52 datasets found
  1. Low and Moderate Income Areas

    • catalog.data.gov
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2024). Low and Moderate Income Areas [Dataset]. https://catalog.data.gov/dataset/hud-low-and-moderate-income-areas
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Description

    This dataset and map service provides information on the U.S. Housing and Urban Development's (HUD) low to moderate income areas. The term Low to Moderate Income, often referred to as low-mod, has a specific programmatic context within the Community Development Block Grant (CDBG) program. Over a 1, 2, or 3-year period, as selected by the grantee, not less than 70 percent of CDBG funds must be used for activities that benefit low- and moderate-income persons. HUD uses special tabulations of Census data to determine areas where at least 51% of households have incomes at or below 80% of the area median income (AMI). This dataset and map service contains the following layer.

  2. d

    Individuals, ZIP Code Data

    • catalog.data.gov
    • gimi9.com
    Updated Aug 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statistics of Income (SOI) (2024). Individuals, ZIP Code Data [Dataset]. https://catalog.data.gov/dataset/zip-code-data
    Explore at:
    Dataset updated
    Aug 22, 2024
    Dataset provided by
    Statistics of Income (SOI)
    Description

    This annual study provides selected income and tax items classified by State, ZIP Code, and the size of adjusted gross income. These data include the number of returns, which approximates the number of households; the number of personal exemptions, which approximates the population; adjusted gross income; wages and salaries; dividends before exclusion; and interest received. Data are based who reported on U.S. Individual Income Tax Returns (Forms 1040) filed with the IRS. SOI collects these data as part of its Individual Income Tax Return (Form 1040) Statistics program, Data by Geographic Areas, ZIP Code Data.

  3. f

    Data_Sheet_2_High-income ZIP codes in New York City demonstrate higher case...

    • frontiersin.figshare.com
    application/csv
    Updated Jun 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steven T. L. Tung; Mosammat M. Perveen; Kirsten N. Wohlars; Robert A. Promisloff; Mary F. Lee-Wong; Anthony M. Szema (2024). Data_Sheet_2_High-income ZIP codes in New York City demonstrate higher case rates during off-peak COVID-19 waves.CSV [Dataset]. http://doi.org/10.3389/fpubh.2024.1384156.s002
    Explore at:
    application/csvAvailable download formats
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Frontiers
    Authors
    Steven T. L. Tung; Mosammat M. Perveen; Kirsten N. Wohlars; Robert A. Promisloff; Mary F. Lee-Wong; Anthony M. Szema
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    IntroductionOur study explores how New York City (NYC) communities of various socioeconomic strata were uniquely impacted by the COVID-19 pandemic.MethodsNew York City ZIP codes were stratified into three bins by median income: high-income, middle-income, and low-income. Case, hospitalization, and death rates obtained from NYCHealth were compared for the period between March 2020 and April 2022.ResultsCOVID-19 transmission rates among high-income populations during off-peak waves were higher than transmission rates among low-income populations. Hospitalization rates among low-income populations were higher during off-peak waves despite a lower transmission rate. Death rates during both off-peak and peak waves were higher for low-income ZIP codes.DiscussionThis study presents evidence that while high-income areas had higher transmission rates during off-peak periods, low-income areas suffered greater adverse outcomes in terms of hospitalization and death rates. The importance of this study is that it focuses on the social inequalities that were amplified by the pandemic.

  4. Low-Income or Disadvantaged Communities Designated by California

    • data.ca.gov
    • data.cnra.ca.gov
    • +4more
    Updated Jun 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2025). Low-Income or Disadvantaged Communities Designated by California [Dataset]. https://data.ca.gov/dataset/low-income-or-disadvantaged-communities-designated-by-california
    Explore at:
    arcgis geoservices rest api, csv, kml, zip, html, geojsonAvailable download formats
    Dataset updated
    Jun 11, 2025
    Dataset authored and provided by
    California Energy Commissionhttp://www.energy.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    This layer shows census tracts that meet the following definitions: Census tracts with median household incomes at or below 80 percent of the statewide median income or with median household incomes at or below the threshold designated as low income by the Department of Housing and Community Development’s list of state income limits adopted under Healthy and Safety Code section 50093 and/or Census tracts receiving the highest 25 percent of overall scores in CalEnviroScreen 4.0 or Census tracts lacking overall scores in CalEnviroScreen 4.0 due to data gaps, but receiving the highest 5 percent of CalEnviroScreen 4.0 cumulative population burden scores or Census tracts identified in the 2017 DAC designation as disadvantaged, regardless of their scores in CalEnviroScreen 4.0 or Lands under the control of federally recognized Tribes.


    Data downloaded in May 2022 from https://webmaps.arb.ca.gov/PriorityPopulations/.

