Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer shows census tracts that meet the following definitions: Census tracts with median household incomes at or below 80 percent of the statewide median income or with median household incomes at or below the threshold designated as low income by the Department of Housing and Community Development’s list of state income limits adopted under Healthy and Safety Code section 50093 and/or Census tracts receiving the highest 25 percent of overall scores in CalEnviroScreen 4.0 or Census tracts lacking overall scores in CalEnviroScreen 4.0 due to data gaps, but receiving the highest 5 percent of CalEnviroScreen 4.0 cumulative population burden scores or Census tracts identified in the 2017 DAC designation as disadvantaged, regardless of their scores in CalEnviroScreen 4.0 or Lands under the control of federally recognized Tribes.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
California State Income Limits reflect updated median income and household income levels for acutely low-, extremely low-, very low-, low- and moderate-income households for California’s 58 counties (required by Health and Safety Code Section 50093). These income limits apply to State and local affordable housing programs statutorily linked to HUD income limits and differ from income limits applicable to other specific federal, State, or local programs.
Comprehensive dataset of 433 Low income housing programs in California, United States as of July, 2025. Includes verified contact information (email, phone), geocoded addresses, customer ratings, reviews, business categories, and operational details. Perfect for market research, lead generation, competitive analysis, and business intelligence. Download a complimentary sample to evaluate data quality and completeness.
Locations of disadvantaged and/or low-income communities designated by both California and Justice40.Definitions:California-designated Disadvantaged Communities – The California Environmental Protection Agency (CalEPA) identifies four types of geographic areas as disadvantaged: (1) census tracts receiving the highest 25 percent of overall scores in CalEnviroScreen 4.0; (2) census tracts lacking overall scores in CalEnviroScreen 4.0 due to data gaps, but receiving the highest 5 percent of CalEnviroScreen 4.0 cumulative pollution burden scores; (3) census tracts identified in the 2017 DAC designation as disadvantaged, regardless of their scores in CalEnviroScreen 4.0; (4) and areas under the control of federally recognized Tribes. California-designated Low-income Communities – Census tracts with median household incomes at or below 80 percent of the statewide median income or with median household incomes at or below the threshold designated as low income by the California Department of Housing and Community Development’s list of state income limits adopted under Health and Safety Code Section 50093. Justice40-designated disadvantaged communities - Consistent with the Justice40 Interim Guidance, U.S. Department of Transportation (DOT) and U.S. Department of Energy (DOE) developed a joint interim definition of disadvantaged communities for the National Electric Vehicle Infrastructure (NEVI) Formula Program. The joint interim definition uses publicly available data sets that capture vulnerable populations, health, transportation access and burden, energy burden, fossil dependence, resilience, and environmental and climate hazards.
Low income cut-offs (LICOs) before and after tax by community size and family size, in current dollars, annual.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The data set provides information about households served by the California Department of Community Services and Development (CSD) Low-Income Home Energy Assistance Program (LIHEAP). LIHEAP is a federal program that helps eligible low-income households manage and meet their immediate home heating and/or cooling needs. Additional information and a detailed description of program services is available at the CSD LIHEAP webpage: http://www.csd.ca.gov/Services/HelpPayingUtilityBills.aspx
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Number of persons in low income, low income rate and average gap ratio by age, sex and economic family type, annual.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the estimated number of people in the Central California region that live in a household defined as "low income." There are multiple ways to define low income. These data apply the most common standard: low income population consists of all members of households that collectively have income less than twice the federal poverty threshold that applies to their household type. Household type refers to the household's resident composition: the number of independent adults plus dependents that can be of any age, from children to elderly. For example, a household with four people ' one working adult parent and three dependent children ' has a different poverty threshold than a household comprised of four unrelated independent adults.
Due to high estimate uncertainty for many block group estimates of the number of people living in low income households, some records cannot be reliably assigned a class and class code comparable to those assigned to race/ethnicity data from the decennial Census.
"Relative concentration" is a measure that compares the proportion of population within each Census block group data unit to the proportion of all people that live within the 4,961 block groups in the Central California RRK region. See the "Data Units" description below for how these relative concentrations are broken into categories in this "low income" metric.
