100+ datasets found
  1. Low and Moderate Income Areas Map

    • data.mesaaz.gov
    • citydata.mesaaz.gov
    application/rdfxml +5
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Housing and Urban Development (HUD) (2023). Low and Moderate Income Areas Map [Dataset]. https://data.mesaaz.gov/Census/Low-and-Moderate-Income-Areas-Map/rpdt-ydtu
    Explore at:
    tsv, csv, xml, application/rssxml, application/rdfxml, jsonAvailable download formats
    Dataset updated
    Aug 24, 2023
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Housing and Urban Development (HUD)
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    FY2024 full and partial census tracts that qualify as Low-Moderate Income Areas (LMA) where 51% or more of the population are considered as having Low-Moderate Income. The low- and moderate-income summary data (LMISD) is based on the 2016-2020 American Community Survey (ACS). As of August 1, 2024, to qualify any new low- and moderate-income area (LMA) activities, Community Development Block Grant (CDBG) grantees should use this map and data.

    For more information about LMA/LMI click the following link to open in new browser tab https://www.hudexchange.info/programs/cdbg/cdbg-low-moderate-income-data/

  2. d

    Low-Income or Disadvantaged Communities Designated by California

    • catalog.data.gov
    • data.ca.gov
    • +5more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Energy Commission (2024). Low-Income or Disadvantaged Communities Designated by California [Dataset]. https://catalog.data.gov/dataset/low-income-or-disadvantaged-communities-designated-by-california-b8da6
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Energy Commission
    Area covered
    California
    Description

    This layer shows census tracts that meet the following definitions: Census tracts with median household incomes at or below 80 percent of the statewide median income or with median household incomes at or below the threshold designated as low income by the Department of Housing and Community Development’s list of state income limits adopted under Healthy and Safety Code section 50093 and/or Census tracts receiving the highest 25 percent of overall scores in CalEnviroScreen 4.0 or Census tracts lacking overall scores in CalEnviroScreen 4.0 due to data gaps, but receiving the highest 5 percent of CalEnviroScreen 4.0 cumulative population burden scores or Census tracts identified in the 2017 DAC designation as disadvantaged, regardless of their scores in CalEnviroScreen 4.0 or Lands under the control of federally recognized Tribes.Data downloaded in May 2022 from https://webmaps.arb.ca.gov/PriorityPopulations/.

  3. l

    Low to Moderate Income Population by Block Group

    • data.lojic.org
    • hudgis-hud.opendata.arcgis.com
    • +1more
    Updated Oct 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2024). Low to Moderate Income Population by Block Group [Dataset]. https://data.lojic.org/datasets/HUD::low-to-moderate-income-population-by-block-group
    Explore at:
    Dataset updated
    Oct 2, 2024
    Dataset authored and provided by
    Department of Housing and Urban Development
    Area covered
    Description

    The Community Development Block Grant (CDBG) program requires that each CDBG funded activity must either principally benefit low- and moderate-income persons, aid in the prevention or elimination of slums or blight, or meet a community development need having a particular urgency because existing conditions pose a serious and immediate threat to the health or welfare of the community and other financial resources are not available to meet that need. With respect to activities that principally benefit low- and moderate-income persons, at least 51 percent of the activity's beneficiaries must be low and moderate income. For CDBG, a person is considered to be of low income only if he or she is a member of a household whose income would qualify as "very low income" under the Section 8 Housing Assistance Payments program. Generally, these Section 8 limits are based on 50% of area median. Similarly, CDBG moderate income relies on Section 8 "lower income" limits, which are generally tied to 80% of area median. These data are from the 2011-2015 American Community Survey (ACS). To learn more about the Low to Moderate Income Populations visit: https://www.hudexchange.info/programs/acs-low-mod-summary-data/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Low to Moderate Income Populations by Block GroupDate of Coverage: ACS 2020-2016

  4. HUD Low and Moderate Income Areas

    • data.wu.ac.at
    • datadiscoverystudio.org
    • +1more
    api, bin
    Updated Jan 1, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2015). HUD Low and Moderate Income Areas [Dataset]. https://data.wu.ac.at/schema/data_gov/MWY4Nzc1MzUtYTM0YS00YjIzLThjYmItMDUwOWEzMTZiMWU0
    Explore at:
    bin, apiAvailable download formats
    Dataset updated
    Jan 1, 2015
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Description

    This dataset and map service provides information on the U.S. Housing and Urban Development's (HUD) low to moderate income areas. The term Low to Moderate Income, often referred to as low-mod, has a specific programmatic context within the Community Development Block Grant (CDBG) program. Over a 1, 2, or 3-year period, as selected by the grantee, not less than 70 percent of CDBG funds must be used for activities that benefit low- and moderate-income persons. HUD uses special tabulations of Census data to determine areas where at least 51% of households have incomes at or below 80% of the area median income (AMI). This dataset and map service contains the following layer.

