100+ datasets found
  1. United States US: Income Share Held by Highest 20%

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Income Share Held by Highest 20% [Dataset]. https://www.ceicdata.com/en/united-states/poverty/us-income-share-held-by-highest-20
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1979 - Dec 1, 2016
    Area covered
    United States
    Description

    United States US: Income Share Held by Highest 20% data was reported at 46.900 % in 2016. This records an increase from the previous number of 46.400 % for 2013. United States US: Income Share Held by Highest 20% data is updated yearly, averaging 46.000 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 46.900 % in 2016 and a record low of 41.200 % in 1979. United States US: Income Share Held by Highest 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  2. T

    Vital Signs: Jobs by Wage Level - Subregion

    • data.bayareametro.gov
    application/rdfxml +5
    Updated Jan 18, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). Vital Signs: Jobs by Wage Level - Subregion [Dataset]. https://data.bayareametro.gov/dataset/Vital-Signs-Jobs-by-Wage-Level-Subregion/yc3r-a4rh
    Explore at:
    json, xml, csv, application/rdfxml, tsv, application/rssxmlAvailable download formats
    Dataset updated
    Jan 18, 2019
    Description

    VITAL SIGNS INDICATOR Jobs by Wage Level (EQ1)

    FULL MEASURE NAME Distribution of jobs by low-, middle-, and high-wage occupations

    LAST UPDATED January 2019

    DESCRIPTION Jobs by wage level refers to the distribution of jobs by low-, middle- and high-wage occupations. In the San Francisco Bay Area, low-wage occupations have a median hourly wage of less than 80% of the regional median wage; median wages for middle-wage occupations range from 80% to 120% of the regional median wage, and high-wage occupations have a median hourly wage above 120% of the regional median wage.

    DATA SOURCE California Employment Development Department OES (2001-2017) http://www.labormarketinfo.edd.ca.gov/data/oes-employment-and-wages.html

    American Community Survey (2001-2017) http://api.census.gov

    CONTACT INFORMATION vitalsigns.info@bayareametro.gov

    METHODOLOGY NOTES (across all datasets for this indicator) Jobs are determined to be low-, middle-, or high-wage based on the median hourly wage of their occupational classification in the most recent year. Low-wage jobs are those that pay below 80% of the regional median wage. Middle-wage jobs are those that pay between 80% and 120% of the regional median wage. High-wage jobs are those that pay above 120% of the regional median wage. Regional median hourly wages are estimated from the American Community Survey and are published on the Vital Signs Income indicator page. For the national context analysis, occupation wage classifications are unique to each metro area. A low-wage job in New York, for instance, may be a middle-wage job in Miami. For the Bay Area in 2017, the median hourly wage for low-wage occupations was less than $20.86 per hour. For middle-wage jobs, the median ranged from $20.86 to $31.30 per hour; and for high-wage jobs, the median wage was above $31.30 per hour.

    Occupational employment and wage information comes from the Occupational Employment Statistics (OES) program. Regional and subregional data is published by the California Employment Development Department. Metro data is published by the Bureau of Labor Statistics. The OES program collects data on wage and salary workers in nonfarm establishments to produce employment and wage estimates for some 800 occupations. Data from non-incorporated self-employed persons are not collected, and are not included in these estimates. Wage estimates represent a three-year rolling average.

    Due to changes in reporting during the analysis period, subregion data from the EDD OES have been aggregated to produce geographies that can be compared over time. West Bay is San Mateo, San Francisco, and Marin counties. North Bay is Sonoma, Solano and Napa counties. East Bay is Alameda and Contra Costa counties. South Bay is Santa Clara County from 2001-2004 and Santa Clara and San Benito counties from 2005-2017.

    Due to changes in occupation classifications during the analysis period, all occupations have been reassigned to 2010 SOC codes. For pre-2009 reporting years, all employment in occupations that were split into two or more 2010 SOC occupations are assigned to the first 2010 SOC occupation listed in the crosswalk table provided by the Census Bureau. This method assumes these occupations always fall in the same wage category, and sensitivity analysis of this reassignment method shows this is true in most cases.

    In order to use OES data for time series analysis, several steps were taken to handle missing wage or employment data. For some occupations, such as airline pilots and flight attendants, no wage information was provided and these were removed from the analysis. Other occupations did not record a median hourly wage (mostly due to irregular work hours) but did record an annual average wage. Nearly all these occupations were in education (i.e. teachers). In this case, a 2080 hour-work year was assumed and [annual average wage/2080] was used as a proxy for median income. Most of these occupations were classified as high-wage, thus dispelling concern of underestimating a median wage for a teaching occupation that requires less than 2080 hours of work a year (equivalent to 12 months fulltime). Finally, the OES has missing employment data for occupations across the time series. To make the employment data comparable between years, gaps in employment data for occupations are ‘filled-in’ using linear interpolation if there are at least two years of employment data found in OES. Occupations with less than two years of employment data were dropped from the analysis. Over 80% of interpolated cells represent missing employment data for just one year in the time series. While this interpolating technique may impact year-over-year comparisons, the long-term trends represented in the analysis generally are accurate.