Low income measure (LIM) thresholds by household size for market income, total income and after-tax income, in current and constant dollars, annual.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the estimated number of people in the Southern California region that live in a household defined as "low income." There are multiple ways to define low income. These data apply the most common standard: low income population consists of all members of households that collectively have income less than twice the federal poverty threshold that applies to their household type. Household type refers to the household's resident composition: the number of independent adults plus dependents that can be of any age, from children to elderly. For example, a household with four people ' one working adult parent and three dependent children ' has a different poverty threshold than a household comprised of four unrelated independent adults.
Due to high estimate uncertainty for many block group estimates of the number of people living in low income households, some records cannot be reliably assigned a class and class code comparable to those assigned to race/ethnicity data from the decennial Census.
"Relative concentration" is a measure that compares the proportion of population within each Census block group data unit to the proportion of all people that live within the 13,312 block groups in the Southern California RRK region. See the "Data Units" description below for how these relative concentrations are broken into categories in this "low income" metric.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in Orange County, CA, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Orange County median household income. You can refer the same here
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Characteristics of persons in low income families by low income lines.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Low income measures by household size and income source, Canada
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Relative concentration of the estimated number of people in the Northern California region that live in a household defined as "low income." There are multiple ways to define low income. These data apply the most common standard: low income population consists of all members of households that collectively have income less than twice the federal poverty threshold that applies to their household type. Household type refers to the household's resident composition: the number of independent adults plus dependents that can be of any age, from children to elderly. For example, a household with four people ' one working adult parent and three dependent children ' has a different poverty threshold than a household comprised of four unrelated independent adults.
Due to high estimate uncertainty for many block group estimates of the number of people living in low income households, some records cannot be reliably assigned a class and class code comparable to those assigned to race/ethnicity data from the decennial Census.
"Relative concentration" is a measure that compares the proportion of population within each Census block group data unit to the proportion of all people that live within the 1,207 block groups in the Northern California RRK region. See the "Data Units" description below for how these relative concentrations are broken into categories in this "low income" metric.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the mean household income for each of the five quintiles in California City, CA, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income Levels:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for California City median household income. You can refer the same here
Proportion of the population living: in a dwelling owned by some members of the household; in core housing need and; in suitable dwelling, proportion of the population living alone, poverty rate (MBM), prevalence of low income (LIM-AT) and (LIM-BT), knowledge of official languages, by visible minority and selected characteristics (gender, age group, first official language spoken, immigrant status, period of immigration, generation status and highest certificate, degree or diploma).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States Household Income: California data was reported at 69,759.000 USD in 2017. This records an increase from the previous number of 66,637.000 USD for 2016. United States Household Income: California data is updated yearly, averaging 47,039.000 USD from Mar 1984 (Median) to 2017, with 34 observations. The data reached an all-time high of 69,759.000 USD in 2017 and a record low of 25,287.000 USD in 1984. United States Household Income: California data remains active status in CEIC and is reported by US Census Bureau. The data is categorized under Global Database’s United States – Table US.H048: Household Income: by State.