  5. v

    Low Income Communities- 30% or More of Population Under HUD 80% AMI and...

    • vgin.vdem.virginia.gov
    • opendata.winchesterva.gov
    Updated Jun 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    maddie.moore_VADEQ (2022). Low Income Communities- 30% or More of Population Under HUD 80% AMI and Under Two Times Federal Poverty Level (2011-2018 ACS) Open Data [Dataset]. https://vgin.vdem.virginia.gov/items/2e157479b19f4d1c91af03c41f82460f
    Explore at:
    Dataset updated
    Jun 2, 2022
    Dataset authored and provided by
    maddie.moore_VADEQ
    Description

    This dataset represents the geospatial extent as polygons and the corresponding attribution for census block groups that meet the definition of low-income communities according to the Virginia 2020 Environmental Justice Act: “Low-income community” definition: “’Low-income community’ means any census block group in which 30 percent or more of the population is composed of people with low income.”

    The referenced “low income” definition is also provided below: “Low income” definition: “’Low income’ means having an annual household income equal to or less than the greater of (i) an amount equal to 80 percent of the median income of the area in which the household is located, as reported by the Department of Housing and Urban Development, and (ii) 200 percent of the Federal Poverty Level.”Click Here to view Data Fact Sheet.

  6. IRA Low-Income Community Bonus Credit Program Layers

    • s.cnmilf.com
    • data.openei.org
    • +1more
    Updated Jan 20, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Economic Impact & Diversity US Department of Energy (2025). IRA Low-Income Community Bonus Credit Program Layers [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/ira-low-income-community-bonus-credit-program-layers-3d4e4
    Explore at:
    Dataset updated
    Jan 20, 2025
    Dataset provided by
    United States Department of Energyhttp://energy.gov/
    Description

    These geospatial data resources and the linked mapping tool below reflect currently available data on three categories of potentially qualifying Low-Income communities: Census tracts that meet the CDFI's New Market Tax Credit Program's threshold for Low Income, thereby are able to apply to Category 1. Census tracts that meet the White House's Climate and Economic Justice Screening Tool's threshold for disadvantage in the 'Energy' category, thereby are able to apply for Additional Selection Criteria Geography. Counties that meet the USDA's threshold for Persistent Poverty, thereby are able to apply for Additional Selection Criteria Geography. Note that Category 2 - Indian Lands are not shown on this map. Note that Persistent Poverty is not calculated for US Territories. Note that CEJST Energy disadvantage is not calculated for US Territories besides Puerto Rico. The excel tool provides the land area percentage of each 2023 census tract meeting each of the above categories. To examine geographic eligibility for a specific address or latitude and longitude, visit the program's mapping tool. Additional information on this tax credit program can be found on the DOE Landing Page for the 48e program at https://www.energy.gov/diversity/low-income-communities-bonus-credit-program or the IRS Landing Page at https://www.irs.gov/credits-deductions/low-income-communities-bonus-credit. Maps last updated: September 1st, 2024 Next map update expected: December 7th, 2024 Disclaimer: The spatial data and mapping tool is intended for geolocation purposes. It should not be relied upon by taxpayers to determine eligibility for the Low-Income Communities Bonus Credit Program. Source Acknowledgements: The New Market Tax Credit (NMTC) Tract layer using data from the 2016-2020 ACS is from the CDFI Information Mapping System (CIMS) and is created by the U.S. Department of Treasury Community Development Financial Institutions Fund. To learn more, visit CDFI Information Mapping System (CIMS) | Community Development Financial Institutions Fund (cdfifund.gov). https://www.cdfifund.gov/mapping-system. Tracts are displayed that meet the threshold for the New Market Tax Credit Program. The 'Energy' Category Tract layer from the Climate and Economic Justice Screening Tool (CEJST) is created by the Council on Environmental Quality (CEQ) within the Executive Office of the President. To learn more, visit https://screeningtool.geoplatform.gov/en/. Tracts are displayed that meet the threshold for the 'Energy' Category of burden. I.e., census tracts that are at or above the 90th percentile for (energy burden OR PM2.5 in the air) AND are at or above the 65th percentile for low income. The Persistent Poverty County layer is created by joining the U.S. Department of Agriculture, Economic Research Service's Poverty Area Official Measures dataset, with relevant county TIGER/Line Shapefiles from the US Census Bureau. To learn more, visit https://www.ers.usda.gov/data-products/poverty-area-measures/. Counties are displayed that meet the thresholds for Persistent Poverty according to 'Official' USDA updates. i.e. areas with a poverty rate of 20.0 percent or more for 4 consecutive time periods, about 10 years apart, spanning approximately 30 years (baseline time period plus 3 evaluation time periods). Until Dec 7th, 2024 both the USDA estimates using 2007-2011 and 2017-2021 ACS 5-year data. On Dec 8th, 2024, only the USDA estimates using 2017-2021 data will be accepted for program eligibility.

