh, Assam, Bihar, Chandigarh, Chattisgarh, Dadra and Nagar Haveli, Daman and Diu, Delhi, Goa, Gujarat, Haryana, Himachal Pradesh, Jammu and Kashmir, Jharkhand, Karnataka, Kerala, Lakshadweep, Madya Pradesh, Maharastra, Manipur, Meghalaya, Mizoram, Nagaland, Orissa, Pondicherry, Punjab, Rajasthan, Sikkim, Tamil Nadu, Tripura, Uttar Pradesh, Uttaranchal, West Bengal - South Africa: Eastern Cape, Free State, Gauteng, Kwazulu Natal, Limpopo, Mpulamanga, Northern Cape, North West, Western Cape
Data derived from survey microdata
Facebook
TwitterThis dataset is real data of 5,000 records collected from a private learning provider. The dataset includes key attributes necessary for exploring patterns, correlations, and insights related to academic performance.
Columns: 01. Student_ID: Unique identifier for each student. 02. First_Name: Student’s first name. 03. Last_Name: Student’s last name. 04. Email: Contact email (can be anonymized). 05. Gender: Male, Female, Other. 06. Age: The age of the student. 07. Department: Student's department (e.g., CS, Engineering, Business). 08. Attendance (%): Attendance percentage (0-100%). 09. Midterm_Score: Midterm exam score (out of 100). 10. Final_Score: Final exam score (out of 100). 11. Assignments_Avg: Average score of all assignments (out of 100). 12. Quizzes_Avg: Average quiz scores (out of 100). 13. Participation_Score: Score based on class participation (0-10). 14. Projects_Score: Project evaluation score (out of 100). 15. Total_Score: Weighted sum of all grades. 16. Grade: Letter grade (A, B, C, D, F). 17. Study_Hours_per_Week: Average study hours per week. 18. Extracurricular_Activities: Whether the student participates in extracurriculars (Yes/No). 19. Internet_Access_at_Home: Does the student have access to the internet at home? (Yes/No). 20. Parent_Education_Level: Highest education level of parents (None, High School, Bachelor's, Master's, PhD). 21. Family_Income_Level: Low, Medium, High. 22. Stress_Level (1-10): Self-reported stress level (1: Low, 10: High). 23. Sleep_Hours_per_Night: Average hours of sleep per night.
The Attendance is not part of the Total_Score or has very minimal weight.
Calculating the weighted sum: Total Score=a⋅Midterm+b⋅Final+c⋅Assignments+d⋅Quizzes+e⋅Participation+f⋅Projects
| Component | Weight (%) |
|---|---|
| Midterm | 15% |
| Final | 25% |
| Assignments Avg | 15% |
| Quizzes Avg | 10% |
| Participation | 5% |
| Projects Score | 30% |
| Total | 100% |
Dataset contains: - Missing values (nulls): in some records (e.g., Attendance, Assignments, or Parent Education Level). - Bias in some Datae (ex: grading e.g., students with high attendance get slightly better grades). - Imbalanced distributions (e.g., some departments having more students).
Note: - The dataset is real, but I included some bias to create a greater challenge for my students. - Some Columns have been masked as the Data owner requested. "Students_Grading_Dataset_Biased.csv" contains the biased Dataset "Students Performance Dataset" Contains the masked dataset
Facebook
Twitterhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.2/customlicense?persistentId=doi:10.7910/DVN/RBECVNhttps://dataverse.harvard.edu/api/datasets/:persistentId/versions/1.2/customlicense?persistentId=doi:10.7910/DVN/RBECVN
This dissertation examines how economic segregation shapes the provision of local public goods. Past research finds that economic segregation affects political attitudes and participation. However, few studies examine how economic segregation shapes local policy outcomes, particularly outcomes concerning local public goods. Using data on local government spending, data on ballot measures on local taxes, and data on the geographic location of affordable housing units, I find that economic segregation shapes local public goods provision in important ways. The first chapter, "Income Segregation and the Provision of Local Public Goods," shows that economic segregation correlates with an increase in city-level spending on certain policy areas usually preferred by middle- and upper-class residents. The second chapter, "Economic Segregation and Support for Local Taxes: Evidence from Municipal Ballot Measures in California," finds that economic segregation relates to increased support for tax increases dedicated to specific goods and services voted on by residents. I argue that, in economically segregated cities, this increased support comes from residents' decreased trust in local government, particularly in how local governments spend money. Finally, the third chapter, "Partisanship and Affordable Housing: How Democrats and Republicans Geographically Distribute the Low-Income Housing Tax Credit Program," asks whether partisanship structures the distribution of low-income housing units to economically segregated neighborhoods using administrative data from the Low-Income Housing Tax Credit Program. I find little evidence to support partisan differences in the distribution of low-income housing units to low-poverty or to high-poverty neighborhoods. However, I do find that Republican administrations allocate significantly fewer low-income housing units to a neighborhood as its poverty rate increases. This suggests that partisanship may not necessarily shape the provision and distribution of new housing development for lower-income residents. Together, these findings show that economic segregation has a nuanced but significant relationship with the provision of local public goods.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset consists of 2,500 student records collected from multiple institutions, capturing demographic information, learning habits, and engagement metrics. Each record includes features such as age, gender, study hours per week, attendance rate, assignment and quiz scores, participation score, internet access quality, and frequency of resource usage. The target column, final_grade, categorizes student performance as High, Medium, or Low. Designed to support research on distributed digital learning systems, this dataset enables analysis of multi-institutional collaboration, personalized learning, and performance prediction while preserving student and institutional privacy.