Urban Displacement Project’s (UDP) Estimated Displacement Risk (EDR) model for California identifies varying levels of displacement risk for low-income renter households in all census tracts in the state from 2015 to 2019(1). The model uses machine learning to determine which variables are most strongly related to displacement at the household level and to predict tract-level displacement risk statewide while controlling for region. UDP defines displacement risk as a census tract with characteristics which, according to the model, are strongly correlated with more low-income population loss than gain. In other words, the model estimates that more low-income households are leaving these neighborhoods than moving in.This map is a conservative estimate of low-income loss and should be considered a tool to help identify housing vulnerability. Displacement may occur because of either investment, disinvestment, or disaster-driven forces. Because this risk assessment does not identify the causes of displacement, UDP does not recommend that the tool be used to assess vulnerability to investment such as new housing construction or infrastructure improvements. HCD recommends combining this map with on-the-ground accounts of displacement, as well as other related data such as overcrowding, cost burden, and income diversity to achieve a full understanding of displacement risk.If you see a tract or area that does not seem right, please fill out this form to help UDP ground-truth the method and improve their model.How should I read the displacement map layers?The AFFH Data Viewer includes three separate displacement layers that were generated by the EDR model. The “50-80% AMI” layer shows the level of displacement risk for low-income (LI) households specifically. Since UDP has reason to believe that the data may not accurately capture extremely low-income (ELI) households due to the difficulty in counting this population, UDP combined ELI and very low-income (VLI) household predictions into one group—the “0-50% AMI” layer—by opting for the more “extreme” displacement scenario (e.g., if a tract was categorized as “Elevated” for VLI households but “Extreme” for ELI households, UDP assigned the tract to the “Extreme” category for the 0-50% layer). For these two layers, tracts are assigned to one of the following categories, with darker red colors representing higher displacement risk and lighter orange colors representing less risk:• Low Data Quality: the tract has less than 500 total households and/or the census margins of error were greater than 15% of the estimate (shaded gray).• Lower Displacement Risk: the model estimates that the loss of low-income households is less than the gain in low-income households. However, some of these areas may have small pockets of displacement within their boundaries. • At Risk of Displacement: the model estimates there is potential displacement or risk of displacement of the given population in these tracts.• Elevated Displacement: the model estimates there is a small amount of displacement (e.g., 10%) of the given population.• High Displacement: the model estimates there is a relatively high amount of displacement (e.g., 20%) of the given population.• Extreme Displacement: the model estimates there is an extreme level of displacement (e.g., greater than 20%) of the given population. The “Overall Displacement” layer shows the number of income groups experiencing any displacement risk. For example, in the dark red tracts (“2 income groups”), the model estimates displacement (Elevated, High, or Extreme) for both of the two income groups. In the light orange tracts categorized as “At Risk of Displacement”, one or all three income groups had to have been categorized as “At Risk of Displacement”. Light yellow tracts in the “Overall Displacement” layer are not experiencing UDP’s definition of displacement according to the model. Some of these yellow tracts may be majority low-income experiencing small to significant growth in this population while in other cases they may be high-income and exclusive (and therefore have few low-income residents to begin with). One major limitation to the model is that the migration data UDP uses likely does not capture some vulnerable populations, such as undocumented households. This means that some yellow tracts may be experiencing high rates of displacement among these types of households. MethodologyThe EDR is a first-of-its-kind model that uses machine learning and household level data to predict displacement. To create the EDR, UDP first joined household-level data from Data Axle (formerly Infogroup) with tract-level data from the 2014 and 2019 5-year American Community Survey; Affirmatively Furthering Fair Housing (AFFH) data from various sources compiled by California Housing and Community Development; Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Employment Statistics (LODES) data; and the Environmental Protection Agency’s Smart Location Database.UDP then used a machine learning model to determine which variables are most strongly related to displacement at the household level and to predict tract-level displacement risk statewide while controlling for region. UDP modeled displacement risk as the net migration rate of three separate renter households income categories: extremely low-income (ELI), very low-income (VLI), and low-income (LI). These households have incomes between 0-30% of the Area Median Income (AMI), 30-50% AMI, and 50-80% AMI, respectively. Tracts that have a predicted net loss within these groups are considered to experience displacement in three degrees: elevated, high, and extreme. UDP also includes a “At Risk of Displacement” category in tracts that might be experiencing displacement.What are the main limitations of this map?1. Because the map uses 2019 data, it does not reflect more recent trends. The pandemic, which started in 2020, has exacerbated income inequality and increased housing costs, meaning that UDP’s map likely underestimates current displacement risk throughout the state.2. The model examines displacement risk for renters only, and does not account for the fact that many homeowners are also facing housing and gentrification pressures. As a result, the map generally only highlights areas