  7. U.S. poverty rate in the United States 2023, by race and ethnicity

    • statista.com
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. poverty rate in the United States 2023, by race and ethnicity [Dataset]. https://www.statista.com/statistics/200476/us-poverty-rate-by-ethnic-group/
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    In 2023, **** percent of Black people living in the United States were living below the poverty line, compared to *** percent of white people. That year, the total poverty rate in the U.S. across all races and ethnicities was **** percent. Poverty in the United States Single people in the United States making less than ****** U.S. dollars a year and families of four making less than ****** U.S. dollars a year are considered to be below the poverty line. Women and children are more likely to suffer from poverty, due to women staying home more often than men to take care of children, and women suffering from the gender wage gap. Not only are women and children more likely to be affected, racial minorities are as well due to the discrimination they face. Poverty data Despite being one of the wealthiest nations in the world, the United States had the third highest poverty rate out of all OECD countries in 2019. However, the United States' poverty rate has been fluctuating since 1990, but has been decreasing since 2014. The average median household income in the U.S. has remained somewhat consistent since 1990, but has recently increased since 2014 until a slight decrease in 2020, potentially due to the pandemic. The state that had the highest number of people living below the poverty line in 2020 was California.

  8. Data from: Public Use Data (2008-10) on Long-Term Neighborhood Effects on...

    • icpsr.umich.edu
    Updated Jan 15, 2014
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ludwig, Jens; Duncan, Greg J.; Gennetian, Lisa A.; Katz, Lawrence; Kessler, Ronald; Kling, Jeffrey; Sanbonmatsu, Lisa (2014). Public Use Data (2008-10) on Long-Term Neighborhood Effects on Low-Income Families (Adult Data Only) from All Five Sites of the Moving to Opportunity Experiment [Dataset]. http://doi.org/10.3886/ICPSR34976.v1
    Explore at:
    Dataset updated
    Jan 15, 2014
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    Authors
    Ludwig, Jens; Duncan, Greg J.; Gennetian, Lisa A.; Katz, Lawrence; Kessler, Ronald; Kling, Jeffrey; Sanbonmatsu, Lisa
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/34976/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/34976/terms

    Time period covered
    2008 - 2010
    Area covered
    Baltimore, New York (state), Chicago, Illinois, Massachusetts, United States, California, New York City, Los Angeles, Maryland
    Description

    Nearly 9 million Americans live in extreme-poverty neighborhoods, places that also tend to be racially segregated and dangerous. Yet, the effects on the well-being of residents of moving out of such communities into less distressed areas remain uncertain. Moving to Opportunity (MTO) is a randomized housing experiment administered by the United States Department of Housing and Urban Development that gave low-income families living in high-poverty areas in five cities the chance to move to lower-poverty areas. Families were randomly assigned to one of three groups: (1) The experimental group (also called the low-poverty voucher (LPV) group) received Section 8 rental assistance certificates or vouchers that they could use only in census tracts with 1990 poverty rates below 10 percent. The families received mobility counseling and help in leasing a new unit. One year after relocating, families could use their voucher to move again if they wished, without any special constraints on location. (2) The Section 8 group (also called the traditional voucher (TRV) group) received regular Section 8 certificates or vouchers that they could use anywhere; these families received no special mobility counseling. (3) The control group received no certificates or vouchers through MTO, but continued to be eligible for project-based housing assistance and whatever other social programs and services to which they would otherwise be entitled. Families were tracked from baseline (1994-98) through the long-term evaluation survey fielding period (2008-10) with the purpose of determining the effects of "neighborhood" on participating families. This data collection contains data from the 3,273 adult interviews completed as part of the MTO long-term evaluation and are comprised of adult variables that have been analyzed. Using data from the long-term evaluation, the associated article reports that moving from a high-poverty to lower-poverty neighborhood leads to long-term (10- to 15-year) improvements in adult physical and mental health and subjective well-being, despite not affecting economic self-sufficiency. The data contain all adult outcomes and mediators analyzed for the associated article as well as a variety of demographic and other baseline measures that were controlled for in the analysis.