  5. Low-Income Housing Tax Credit (LIHTC) Difficult Development Areas

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • catalog.data.gov
    Updated Mar 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2024). Low-Income Housing Tax Credit (LIHTC) Difficult Development Areas [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/low-income-housing-tax-credit-lihtc-difficult-development-areas
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Description

    This service provides spatial data and information on Difficult Development Areas (DDAs) used for the Low Income Housing Tax Credit program. DDAs are designated by U.S. Department of Housing and Urban Development (HUD) and defined in statute as areas with high construction, land, and utility costs relative to its Area Median Gross Income (AMGI). DDAs in metropolitan areas are designated along Census ZIP Code Tabulation Area (ZCTA) boundaries. DDAs in non-metropolitan areas are designated along county boundaries. DDAs may not contain more than 20% of the aggregate population of metropolitan and non-metropolitan areas, which are designated separately.

  6. a

    Low to Moderate Income Population by Block Group

    • hudgis-hud.opendata.arcgis.com
    • data.lojic.org
    • +1more
    Updated Oct 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2024). Low to Moderate Income Population by Block Group [Dataset]. https://hudgis-hud.opendata.arcgis.com/datasets/low-to-moderate-income-population-by-block-group
    Explore at:
    Dataset updated
    Oct 2, 2024
    Dataset authored and provided by
    Department of Housing and Urban Development
    Area covered
    Description

    The Community Development Block Grant (CDBG) program requires that each CDBG funded activity must either principally benefit low- and moderate-income persons, aid in the prevention or elimination of slums or blight, or meet a community development need having a particular urgency because existing conditions pose a serious and immediate threat to the health or welfare of the community and other financial resources are not available to meet that need. With respect to activities that principally benefit low- and moderate-income persons, at least 51 percent of the activity's beneficiaries must be low and moderate income. For CDBG, a person is considered to be of low income only if he or she is a member of a household whose income would qualify as "very low income" under the Section 8 Housing Assistance Payments program. Generally, these Section 8 limits are based on 50% of area median. Similarly, CDBG moderate income relies on Section 8 "lower income" limits, which are generally tied to 80% of area median. These data are from the 2011-2015 American Community Survey (ACS). To learn more about the Low to Moderate Income Populations visit: https://www.hudexchange.info/programs/acs-low-mod-summary-data/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Low to Moderate Income Populations by Block GroupDate of Coverage: ACS 2020-2016

  7. National Neighborhood Data Archive (NaNDA): Socioeconomic Status and...

    • icpsr.umich.edu
    • archive.icpsr.umich.edu
    ascii, delimited, r +3
    Updated Jan 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Clarke, Philippa; Melendez, Robert; Noppert, Grace; Chenoweth, Megan; Gypin, Lindsay (2025). National Neighborhood Data Archive (NaNDA): Socioeconomic Status and Demographic Characteristics of Census Tracts and ZIP Code Tabulation Areas, United States, 1990-2022 [Dataset]. http://doi.org/10.3886/ICPSR38528.v5
    Explore at:
    stata, delimited, sas, spss, r, asciiAvailable download formats
    Dataset updated
    Jan 22, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Clarke, Philippa; Melendez, Robert; Noppert, Grace; Chenoweth, Megan; Gypin, Lindsay
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/38528/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38528/terms

    Time period covered
    1990 - 2022
    Area covered
    United States
    Description

    These datasets contain measures of socioeconomic and demographic characteristics by U.S. census tract for the years 1990-2022 and ZIP code tabulation area (ZCTA) for the years 2008-2022. Example measures include population density; population distribution by race, ethnicity, age, and income; income inequality by race and ethnicity; and proportion of population living below the poverty level, receiving public assistance, and female-headed or single parent families with kids. The datasets also contain a set of theoretically derived measures capturing neighborhood socioeconomic disadvantage and affluence, as well as a neighborhood index of Hispanic, foreign born, and limited English.

  8. T

    Lifeline Companies Near Me

    • datahub.usac.org
    • opendata.usac.org
    application/rdfxml +5
    Updated Aug 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Universal Service Administrative Company (2025). Lifeline Companies Near Me [Dataset]. https://datahub.usac.org/Lifeline/Lifeline-Companies-Near-Me/kjtb-4uf7
    Explore at:
    application/rdfxml, csv, json, xml, application/rssxml, tsvAvailable download formats
    Dataset updated
    Aug 12, 2025
    Dataset authored and provided by
    Universal Service Administrative Company
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    This dataset provides the information of all the carriers providing Lifeline service, their customer service number, service type, state, and URL. The purpose of this dataset is to provide the most accurate list of carriers providing service in a particular area within a given state, through the use of zip codes. To ensure that this data is up-to-date and accurate, it is refreshed periodically to add new carriers and the corresponding zip codes of their designated service areas, update the zip codes for existing carriers, and remove zip codes for carriers that have relinquished their ETC designation. In the event that a user enters a zip code that does not return any service provider(s), a complete listing of the state in which the zip code is found will be returned with the recommendation that the consumer confirm the availability of Lifeline service in their chosen zip code with a service provider from that state.