  3. United States US: Income Share Held by Highest 10%

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Income Share Held by Highest 10% [Dataset]. https://www.ceicdata.com/en/united-states/poverty/us-income-share-held-by-highest-10
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1979 - Dec 1, 2016
    Area covered
    United States
    Description

    United States US: Income Share Held by Highest 10% data was reported at 30.600 % in 2016. This records an increase from the previous number of 30.100 % for 2013. United States US: Income Share Held by Highest 10% data is updated yearly, averaging 30.100 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 30.600 % in 2016 and a record low of 25.300 % in 1979. United States US: Income Share Held by Highest 10% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  4. d

    Replication Data for: The Fading American Dream: Trends in Absolute Income...

    • search.dataone.org
    • dataverse.harvard.edu
    Updated Nov 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Chetty, Raj; Grusky, David; Hell, Maximilian; Hendren, Nathaniel; Manduca, Robert; Narang, Jimmy (2023). Replication Data for: The Fading American Dream: Trends in Absolute Income Mobility Since 1940 [Dataset]. http://doi.org/10.7910/DVN/B9TEWM
    Explore at:
    Dataset updated
    Nov 12, 2023
    Dataset provided by
    Harvard Dataverse
    Authors
    Chetty, Raj; Grusky, David; Hell, Maximilian; Hendren, Nathaniel; Manduca, Robert; Narang, Jimmy
    Description

    This dataset contains replication files for "The Fading American Dream: Trends in Absolute Income Mobility Since 1940" by Raj Chetty, David Grusky, Maximilian Hell, Nathaniel Hendren, Robert Manduca, and Jimmy Narang. For more information, see https://opportunityinsights.org/paper/the-fading-american-dream/. A summary of the related publication follows. One of the defining features of the “American Dream” is the ideal that children have a higher standard of living than their parents. We assess whether the U.S. is living up to this ideal by estimating rates of “absolute income mobility” – the fraction of children who earn more than their parents – since 1940. We measure absolute mobility by comparing children’s household incomes at age 30 (adjusted for inflation using the Consumer Price Index) with their parents’ household incomes at age 30. We find that rates of absolute mobility have fallen from approximately 90% for children born in 1940 to 50% for children born in the 1980s. Absolute income mobility has fallen across the entire income distribution, with the largest declines for families in the middle class. These findings are unaffected by using alternative price indices to adjust for inflation, accounting for taxes and transfers, measuring income at later ages, and adjusting for changes in household size. Absolute mobility fell in all 50 states, although the rate of decline varied, with the largest declines concentrated in states in the industrial Midwest, such as Michigan and Illinois. The decline in absolute mobility is especially steep – from 95% for children born in 1940 to 41% for children born in 1984 – when we compare the sons’ earnings to their fathers’ earnings. Why have rates of upward income mobility fallen so sharply over the past half-century? There have been two important trends that have affected the incomes of children born in the 1980s relative to those born in the 1940s and 1950s: lower Gross Domestic Product (GDP) growth rates and greater inequality in the distribution of growth. We find that most of the decline in absolute mobility is driven by the more unequal distribution of economic growth rather than the slowdown in aggregate growth rates. When we simulate an economy that restores GDP growth to the levels experienced in the 1940s and 1950s but distributes that growth across income groups as it is distributed today, absolute mobility only increases to 62%. In contrast, maintaining GDP at its current level but distributing it more broadly across income groups – at it was distributed for children born in the 1940s – would increase absolute mobility to 80%, thereby reversing more than two-thirds of the decline in absolute mobility. These findings show that higher growth rates alone are insufficient to restore absolute mobility to the levels experienced in mid-century America. Under the current distribution of GDP, we would need real GDP growth rates above 6% per year to return to rates of absolute mobility in the 1940s. Intuitively, because a large fraction of GDP goes to a small fraction of high-income households today, higher GDP growth does not substantially increase the number of children who earn more than their parents. Of course, this does not mean that GDP growth does not matter: changing the distribution of growth naturally has smaller effects on absolute mobility when there is very little growth to be distributed. The key point is that increasing absolute mobility substantially would require more broad-based economic growth. We conclude that absolute mobility has declined sharply in America over the past half-century primarily because of the growth in inequality. If one wants to revive the “American Dream” of high rates of absolute mobility, one must have an interest in growth that is shared more broadly across the income distribution.

  5. Households by annual income India FY 2021

    • statista.com
    Updated Jun 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Households by annual income India FY 2021 [Dataset]. https://www.statista.com/statistics/482584/india-households-by-annual-income/
    Explore at:
    Dataset updated
    Jun 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    In the financial year 2021, a majority of Indian households fell under the aspirers category, earning between ******* and ******* Indian rupees a year. On the other hand, about ***** percent of households that same year, accounted for the rich, earning over * million rupees annually. The middle class more than doubled that year compared to ** percent in financial year 2005. Middle-class income group and the COVID-19 pandemic During the COVID-19 pandemic specifically during the lockdown in March 2020, loss of incomes hit the entire household income spectrum. However, research showed the severest affected groups were the upper middle- and middle-class income brackets. In addition, unemployment rates were rampant nationwide that further lead to a dismally low GDP. Despite job recoveries over the last few months, improvement in incomes were insignificant. Economic inequality While India maybe one of the fastest growing economies in the world, it is also one of the most vulnerable and severely afflicted economies in terms of economic inequality. The vast discrepancy between the rich and poor has been prominent since the last ***** decades. The rich continue to grow richer at a faster pace while the impoverished struggle more than ever before to earn a minimum wage. The widening gaps in the economic structure affect women and children the most. This is a call for reinforcement in in the country’s social structure that emphasizes access to quality education and universal healthcare services.