  9. Low to Moderate Income Population by Tract

    • hudgis-hud.opendata.arcgis.com
    • data.lojic.org
    • +1more
    Updated Jul 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Housing and Urban Development (2023). Low to Moderate Income Population by Tract [Dataset]. https://hudgis-hud.opendata.arcgis.com/datasets/low-to-moderate-income-population-by-tract
    Explore at:
    Dataset updated
    Jul 31, 2023
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Authors
    Department of Housing and Urban Development
    Area covered
    Description

    The Community Development Block Grant (CDBG) program requires that each CDBG funded activity must either principally benefit low- and moderate-income persons, aid in the prevention or elimination of slums or blight, or meet a community development need having a particular urgency because existing conditions pose a serious and immediate threat to the health or welfare of the community and other financial resources are not available to meet that need. With respect to activities that principally benefit low- and moderate-income persons, at least 51 percent of the activity's beneficiaries must be low and moderate income. For CDBG, a person is considered to be of low income only if he or she is a member of a household whose income would qualify as "very low income" under the Section 8 Housing Assistance Payments program. Generally, these Section 8 limits are based on 50% of area median. Similarly, CDBG moderate income relies on Section 8 "lower income" limits, which are generally tied to 80% of area median. These data are derived from the 2011-2015 American Community Survey (ACS) and based on Census 2010 geography.

    To learn more about the Low to Moderate Income Populations visit: https://www.hudexchange.info/programs/acs-low-mod-summary-data/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Low to Moderate Income Populations by Tract

  10. T

    Vital Signs: Poverty - by county (2022)

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Jan 3, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Vital Signs: Poverty - by county (2022) [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Poverty-by-county-2022-/ft5b-u25x
    Explore at:
    csv, json, tsv, application/rdfxml, xml, application/rssxmlAvailable download formats
    Dataset updated
    Jan 3, 2023
    Description

    VITAL SIGNS INDICATOR
    Poverty (EQ5)

    FULL MEASURE NAME
    The share of the population living in households that earn less than 200 percent of the federal poverty limit

    LAST UPDATED
    January 2023

    DESCRIPTION
    Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.

    DATA SOURCE
    U.S Census Bureau: Decennial Census - http://www.nhgis.org
    1980-2000

    U.S. Census Bureau: American Community Survey - https://data.census.gov/
    2007-2021
    Form C17002

    CONTACT INFORMATION
    vitalsigns.info@mtc.ca.gov

    METHODOLOGY NOTES (across all datasets for this indicator)
    The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.

    For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or non-cash benefits (such as public housing, Medicaid and food stamps).

    For the national poverty level definitions by year, see: US Census Bureau Poverty Thresholds - https://www.census.gov/data/tables/time-series/demo/income-poverty/historical-poverty-thresholds.html.

    For an explanation on how the Census Bureau measures poverty, see: How the Census Bureau Measures Poverty - https://www.census.gov/topics/income-poverty/poverty/guidance/poverty-measures.html.

    American Community Survey (ACS) 1-year data is used for larger geographies – Bay counties and most metropolitan area counties – while smaller geographies rely upon 5-year rolling average data due to their smaller sample sizes. Note that 2020 data uses the 5-year estimates because the ACS did not collect 1-year data for 2020.

    To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.

  11. Low to Moderate Income Population by Tract

    • catalog.data.gov
    Updated Mar 1, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of Housing and Urban Development (2024). Low to Moderate Income Population by Tract [Dataset]. https://catalog.data.gov/dataset/low-to-moderate-income-population-by-tract
    Explore at:
    Dataset updated
    Mar 1, 2024
    Dataset provided by
    United States Department of Housing and Urban Developmenthttp://www.hud.gov/
    Description

    This service identifies U.S. Census Tracts in which 51% or more of the households earn less than 80 percent of the Area Median Income (AMI). The Community Development Block Grant (CDBG) program requires that each CDBG funded activity must either principally benefit low- and moderate-income persons, aid in the prevention or elimination of slums or blight, or meet a community development need having a particular urgency because existing conditions pose a serious and immediate threat to the health or welfare of the community and other financial resources are not available to meet that need. With respect to activities that principally benefit low- and moderate-income persons, at least 51 percent of the activity's beneficiaries must be low and moderate income.

  12. s

    Persistent low income

    • ethnicity-facts-figures.service.gov.uk
    csv
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Race Disparity Unit (2025). Persistent low income [Dataset]. https://www.ethnicity-facts-figures.service.gov.uk/work-pay-and-benefits/pay-and-income/low-income/latest
    Explore at:
    csv(81 KB), csv(304 KB)Available download formats
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Race Disparity Unit
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    Between 2018 and 2022, people in households in the ‘other’, Asian and black ethnic groups were the most likely to be in persistent low income, both before and after housing costs, out of all ethnic groups.