  9. d

    ACP Households by Zip Code Over Time

    • data.detroitmi.gov
    • data.ferndalemi.gov
    Updated Jun 13, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Detroit (2023). ACP Households by Zip Code Over Time [Dataset]. https://data.detroitmi.gov/maps/34875fc6f5da4ec7af2e380b2323daa0
    Explore at:
    Dataset updated
    Jun 13, 2023
    Dataset authored and provided by
    City of Detroit
    Area covered
    Description

    Discounts for Internet service through the Affordable Connectivity Program (ACP) ended June 1, 2024 due to lack of additional funding. Whether the program will receive additional funding in the future is uncertain. Please see ACP program information from the FCC for more details.The Affordable Connectivity Program (ACP) households data set summarizes household enrollments and subscriptions by month and zip code for beneficiary households located in Detroit zip codes. The Affordable Connectivity Program (ACP) is a U.S. government program to help low-income households pay for Internet services and connected devices. Households that participate in ACP receive discounts on qualifying broadband Internet services of up to $30 per month and can also receive a one-time discount of up to $100 to purchase a laptop, desktop computer, or tablet. Households can qualify for ACP based on participation in Lifeline or other service provider programs for low-income households, income at or below 200% of the federal poverty guidelines, participation in other Lifeline-qualifying programs such as SNAP or Medicaid, or participation in free and reduced-price school lunch and breakfast programs. Additionally, service providers can ask the FCC to approve an alternative verification process and use that approved process to check consumer eligibility. ACP program discounts first became available to eligible enrolled households on January 1, 2022. The ACP claims process is built on the Lifeline Claims System and this data set is derived from snapshots of all subscribers entered in the National Lifeline Accountability Database (NLAD) as of the first of each month. The ACP was created under the Infrastructure Investment and Jobs Act, also known as the Bipartisan Infrastructure Law, and is administered by the independent not-for-profit Universal Service Access Co. under the direction of the Federal Communications Commission (FCC). Eligible beneficiaries who participated in the Emergency Broadband Benefit (EBB) program that was funded by the Coronavirus Aid, Relief, and Economic Security (CARES) Act, were transitioned to ACP between January 1 and March 1, 2022. EBB was ACP's predecessor program and ran from May 12, 2021 until it was phased out on February 28, 2022. Due to the granularity of available data, households located in communities adjacent to Detroit that share a zip code such as Hamtramck and Highland Park are included in this data set.Fieldsprogram - Associated program for the data (ACP or EBB)data_month - Data month is associated with the subscriber snapshot for each claim month. If data month is listed as '5/1/2022', then the subscriber snapshot was captured on June 1, and the data represents the number of households in ACP as of June 1. This is the universe of subscribers that providers can claim for the May 2022 data month.zipcode - Zip code where the enrolled household is located.net_new_enrollments_alternative_verification_process - Difference between the current month Total Subscribers who qualified using an alternative verification process and prior month Total Subscribers who qualified using an alternative verification process.net_new_enrollments_verified_by_school - Difference between the current month Total Subscribers who qualified using school lunch program verification and prior month Total Subscribers who qualified using school lunch program verification.net_new_enrollments_lifeline - Difference between the current month Total Subscribers who qualified using the Lifeline program and prior month Total Subscribers who qualified using the Lifeline program.net_new_enrollments_national_verifier_application - Difference between the current month Total Subscribers who qualified using a National Verifier application and prior month Total Subscribers who qualified using a National Verifier application.net_new_enrollments_total - Difference between the total number of subscribers in the current and prior months. Calculated based on the sum of net new monthly enrollments verified by the school, lifeline, alternative verification process, and national verifier application programs.total_alternative_verification_process - Number of households in the ACP on the first of the month snapshot whose eligibility was determined via an FCC-approved alternative verification process. total_verified_by_school - Number of households in the ACP on the first of the month snapshot whose eligibility was verified based on participation in a school lunch program.total_lifeline - Number of households in the ACP on the first of the month snapshot whose eligibility was determined based on participation in Lifeline, a federal program that lowers the monthly cost of phone or Internet services.total_national_verifier_application - Number of households in the ACP on of the first of the month snapshot whose eligibility was determined via the National Eligibility Verifier (National Verifier) system.total_subscribers - Number of total households participating in ACP on the first of the month snapshot. If, for example, there were 100 subscribers enrolled as of the June 1, 2022 snapshot, then Total Subscribers for the 05/01/2022 (May 2022) data month would be 100.