with relatively high renter populations, and neighborhoods with higher homeownership rates that are known to be experiencing gentrification and displacement are not as prominent as one might expect.3. The model does not incorporate data on new housing construction or infrastructure projects. The map therefore does not capture the potential impacts of these developments on displacement risk; it only accounts for other characteristics such as demographics and some features of the built environment. Two of UDP’s other studies—on new housing construction and green infrastructure—explore the relationships between these factors and displacement.Variable ImportanceFigures 1, 2, and 3 show the most important variables for each of the three models—ELI, VLI, and LI. The horizontal bars show the importance of each variable in predicting displacement for the respective group. All three models share a similar order of variable importance with median rent, percent non-white, rent gap (i.e., rental market pressure calculated using the difference between nearby and local rents), percent renters, percent high-income households, and percent of low-income households driving much of the displacement estimation. Other important variables include building types as well as economic and socio-demographic characteristics. For a full list of the variables included in the final models, ranked by descending order of importance, and their definitions see all three tabs of this spreadsheet. “Importance” is defined in two ways: 1. % Inclusion: The average proportion of times this variable was included in the model’s decision tree as the most important or driving factor.2. MeanRank: The average rank of importance for each variable across the numerous model runs where higher numbers mean higher ranking. Figures 1 through 3 below show each of the model variable rankings ordered by importance. The red lines represent Jenks Breaks, which are designed to sort values into their most “natural” clusters. Variable importance for each model shows a substantial drop-off after about 10 variables, meaning a relatively small number of variables account for a large amount of the predictive power in UDP’s displacement model.Figure 1. Variable Importance for Low Income HouseholdsFor a description of each variable and its source, see this spreadsheet.Figure 2. Variable Importance for Very Low Income HouseholdsFor a description of each variable and its source, see this spreadsheet. Figure 3. Variable Importance for Extremely Low Income HouseholdsFor a description of each variable and its source, see this spreadsheet.Source: Chapple, K., & Thomas, T., and Zuk, M. (2022). Urban Displacement Project website. Berkeley, CA: Urban Displacement Project.(1) UDP used this time-frame because (a) the 2020 census had a large non-response rate and it implemented a new statistical modification that obscures and misrepresents racial and economic characteristics at the census tract level and (b) pandemic mobility trends are still in flux and UDP believes 2019 is more representative of “normal” or non-pandemic displacement trends.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Housing-Burdened Low-Income Households. Percent of households in a census tract that are both low income (making less than 80% of the HUD Area Median Family Income) and severely burdened by housing costs (paying greater than 50% of their income to housing costs). (5-year estimates, 2013-2017).
The cost and availability of housing is an important determinant of well- being. Households with lower incomes may spend a larger proportion of their income on housing. The inability of households to afford necessary non-housing goods after paying for shelter is known as housing-induced poverty. California has very high housing costs relative to much of the country, making it difficult for many to afford adequate housing. Within California, the cost of living varies significantly and is largely dependent on housing cost, availability, and demand.
Areas where low-income households may be stressed by high housing costs can be identified through the Housing and Urban Development (HUD) Comprehensive Housing Affordability Strategy (CHAS) data. We measure households earning less than 80% of HUD Area Median Family Income by county and paying greater than 50% of their income to housing costs. The indicator takes into account the regional cost of living for both homeowners and renters, and factors in the cost of utilities. CHAS data are calculated from US Census Bureau's American Community Survey (ACS).
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This table contains 8840 series, with data for years 2012 - 2012 (not all combinations necessarily have data for all years). This table contains data described by the following dimensions (Not all combinations are available): Geography (13 items: Canada; Atlantic provinces; Newfoundland and Labrador; Prince Edward Island; ...); Low income lines (4 items: Low income cut-offs after tax, 1992 base; Low income cut-offs before tax, 1992 base; Market basket measure, 2011 base; Low income measure after tax); Statistics (5 items: Number of persons in low income; Percentage of persons in low income; Average gap ratio (percent); Median gap ratio (percent); ...); Persons in low income (34 items: All persons; Persons under 18 years; Persons 18 to 64 years; Persons 65 years and over; ...).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer shows census tracts that meet the following definitions: Census tracts with median household incomes at or below 80 percent of the statewide median income or with median household incomes at or below the threshold designated as low income by the Department of Housing and Community Development’s list of state income limits adopted under Healthy and Safety Code section 50093 and/or Census tracts receiving the highest 25 percent of overall scores in CalEnviroScreen 4.0 or Census tracts lacking overall scores in CalEnviroScreen 4.0 due to data gaps, but receiving the highest 5 percent of CalEnviroScreen 4.0 cumulative population burden scores or Census tracts identified in the 2017 DAC designation as disadvantaged, regardless of their scores in CalEnviroScreen 4.0 or Lands under the control of federally recognized Tribes.