  13. s

    People in low income households

    • ethnicity-facts-figures.service.gov.uk
    csv
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Race Disparity Unit (2025). People in low income households [Dataset]. https://www.ethnicity-facts-figures.service.gov.uk/work-pay-and-benefits/pay-and-income/people-in-low-income-households/latest
    Explore at:
    csv(413 KB)Available download formats
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Race Disparity Unit
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    United Kingdom
    Description

    Between April 2008 and March 2024, households from the Pakistani and Bangladeshi ethnic groups were the most likely to live in low income out of all ethnic groups, before and after housing costs.

  14. f

    Data_Sheet_3_High-income ZIP codes in New York City demonstrate higher case...

    • frontiersin.figshare.com
    txt
    Updated Jun 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steven T. L. Tung; Mosammat M. Perveen; Kirsten N. Wohlars; Robert A. Promisloff; Mary F. Lee-Wong; Anthony M. Szema (2024). Data_Sheet_3_High-income ZIP codes in New York City demonstrate higher case rates during off-peak COVID-19 waves.CSV [Dataset]. http://doi.org/10.3389/fpubh.2024.1384156.s003
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Frontiers
    Authors
    Steven T. L. Tung; Mosammat M. Perveen; Kirsten N. Wohlars; Robert A. Promisloff; Mary F. Lee-Wong; Anthony M. Szema
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    IntroductionOur study explores how New York City (NYC) communities of various socioeconomic strata were uniquely impacted by the COVID-19 pandemic.MethodsNew York City ZIP codes were stratified into three bins by median income: high-income, middle-income, and low-income. Case, hospitalization, and death rates obtained from NYCHealth were compared for the period between March 2020 and April 2022.ResultsCOVID-19 transmission rates among high-income populations during off-peak waves were higher than transmission rates among low-income populations. Hospitalization rates among low-income populations were higher during off-peak waves despite a lower transmission rate. Death rates during both off-peak and peak waves were higher for low-income ZIP codes.DiscussionThis study presents evidence that while high-income areas had higher transmission rates during off-peak periods, low-income areas suffered greater adverse outcomes in terms of hospitalization and death rates. The importance of this study is that it focuses on the social inequalities that were amplified by the pandemic.

  15. d

    Connecticut Qualified Census Tracts

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Jun 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2025). Connecticut Qualified Census Tracts [Dataset]. https://catalog.data.gov/dataset/ct-qualified-census-tracts
    Explore at:
    Dataset updated
    Jun 21, 2025
    Dataset provided by
    data.ct.gov
    Area covered
    Connecticut
    Description

    This dataset provides access to Qualified Census Tracts (QCTs) in Connecticut to assist in administration of American Rescue Plan (ARP) funds. The Secretary of HUD must designate QCTs, which are areas where either 50 percent or more of the households have an income less than 60 percent of the AMGI for such year or have a poverty rate of at least 25 percent. HUD designates QCTs based on new income and poverty data released in the American Community Survey (ACS). Specifically, HUD relies on the most recent three sets of ACS data to ensure that anomalous estimates, due to sampling, do not affect the QCT status of tracts. QCTs are identified for the purpose of Low-Income Housing Credits under IRC Section 42, with the purpose of increasing the availability of low-income rental housing by providing an income tax credit to certain owners of newly constructed or substantially rehabilitated low-income rental housing projects. Also included are the number of households from the 2010 census (the “p0150001” variable), the average poverty rate using the 2014-2018 ACS data (the “pov_rate_18” variable), and the ratio of Tract Average Household Size Adjusted Income Limit to Tract Median Household Income using the 2014-2018 ACS data (the “inc_factor_18” variable). For the last variable mentioned in the previous paragraph, the income limit is the limit for being considered a very low income household (size-adjusted and based on Area Mean Gross Income). This value is divided by the median household income for the given tract, to get a sense of how the limit and median incomes compare. For example, if ratio>1, it implies that the tract is very low income because the limit income is greater than the median income. This ratio is a compact way to include the separate variables for the household income limit and median household income for each tract.

  16. Dhaka Low Income Area Gender, Inclusion, and Poverty Survey 2018 -...

    • microdata.worldbank.org
    • catalog.ihsn.org
    Updated Mar 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The World Bank Group (2020). Dhaka Low Income Area Gender, Inclusion, and Poverty Survey 2018 - Bangladesh [Dataset]. https://microdata.worldbank.org/index.php/catalog/3635
    Explore at:
    Dataset updated
    Mar 9, 2020
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    World Bankhttp://worldbank.org/
    Authors
    The World Bank Group
    Time period covered
    2018
    Area covered
    Bangladesh
    Description

    Abstract

    The 2018 Dhaka Low Income Area Gender, Inclusion, and Poverty (DIGNITY) survey attempts to fill in the data and knowledge gaps on women's economic empowerment in urban areas, specifically the factors that constrain women in slums and low-income neighborhoods from engaging in the labor market and supplying their labor to wage earning or self-employment. While an array of national-level datasets has collected a wide spectrum of information, they rarely comprise all of the information needed to study the drivers of Female Labor Force Participation (FLFP). This data gap is being filled by the primary data collection of the specialized DIGNITY survey; it is representative of poor urban areas and is specifically designed to address these limitations. The DIGNITY survey collected information from 1,300 urban households living in poor areas of Dhaka in 2018 on a range of issues that affect FLFP as identified through the literature. These range from household composition and demographic characteristics to socioeconomic characteristics such as detailed employment history and income (including locational data and travel details); and from technical and educational attributes to issues of time use, migration history, and attitudes and perceptions.