  10. Low-Income Housing Tax Credit Properties

    • hudgis-hud.opendata.arcgis.com
    • data.lojic.org
    • +2more
    Updated Nov 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2024). Low-Income Housing Tax Credit Properties [Dataset]. https://hudgis-hud.opendata.arcgis.com/maps/HUD::low-income-housing-tax-credit-properties-1/about
    Explore at:
    Dataset updated
    Nov 12, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    Created by the Tax Reform Act of 1986, the Low-Income Housing Tax Credit program (LIHTC) gives State and local LIHTC-allocating agencies the equivalent of nearly $8 billion in annual budget authority to issue tax credits for the acquisition, rehabilitation, or new construction of rental housing targeted to lower-income households. Although some data about the program have been made available by various sources, HUD's database is the only complete national source of information on the size, unit mix, and location of individual projects. With the continued support of the national LIHTC database, HUD hopes to enable researchers to learn more about the effects of the tax credit program.HUD has no administrative authority over the LIHTC program. IRS has authority at the federal level and it is structured so that the states truly administer the program. The LIHTC property locations depicted in this map service represent the general location of the property. The locations of individual buildings associated with each property are not depicted here. The location of the property is derived from the address of the building with the most units. Location data for HUD-related properties and facilities are derived from HUD's enterprise geocoding service. While not all addresses are able to be geocoded and mapped to 100% accuracy, we are continuously working to improve address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD. When using this data, take note of the field titled “LVL2KX” which indicates the overall accuracy of the geocoded address using the following return codes:‘R’ - Interpolated rooftop (high degree of accuracy, symbolized as green)‘4’ - ZIP+4 centroid (high degree of accuracy, symbolized as green)‘B’ - Block group centroid (medium degree of accuracy, symbolized as yellow)‘T’ - Census tract centroid (low degree of accuracy, symbolized as red)‘2’ - ZIP+2 centroid (low degree of accuracy, symbolized as red)‘Z’ - ZIP5 centroid (low degree of accuracy, symbolized as red)‘5’ - ZIP5 centroid (same as above, low degree of accuracy, symbolized as red)Null - Could not be geocoded (does not appear on the map)For the purposes of displaying the location of an address on a map only use addresses and their associated lat/long coordinates where the LVL2KX field is coded ‘R’ or ‘4’. These codes ensure that the address is displayed on the correct street segment and in the correct census block.The remaining LVL2KX codes provide a cascading indication of the most granular level geography for which an address can be confirmed. For example, if an address cannot be accurately interpolated to a rooftop (‘R’), or ZIP+4 centroid (‘4’), then the address will be mapped to the centroid of the next nearest confirmed geography: block group, tract, and so on. When performing any point-in polygon analysis it is important to note that points mapped to the centroids of larger geographies will be less likely to map accurately to the smaller geographies of the same area. For instance, a point coded as ‘5’ in the correct ZIP Code will be less likely to map to the correct block group or census tract for that address. To learn more about the Low-Income Housing Tax Credit Program visit: https://www.hud.gov/program_offices/public_indian_housing/programs/ph/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Low Income Tax Credit Program

  11. D

    ACP Households by Zip Code

    • detroitdata.org
    • data.detroitmi.gov
    • +2more
    csv, geojson, html
    Updated Jan 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Detroit (2024). ACP Households by Zip Code [Dataset]. https://detroitdata.org/dataset/acp-households-by-zip-code
    Explore at:
    csv, html, geojsonAvailable download formats
    Dataset updated
    Jan 18, 2024
    Dataset provided by
    City of Detroit
    Description
    Discounts for Internet service through the Affordable Connectivity Program (ACP) ended June 1, 2024 due to lack of additional funding. Whether the program will receive additional funding in the future is uncertain. Please see ACP program information from the FCC for more details.

    The Affordable Connectivity Program (ACP) households data set summarizes household enrollments and subscriptions by month and zip code for beneficiary households located in Detroit zip codes. The Affordable Connectivity Program (ACP) is a U.S. government program to help low-income households pay for Internet services and connected devices. Households that participate in ACP receive discounts on qualifying broadband Internet services of up to $30 per month and can also receive a one-time discount of up to $100 to purchase a laptop, desktop computer, or tablet. Households can qualify for ACP based on participation in Lifeline or other service provider programs for low-income households, income at or below 200% of the federal poverty guidelines, participation in other Lifeline-qualifying programs such as SNAP or Medicaid, or participation in free and reduced-price school lunch and breakfast programs. Additionally, service providers can ask the FCC to approve an alternative verification process and use that approved process to check consumer eligibility. ACP program discounts first became available to eligible enrolled households on January 1, 2022. The ACP claims process is built on the Lifeline Claims System and this data set is derived from snapshots of all subscribers entered in the National Lifeline Accountability Database (NLAD) as of the first of each month.
    The ACP was created under the Infrastructure Investment and Jobs Act, also known as the Bipartisan Infrastructure Law, and is administered by the independent not-for-profit Universal Service Access Co. under the direction of the Federal Communications Commission (FCC). Eligible beneficiaries who participated in the Emergency Broadband Benefit (EBB) program that was funded by the Coronavirus Aid, Relief, and Economic Security (CARES) Act, were transitioned to ACP between January 1 and March 1, 2022. EBB was ACP's predecessor program and ran from May 12, 2021 until it was phased out on February 28, 2022. Due to the granularity of available data, households located in communities adjacent to Detroit that share a zip code such as Hamtramck and Highland Park are included in this data set.