Column Description:
student_id: A unique identifier for each student.
institution_id: The institution or organization to which the student belongs.
age: The student’s age in years.
gender: The student’s gender (Male, Female, or Other).
study_hours_per_week: Average number of hours the student spends studying weekly.
attendance_rate: Percentage of classes attended by the student.
assignment_score: Average score obtained by the student on assignments (0–100).
quiz_score: Average score obtained by the student on quizzes (0–100).
participation_score: Level of engagement in class discussions or activities (0–100).
internet_access_quality: Rating of the student’s internet connection quality (1–5).
resource_access_frequency: Number of times the student accesses learning resources per week.
final_grade: Overall performance category of the student (High, Medium, or Low).
Facebook
TwitterPandemic has influenced all spheres of the humanity. COVID-19 impacted the education vertical in larger manner. Traditional classroom environment plays a very vital role in molding the life of an individual. Bond nurtured in the early ages of the life acts as the great moral support in the latter stages of the journey. As the pandemic has forced us into online education, this data collection aims to analyze the impact of online education. To check out the satisfactory level of the learners, review was conducted.
Gender – Male, Female Home Location – Rural, Urban Level of Education – Post Graduate, School, Under Graduate Age – Years Number of Subjects – 1- 20 Device type used to attend classes – Desktop, Laptop, Mobile Economic status – Middle Class, Poor, Rich Family size – 1 -10 Internet facility in your locality – Number scale (Very Bad to Very Good) Are you involved in any sports? – Yes, No Do elderly people monitor you? – Yes, No Study time – Hours Sleep time – Hours Time spent on social media – Hours Interested in Gaming? – Yes, No Have separate room for studying? – Yes, No Engaged in group studies? – Yes, No Average marks scored before pandemic in traditional classroom – range Your interaction in online mode - Number scale (Very Bad to Very Good) Clearing doubts with faculties in online mode - Number scale (Very Bad to Very Good) Interested in? – Practical, Theory, Both Performance in online - Number scale (Very Bad to Very Good) Your level of satisfaction in Online Education – Average, Bad, Good
radhakrishnan, sujatha (2021), “Online Education System - Review”, Mendeley Data, V1, doi: 10.17632/bzk9zbyvv7.1
Facebook
TwitterDataset used in World Bank Policy Research Working Paper #2876, published in World Bank Economic Review, No. 1, 2005, pp. 21-44.
The effects of globalization on income distribution in rich and poor countries are a matter of controversy. While international trade theory in its most abstract formulation implies that increased trade and foreign investment should make income distribution more equal in poor countries and less equal in rich countries, finding these effects has proved elusive. The author presents another attempt to discern the effects of globalization by using data from household budget surveys and looking at the impact of openness and foreign direct investment on relative income shares of low and high deciles. The author finds some evidence that at very low average income levels, it is the rich who benefit from openness. As income levels rise to those of countries such as Chile, Colombia, or Czech Republic, for example, the situation changes, and it is the relative income of the poor and the middle class that rises compared with the rich. It seems that openness makes income distribution worse before making it better-or differently in that the effect of openness on a country's income distribution depends on the country's initial income level.
Aggregate data [agg]