    The DIGNITY survey was designed to shed light on poverty, economic empowerment, and livelihood in urban areas of Bangladesh. It has two main modules: the traditional household module (in which the head of household is interviewed on basic information about the household); and the individual module, in which two respondents from each household are interviewed individually. In the second module, two persons - one male and one female from each household, usually the main couple, are selected for the interview. The survey team deployed one male and one female interviewer for each household, so that the gender of the interviewers matched that of the respondents. Collecting economic data directly from a female and male household member, rather than just the head of the household (who tend to be men in most cases), was a key feature of the DIGNITY survey.

    Geographic coverage

    The DIGNITY survey is representative of low-income areas and slums of the Dhaka City Corporations (North and South, from here on referred to as Dhaka CCs), and an additional low-income site from the Greater Dhaka Statistical Metropolitan Area (SMA).

    Analysis unit

    • Household
    • Individual

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The sampling procedure followed a two-stage stratification design. The major features include the following steps (they are discussed in more detail in a copy of the study's report and the sampling document located in "External Resources"):

    FIRST STAGE: Selection of the PSUs

    Low-income primary sampling units (PSUs) were defined as nonslum census enumeration areas (EAs), in which the small-sample area estimate of the poverty rate is higher than 8 percent (using the 2011 Bangladesh Poverty Map). The sampling frame for these low-income areas in the Dhaka City Corporations (CCs) and Greater Dhaka is based on the population census of 2011. For the Dhaka CCs, all low-income census EAs formed the sampling frame. In the Greater Dhaka area, the frame was formed by all low-income census EAs in specific thanas (i.e. administrative unit in Bangladesh) where World Bank project were located.

    Three strata were used for sampling the low-income EAs. These strata were defined based on the poverty head-count ratios. The first stratum encompasses EAs with a poverty headcount ratio between 8 and 10 percent; the second stratum between 11 and 14 percent; and the third stratum, those exceeding 15 percent.

    Slums were defined as informal settlements that were listed in the Bangladesh Bureau of Statistics' slum census from 2013/14. This census was used as sampling frame of the slum areas. Only slums in the Dhaka City Corporations are included. Again, three strata were used to sample the slums. This time the strata were based on the size of the slums. The first stratum comprises slums of 50 to 75 households; the second 76 to 99 households; and the third, 100 or more households. Small slums with fewer than 50 households were not included in the sampling frame. Very small slums were included in the low-income neighborhood selection if they are in a low-income area.

    Altogether, the DIGNITY survey collected data from 67 PSUs.

    SECOND STAGE: Selection of the Households

    In each sampled PSU a complete listing of households was done to form the frame for the second stage of sampling: the selection of households. When the number of households in a PSU was very large, smaller sections of the neighborhood were identified, and one section was randomly selected to be listed. The listing data collected information on the demographics of the household to determine whether a household fell into one of the three categories that were used to stratify the household sample:

    i) households with both working-age male and female members; ii) households with only a working-age female; iii) households with only a working-age male.

    Households were selected from each stratum with the predetermined ratio of 16:3:1. In some cases there were not enough households in categories (ii) and (iii) to stick to this ratio; in this case all of the households in the category were sampled, and additional households were selected from the first category to bring the total number of households sampled in each PSU to 20.

    The total sample consisted of 1,300 households (2,378 individuals).

    Sampling deviation

    The sampling for 1300 households was planned after the listing exercise. During the field work, about 115 households (8.8 percent) could not be interviewed due to household refusal or absence. These households were replaced with reserved households in the sample.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Research instrument

    The questionnaires for the survey were developed by the World Bank, with assistance from the survey firm, DATA. Comments were incorporated following the pilot tests and practice session/pretest.