    Fields
    program - Associated program for the data (ACP or EBB)

    data_month - Data month is associated with the subscriber snapshot for each claim month. If data month is listed as '5/1/2022', then the subscriber snapshot was captured on June 1, and the data represents the number of households in ACP as of June 1. This is the universe of subscribers that providers can claim for the May 2022 data month.

    zipcode - Zip code where the enrolled household is located.

    net_new_enrollments_alternative_verification_process - Difference between the current month Total Subscribers who qualified using an alternative verification process and prior month Total Subscribers who qualified using an alternative verification process.

    net_new_enrollments_verified_by_school - Difference between the current month Total Subscribers who qualified using school lunch program verification and prior month Total Subscribers who qualified using school lunch program verification.

    net_new_enrollments_lifeline - Difference between the current month Total Subscribers who qualified using the Lifeline program and prior month Total Subscribers who qualified using the Lifeline program.

    net_new_enrollments_national_verifier_application - Difference between the current month Total Subscribers who qualified using a National Verifier application and prior month Total Subscribers who qualified using a National Verifier application.

    net_new_enrollments_total - Difference between the total number of subscribers in the current and prior months. Calculated based on the sum of net new monthly enrollments verified by the school, lifeline, alternative verification process, and national verifier application programs.

    total_alternative_verification_process - Number of households in the ACP on the first of the month snapshot whose eligibility was determined via an FCC-approved alternative verification process.

    total_verified_by_school - Number of households in the ACP on the first of the month snapshot whose eligibility was verified based on participation in a school lunch program.

    total_lifeline - Number of households in the ACP on the first of the month snapshot whose eligibility was determined based on participation in Lifeline, a federal program that lowers the monthly cost of phone or Internet services.

    total_national_verifier_application - Number of households in the ACP on of the first of the month snapshot whose eligibility was determined via the National Eligibility Verifier (National Verifier) system.

    total_subscribers - Number of total households participating in ACP on the first of the month snapshot. If, for example, there were 100 subscribers enrolled as of the June 1, 2022 snapshot, then Total Subscribers for the 05/01/2022 (May 2022) data month would be 100.
  12. D

    ACP Claims by Zip Code

    • detroitdata.org
    • data.detroitmi.gov
    • +2more
    Updated Jan 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Detroit (2024). ACP Claims by Zip Code [Dataset]. https://detroitdata.org/dataset/acp-claims-by-zip-code
    Explore at:
    arcgis geoservices rest api, zip, geojson, kml, html, csvAvailable download formats
    Dataset updated
    Jan 18, 2024
    Dataset provided by
    City of Detroit
    Description
    Discounts for Internet service through the Affordable Connectivity Program (ACP) ended June 1, 2024 due to lack of additional funding. Whether the program will receive additional funding in the future is uncertain. Please see ACP program information from the FCC for more details.

    The Affordable Connectivity Program (ACP) claims data set summarizes reimbursement claims submitted by participating Internet service providers for households in Detroit zip codes by month and zip code. The Affordable Connectivity Program (ACP) is a U.S. government program to help low-income households pay for Internet services and connected devices. Households that participate in ACP receive discounts on qualifying broadband Internet services of up to $30 per month and can also receive a one-time discount of up to $100 to purchase a laptop, desktop computer, or tablet. Households can qualify for ACP based on participation in Lifeline or other service provider programs for low-income households, income at or below 200% of the federal poverty guidelines, participation in other Lifeline-qualifying programs such as SNAP or Medicaid, or participation in free and reduced-price school lunch and breakfast programs. Additionally, service providers can also ask the FCC to approve an alternative verification process and use that approved process to check consumer eligibility. ACP program discounts first became available to eligible enrolled households on January 1, 2022. The ACP claims process is built on the Lifeline Claims System and this data set is derived from snapshots of all subscribers entered in the National Lifeline Accountability Database (NLAD) as of the first of each month.
    The ACP was created under the Infrastructure Investment and Jobs Act, also known as the Bipartisan Infrastructure Law, and is administered by the independent not-for-profit Universal Service Access Co. under the direction of the Federal Communications Commission (FCC). Eligible beneficiaries who participated in the Emergency Broadband Benefit (EBB) program that was funded by the Coronavirus Aid, Relief, and Economic Security (CARES) Act, were transitioned to ACP between January 1 and March 1, 2022. EBB was ACP's predecessor program and ran from May 12, 2021 until it was phased out on February 28, 2022. Due to the granularity of available data, claims for households located in communities adjacent to Detroit that share a zip code such as Hamtramck and Highland Park are included in this data set.

    Fields
    ogc_fid - Zip code id.

    zipcode - Zip code where the enrolled household is located.

    postalcity - City associated with the zip code.

    data_month - Data month is associated with the subscriber snapshot for each claim month. If data month is listed as '5/1/2022', then the subscriber snapshot was captured on June 1, and the data represents the number of households in ACP on June 1. This is the universe of subscribers that providers can claim for the May 2022 data month.

    total_claimed_subscribers - Total number of enrolled households claimed for reimbursement as of the data month snapshot.

    total_claimed_devices - Total number of devices (laptops, desktop computers, or tablets) claimed for reimbursement as of the data month snapshot.

    service_support - Amount program providers claimed for reimbursement under the ACP program in the given month, in dollars. Reimbursement claims are for discounts provided to enrolled households to reduce the standard rate of an eligible broadband service and associated equipment rentals. For households that receive both Lifeline and ACP discounts and apply both benefits to their qualifying broadband service, the Lifeline discount ($9.25) is applied first and the ACP discount is then applied to the remaining amount.

    device_support - Amount discounted to households for purchasing a device (laptop, desktop computer, or tablet) in the given month, in dollars. Each household is eligible for a one-time reimbursement payment of up to $100 for one connected device.

    total_support - Sum of service support and device support in the given month, in dollars.
  13. Public Housing

    • data.bayareametro.gov
    Updated Dec 10, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Housing and Community Development (2021). Public Housing [Dataset]. https://data.bayareametro.gov/Structures/Public-Housing/3bj7-zyaq
    Explore at:
    application/rdfxml, csv, application/rssxml, xml, tsv, application/geo+json, kml, kmzAvailable download formats
    Dataset updated
    Dec 10, 2021
    Dataset provided by
    California Department of Housing & Community Developmenthttps://hcd.ca.gov/
    Authors
    California Department of Housing and Community Development
    Description

    The feature set indicates the locations, and tenant characteristics of public housing development buildings for the San Francisco Bay Region. This feature set, extracted by the Metropolitan Transportation Commission, is from the statewide public housing buildings feature layer provided by the California Department of Housing and Community Development (HCD). HCD itself extracted the California data from the United States Department of Housing and Urban Development (HUD) feature service depicting the location of individual buildings within public housing units throughout the United States.

    According to HUD's Public Housing Program, "Public Housing was established to provide decent and safe rental housing for eligible low-income families, the elderly, and persons with disabilities. Public housing comes in all sizes and types, from scattered single family houses to high-rise apartments for elderly families. There are approximately 1.2 million households living in public housing units, managed by some 3,300 housing agencies. HUD administers federal aid to local housing agencies that manage the housing for low-income residents at rents they can afford. HUD furnishes technical and professional assistance in planning, developing and managing these developments.

    HUD administers Federal aid to local Housing Agencies (HAs) that manage housing for low-income residents at rents they can afford. Likewise, HUD furnishes technical and professional assistance in planning, developing, and managing the buildings that comprise low-income housing developments. This feature set provides the location, and resident characteristics of public housing development buildings.

    Location data for HUD-related properties and facilities are derived from HUD's enterprise geocoding service. While not all addresses are able to be geocoded and mapped to 100% accuracy, we are continuously working to improve address data quality and enhance coverage. Please consider this issue when using any datasets provided by HUD. When using this data, take note of the field titled “LVL2KX” which indicates the overall accuracy of the geocoded address using the following return codes:

    ‘R’ - Interpolated rooftop (high degree of accuracy, symbolized as green) 
    ‘4’ - ZIP+4 centroid (high degree of accuracy, symbolized as green) 
    ‘B’ - Block group centroid (medium degree of accuracy, symbolized as yellow) 
    ‘T’ - Census tract centroid (low degree of accuracy, symbolized as red) 
    ‘2’ - ZIP+2 centroid (low degree of accuracy, symbolized as red) 
     ‘Z’ - ZIP5 centroid (low degree of accuracy, symbolized as red) 
    ‘5’ - ZIP5 centroid (same as above, low degree of accuracy, symbolized as red) 
    Null - Could not be geocoded (does not appear on the map) 
    