    Cleaning operations

    Collected data was entered into a computer by using the customized MS Access data input software developed by Data Analysis and Technical Assistance (DATA). Once data entry was completed, two different techniques were employed to check consistency and validity of data as follows:

    1. Five (5%) percent of the filled-in questionnaire was checked against entered data to measure the transmission error or typos, and;
    2. A logical consistency checking technique was employed to identify inconsistencies using SPSS and or STATA software.
  17. Vital Signs: Poverty - Bay Area

    • data.bayareametro.gov
    • open-data-demo.mtc.ca.gov
    application/rdfxml +5
    Updated Jan 8, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2019). Vital Signs: Poverty - Bay Area [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Poverty-Bay-Area/38fe-vd33
    Explore at:
    csv, application/rssxml, tsv, json, xml, application/rdfxmlAvailable download formats
    Dataset updated
    Jan 8, 2019
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    U.S. Census Bureau
    Area covered
    San Francisco Bay Area
    Description

    VITAL SIGNS INDICATOR Poverty (EQ5)

    FULL MEASURE NAME The share of the population living in households that earn less than 200 percent of the federal poverty limit

    LAST UPDATED December 2018

    DESCRIPTION Poverty refers to the share of the population living in households that earn less than 200 percent of the federal poverty limit, which varies based on the number of individuals in a given household. It reflects the number of individuals who are economically struggling due to low household income levels.

    DATA SOURCE U.S Census Bureau: Decennial Census http://www.nhgis.org (1980-1990) http://factfinder2.census.gov (2000)

    U.S. Census Bureau: American Community Survey Form C17002 (2006-2017) http://api.census.gov

    METHODOLOGY NOTES (across all datasets for this indicator) The U.S. Census Bureau defines a national poverty level (or household income) that varies by household size, number of children in a household, and age of householder. The national poverty level does not vary geographically even though cost of living is different across the United States. For the Bay Area, where cost of living is high and incomes are correspondingly high, an appropriate poverty level is 200% of poverty or twice the national poverty level, consistent with what was used for past equity work at MTC and ABAG. For comparison, however, both the national and 200% poverty levels are presented.

    For Vital Signs, the poverty rate is defined as the number of people (including children) living below twice the poverty level divided by the number of people for whom poverty status is determined. Poverty rates do not include unrelated individuals below 15 years old or people who live in the following: institutionalized group quarters, college dormitories, military barracks, and situations without conventional housing. The household income definitions for poverty change each year to reflect inflation. The official poverty definition uses money income before taxes and does not include capital gains or noncash benefits (such as public housing, Medicaid, and food stamps). For the national poverty level definitions by year, see: https://www.census.gov/hhes/www/poverty/data/threshld/index.html For an explanation on how the Census Bureau measures poverty, see: https://www.census.gov/hhes/www/poverty/about/overview/measure.html

    For the American Community Survey datasets, 1-year data was used for region, county, and metro areas whereas 5-year rolling average data was used for city and census tract.

    To be consistent across metropolitan areas, the poverty definition for non-Bay Area metros is twice the national poverty level. Data were not adjusted for varying income and cost of living levels across the metropolitan areas.

  18. Household low-income status by household type including multigenerational...

    • www150.statcan.gc.ca
    • www12.statcan.gc.ca
    • +3more
    Updated Mar 29, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2023). Household low-income status by household type including multigenerational households and census family structure: Canada, provinces and territories, census metropolitan areas and census agglomerations with parts [Dataset]. http://doi.org/10.25318/9810010501-eng
    Explore at:
    Dataset updated
    Mar 29, 2023
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Household low-income status using low-income measures (before and after tax) by household type (multigenerational, couple, lone parent, with and without children), age of members, number of earners, and year.

  19. School Neighborhood Poverty Estimates, 2020-21

    • catalog.data.gov
    • s.cnmilf.com
    • +1more
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2024). School Neighborhood Poverty Estimates, 2020-21 [Dataset]. https://catalog.data.gov/dataset/school-neighborhood-poverty-estimates-2020-21
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    The 2020-2021 School Neighborhood Poverty Estimates are based on school locations from the 2020-2021 Common Core of Data (CCD) school file and income data from families with children ages 5 to 17 in the U.S. Census Bureau’s 2017-2021 American Community Survey (ACS) 5-year collection. The ACS is a continuous household survey that collects social, demographic, economic, and housing information from the population in the United States each month. The Census Bureau calculates the income-to-poverty ratio (IPR) based on money income reported for families relative to the poverty thresholds, which are determined based on the family size and structure. Noncash benefits (such as food stamps and housing subsidies) are excluded, as are capital gains and losses. The IPR is the percentage of family income that is above or below the federal poverty level. The IPR indicator ranges from 0 to a top-coded value of 999. A family with income at the poverty threshold has an IPR value of 100. The estimates in this file reflect the IPR for the neighborhoods around schools which may be different from the neighborhood conditions of students enrolled in schools.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.

  20. i

    Chattogram Low Income Area Gender, Inclusion, and Poverty Survey 2019 -...