    For the purposes of displaying the location of an address on a map only use addresses and their associated lat/long coordinates where the LVL2KX field is coded ‘R’ or ‘4’. These codes ensure that the address is displayed on the correct street segment and in the correct census block. The remaining LVL2KX codes provide a cascading indication of the most granular level geography for which an address can be confirmed. For example, if an address cannot be accurately interpolated to a rooftop (‘R’), or ZIP+4 centroid (‘4’), then the address will be mapped to the centroid of the next nearest confirmed geography: block group, tract, and so on. When performing any point-in polygon analysis it is important to note that points mapped to the centroids of larger geographies will be less likely to map accurately to the smaller geographies of the same area. For instance, a point coded as ‘5’ in the correct ZIP Code will be less likely to map to the correct block group or census tract for that address. In an effort to protect Personally Identifiable Information, the characteristics for each building are suppressed with a -4 value when the “Number_Reported” is equal to, or less than 10.

    HCD downloaded the HUD data in April 2021. They sourced the data from https://hub.arcgis.com/datasets/fedmaps::public-housing-buildings.

    To learn more about Public Housing visit: https://www.hud.gov/program_offices/public_indian_housing/programs/ph/.

  14. a

    LCI Opportunity Area Metrics / lci opportunity metrics area

    • hub.arcgis.com
    • gis-kingcounty.opendata.arcgis.com
    • +1more
    Updated Nov 5, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    King County (2021). LCI Opportunity Area Metrics / lci opportunity metrics area [Dataset]. https://hub.arcgis.com/maps/kingcounty::lci-opportunity-area-metrics-lci-opportunity-metrics-area
    Explore at:
    Dataset updated
    Nov 5, 2021
    Dataset authored and provided by
    King County
    Area covered
    Description

    This feature dataset contains a snapshot of all King County parcels from September 2020, with all of the "additional relevant criteria" data used in Method 2 of the LCI opportunity area determination described below.There are two methods by which a property may qualify as being in an opportunity area:Method 1. Property meets all three of the following "specified criteria" in King County code 26.12.003.(a) Areas "located in a census tract in which the median household income is in the lowest one-third for median household income for census tracts in King County; (b) "located in a ZIP code in which hospitalization rates for asthma, diabetes, and heart disease are in the highest one-third for ZIP codes in King County; and (c) "are within the Urban Growth Boundary and do not have a publicly owned and accessible park or open space within one-quarter mile of a residence, or are outside the Urban Growth Boundary and do not have a publicly owned and accessible park or open space within two miles of a residence." (King County Code 26.12.003)Data results related to Method 1 are shown in the LCI Opportunity Areas dataset on the King County GIS Open Data site. In this dataset, the parcels where the "CriteriaAllYN" column is equal to "Y" also represents those parcels.Method 2. If a property does not qualify under Method #1, a project may qualify if: "the project proponent or proponents can demonstrate, and the advisory committee determines, that residents living in the area, or populations the project is intended to serve, disproportionately experience limited access to public open spaces and experience demonstrated hardships including, but not limited to, low income, poor health and social and environmental factors that reflect a lack of one or more conditions for a fair and just society as defined as "determinants of equity" in KCC 2.10.210." (King County Code 26.12.003)Conservation Futures (CFT) values the use of multiple sources of data and information to demonstrate that a property is in an opportunity area. Applicants are welcome to provide additional criteria and data sources not identified in this report to demonstrate that a property is in an opportunity area. These sources are provided in the document here: Understanding the Data Report.

  15. b

    Data from: Median Household Income

    • data.baltimorecity.gov
    • vital-signs-bniajfi.hub.arcgis.com
    • +1more
    Updated Feb 27, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore Neighborhood Indicators Alliance (2020). Median Household Income [Dataset]. https://data.baltimorecity.gov/maps/8613366cfbc7447a9efd9123604c65c1
    Explore at:
    Dataset updated
    Feb 27, 2020
    Dataset authored and provided by
    Baltimore Neighborhood Indicators Alliance
    Area covered
    Description

    Median household income is the middle value of the incomes earned in the prior year by households in an area. Income and earnings are inflation-adjusted for the last year of the 5-year period. The median value is used as opposed to the average so that both extremely high and extremely low prices do not distort the total amount of income earned by households in an area. Source: American Community SurveyYears Available: 2006-2010, 2007-2011, 2008-2012, 2009-2013, 2010-2014, 2011-2015, 2012-2016, 2013-2017, 2014-2018, 2015-2019, 2016-2020, 2017-2021, 2018-2022, 2019-2023Please note: We do not recommend comparing overlapping years of data due to the nature of this dataset. For more information, please visit: https://www.census.gov/programs-surveys/acs/guidance/comparing-acs-data.html

  16. Wealth Segmentation of U.S. ZIP Codes Based on IRS

    • kaggle.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Namrata_Nyam (2025). Wealth Segmentation of U.S. ZIP Codes Based on IRS [Dataset]. http://doi.org/10.34740/kaggle/dsv/12424277
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 9, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Namrata_Nyam
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Wealth Segmentation of U.S. ZIP Codes Based on IRS Data

    This dataset provides a wealth-tier classification of U.S. ZIP codes for high income brackets using IRS income data and multivariate KMeans clustering. It can help with regional targeting, CRM enrichment, market analysis, or any data science task that benefits from understanding high income distribution across the U.S.

    💡 Source

    • IRS SOI ZIP Code Data (open source)
    • Aggregated across AGI brackets (stub 3–6)

    🧠 What’s Inside

    Each row represents a ZIP code with:

    • AGI (A00100), Total Income (A00200)
    • Capital Gains, Business Income, Tax Paid
    • Cluster assignment (0–2)
    • Wealth Tier label: Low, Medium, or High

    The cluster assignments are refined using distance to cluster centroids in normalized feature space to improve accuracy.

    💼 Use Cases

    • Segmenting markets for B2B/B2C outreach
    • CRM lead enrichment
    • Territory planning and resource allocation
    • Visualization and dashboard overlays
    ColumnDescription
    zipcodeU.S. ZIP code
    STATEFIPSFederal Information Processing Standard (FIPS) code for the state
    STATEU.S. state abbreviation (e.g., AL, CA)
    agi_stubAdjusted Gross Income bracket (1 = <$25K, ..., 6 = $200K+)
    A00100Adjusted Gross Income
    A02650Total income from all sources
    A10600Total tax payments
    A00200Wages and salaries
    MARS2Count of married joint returns
    N2Number of dependents
    A00900Business/professional net income
    mars1Count of single returns
    A26270Partnership and S-Corp income
    A09400Self-employment tax
    MARS4Head of household returns
    A85300Net investment income
    A00600Ordinary dividends
    A04475Qualified business income deduction
    A00650Qualified dividends
    A18500Real estate taxes paid
    ClusterNumeric cluster ID (0 = High, 1 = Medium, 2 = Low)
    Wealth_TierHuman-readable wealth tier label

    📬 Contact

    Created by Namrata Nyamagoudar(LinkedIn) for open-source analysis and enrichment use cases.

  17. a

    Opportunity Zones Census Tracts Designated by the District of Columbia

    • datahub-dc-dcgis.hub.arcgis.com
    • catalog.data.gov
    Updated Apr 6, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2018). Opportunity Zones Census Tracts Designated by the District of Columbia [Dataset]. https://datahub-dc-dcgis.hub.arcgis.com/datasets/DCGIS::opportunity-zones-census-tracts-designated-by-the-district-of-columbia/about
    Explore at:
    Dataset updated
    Apr 6, 2018
    Dataset authored and provided by
    City of Washington, DC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Created in the Tax Cuts and Jobs Act of 2017, Opportunity Zones is a new federal program that provides tax incentives for investments in new businesses and commercial projects in low-income communities. On April 2018, Mayor Bowser nominated 25 census tracts to be Opportunity Zones. The U.S. Department of Treasury certified these tracts on May 18, 2018.

  18. i

    Richest Zip Codes in Virginia

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in Virginia [Dataset]. https://www.incomebyzipcode.com/virginia
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    Virginia
    Description

    A dataset listing the richest zip codes in Virginia per the most current US Census data, including information on rank and average income.

  19. i

    Richest Zip Codes in North Carolina

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in North Carolina [Dataset]. https://www.incomebyzipcode.com/northcarolina
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    North Carolina
    Description

    A dataset listing the richest zip codes in North Carolina per the most current US Census data, including information on rank and average income.

  20. i

    Richest Zip Codes in New York

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in New York [Dataset]. https://www.incomebyzipcode.com/newyork
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    New York
    Description

    A dataset listing the richest zip codes in New York per the most current US Census data, including information on rank and average income.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Department of Housing and Urban Development (2024). Low and Moderate Income Areas [Dataset]. https://catalog.data.gov/dataset/hud-low-and-moderate-income-areas
Organization logo

Low and Moderate Income Areas

Explore at:
Dataset updated
Mar 1, 2024
Dataset provided by
United States Department of Housing and Urban Developmenthttp://www.hud.gov/
Description

This dataset and map service provides information on the U.S. Housing and Urban Development's (HUD) low to moderate income areas. The term Low to Moderate Income, often referred to as low-mod, has a specific programmatic context within the Community Development Block Grant (CDBG) program. Over a 1, 2, or 3-year period, as selected by the grantee, not less than 70 percent of CDBG funds must be used for activities that benefit low- and moderate-income persons. HUD uses special tabulations of Census data to determine areas where at least 51% of households have incomes at or below 80% of the area median income (AMI). This dataset and map service contains the following layer.

Search
Clear search
Close search
Google apps
Main menu