    • datacatalog.ihsn.org
    • catalog.ihsn.org
    • +1more
    Updated Jan 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Syud Amer Ahmed (2021). Chattogram Low Income Area Gender, Inclusion, and Poverty Survey 2019 - Bangladesh [Dataset]. https://datacatalog.ihsn.org/catalog/9251
    Explore at:
    Dataset updated
    Jan 16, 2021
    Dataset provided by
    Syud Amer Ahmed
    Jyotirmoy Saha
    Johannes Hoogeveen
    Wameq Azfar Raza
    Time period covered
    2019
    Area covered
    Bangladesh
    Description

    Abstract

    The main objective of the 2019 Chattogram for Low Income Area Gender, Inclusion, and Poverty (CITY) study is to collect primary data from male and female residents in slum and non-slum poor neighborhoods in Chattogram, the second largest city of Bangladesh, and build the evidence base about their constraints to access more and better jobs. The CITY survey was designed to shed light on poverty, economic empowerment, and livelihood in urban areas of Bangladesh as well as to identify key constraints and solutions for low-income women trying to obtain better jobs.

    A broad array of information was collected on issues related to women's economic empowerment, ranging from demographic and socioeconomic characteristics to detailed work history, time use, attitudes about work, and perceptions of work. The key feature of this survey is to collect economic data directly from the main household members, generally the main couples, unlike traditional surveys which only interviewed the heads of households (who tend to be men in most cases); thus, failed to gather valuable information from the female population.

    Geographic coverage

    Poor areas of slum & non-slum areas of Chattogram, the second largest city of Bangladesh.

    Analysis unit

    Household, individual

    Kind of data

    Sample survey data [ssd]

    Sampling procedure

    The CITY 2019 survey was designed using a two-stage sampling strategy. The major features include the following steps:

    FIRST STAGE: The primary sampling units (PSUs) in the first stage were selected using a probability proportional to size (PPS) methods. Using the 2011 census sampling frame, low-income PSUs were defined as non-slum census enumeration areas (EAs) using the 2011 Bangladesh Poverty Map. Three strata were used for sampling the low-income EAs. These strata were defined based on the poverty head-count ratios. The first stratum encompasses EAs with a poverty headcount ratio less than 10%; the second stratum between 11% and 14%; and the third stratum, those exceeding 15%. Overall, 22 low-income EAs were selected in the Chattogram City Corporation (CC).

    Slums were defined as informal settlements that were listed in the Bangladesh Bureau of Statistics' slum census from 2013/14. This census was used as sampling frame of the slum areas. Based on the sizes of the slums, three strata were used for sampling purposes. This time the strata were based on the size of the slums. The first stratum comprises slums of 50 to 75 households; the second 76 to 99 households; and the third, more than 100 households. Small slums with fewer than 50 households were not included in the sampling frame. Overall, 18 slums were included as a part of the survey.

    SECOND STAGE: The second stage of the selection process in each of the EAs began with a listing exercise. For very large EAs, a smaller section was delineated for the listing. The second level of stratification are defined as follows:

    i) Households with both working-age male and female members; ii) Households with only a working-age female; iii) Households with only a working-age male.

    Households were randomly selected from each stratum with the predetermined ratio of 16:3:1. Overall, data was collected from 805 households (1289 individuals - 580 in slum and 709 in non-slum areas).

    Sampling deviation

    For EAs where the ratio was unable to be attained due to absence of households in certain strata, households from the first category to arrive at a final number of 20 per EA.

    Mode of data collection

    Computer Assisted Personal Interview [capi]

    Response rate

    77%

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Housing and Urban Development (HUD) (2023). Low and Moderate Income Areas Map [Dataset]. https://data.mesaaz.gov/Census/Low-and-Moderate-Income-Areas-Map/rpdt-ydtu
Organization logo

Low and Moderate Income Areas Map

Explore at:
tsv, csv, xml, application/rssxml, application/rdfxml, jsonAvailable download formats
Dataset updated
Aug 24, 2023
Dataset provided by
United States Department of Housing and Urban Developmenthttp://www.hud.gov/
Authors
Housing and Urban Development (HUD)
License

https://www.usa.gov/government-workshttps://www.usa.gov/government-works

Description

FY2024 full and partial census tracts that qualify as Low-Moderate Income Areas (LMA) where 51% or more of the population are considered as having Low-Moderate Income. The low- and moderate-income summary data (LMISD) is based on the 2016-2020 American Community Survey (ACS). As of August 1, 2024, to qualify any new low- and moderate-income area (LMA) activities, Community Development Block Grant (CDBG) grantees should use this map and data.

For more information about LMA/LMI click the following link to open in new browser tab https://www.hudexchange.info/programs/cdbg/cdbg-low-moderate-income-data/

Search
Clear search
Close search
Google apps
Main menu