  6. South Korea KR: Imports: Low- and Middle-Income Economies: % of Total Goods...

    • ceicdata.com
    Updated Mar 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). South Korea KR: Imports: Low- and Middle-Income Economies: % of Total Goods Imports: Latin America & The Caribbean [Dataset]. https://www.ceicdata.com/en/korea/imports/kr-imports-low-and-middleincome-economies--of-total-goods-imports-latin-america--the-caribbean
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    South Korea
    Variables measured
    Merchandise Trade
    Description

    Korea Imports: Low- and Middle-Income Economies: % of Total Goods Imports: Latin America & The Caribbean data was reported at 2.673 % in 2016. This records an increase from the previous number of 2.543 % for 2015. Korea Imports: Low- and Middle-Income Economies: % of Total Goods Imports: Latin America & The Caribbean data is updated yearly, averaging 1.896 % from Dec 1961 (Median) to 2016, with 56 observations. The data reached an all-time high of 5.491 % in 1985 and a record low of 0.012 % in 1972. Korea Imports: Low- and Middle-Income Economies: % of Total Goods Imports: Latin America & The Caribbean data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Korea – Table KR.World Bank: Imports. Merchandise imports from low- and middle-income economies in Latin America and the Caribbean are the sum of merchandise imports by the reporting economy from low- and middle-income economies in the Latin America and the Caribbean region according to the World Bank classification of economies. Data are expressed as a percentage of total merchandise imports by the economy. Data are computed only if at least half of the economies in the partner country group had non-missing data.; ; World Bank staff estimates based data from International Monetary Fund's Direction of Trade database.; Weighted average;

  7. N

    Income Distribution by Quintile: Mean Household Income in Deptford Township,...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Deptford Township, New Jersey // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/deptford-township-nj-median-household-income/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Deptford, New Jersey
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Deptford Township, New Jersey, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 21,507, while the mean income for the highest quintile (20% of households with the highest income) is 257,345. This indicates that the top earners earn 12 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 384,780, which is 149.52% higher compared to the highest quintile, and 1789.09% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Deptford township median household income. You can refer the same here

  8. f

    Data_Sheet_1_High-income ZIP codes in New York City demonstrate higher case...

    • frontiersin.figshare.com
    txt
    Updated Jun 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Steven T. L. Tung; Mosammat M. Perveen; Kirsten N. Wohlars; Robert A. Promisloff; Mary F. Lee-Wong; Anthony M. Szema (2024). Data_Sheet_1_High-income ZIP codes in New York City demonstrate higher case rates during off-peak COVID-19 waves.CSV [Dataset]. http://doi.org/10.3389/fpubh.2024.1384156.s001
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 20, 2024
    Dataset provided by
    Frontiers
    Authors
    Steven T. L. Tung; Mosammat M. Perveen; Kirsten N. Wohlars; Robert A. Promisloff; Mary F. Lee-Wong; Anthony M. Szema
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    New York
    Description

    IntroductionOur study explores how New York City (NYC) communities of various socioeconomic strata were uniquely impacted by the COVID-19 pandemic.MethodsNew York City ZIP codes were stratified into three bins by median income: high-income, middle-income, and low-income. Case, hospitalization, and death rates obtained from NYCHealth were compared for the period between March 2020 and April 2022.ResultsCOVID-19 transmission rates among high-income populations during off-peak waves were higher than transmission rates among low-income populations. Hospitalization rates among low-income populations were higher during off-peak waves despite a lower transmission rate. Death rates during both off-peak and peak waves were higher for low-income ZIP codes.DiscussionThis study presents evidence that while high-income areas had higher transmission rates during off-peak periods, low-income areas suffered greater adverse outcomes in terms of hospitalization and death rates. The importance of this study is that it focuses on the social inequalities that were amplified by the pandemic.

  9. b

    Data from: Median Household Income

    • data.baltimorecity.gov
    • vital-signs-bniajfi.hub.arcgis.com
    • +1more
    Updated Feb 27, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Baltimore Neighborhood Indicators Alliance (2020). Median Household Income [Dataset]. https://data.baltimorecity.gov/maps/8613366cfbc7447a9efd9123604c65c1
    Explore at:
    Dataset updated
    Feb 27, 2020
    Dataset authored and provided by
    Baltimore Neighborhood Indicators Alliance
    Area covered
    Description

    Median household income is the middle value of the incomes earned in the prior year by households in an area. Income and earnings are inflation-adjusted for the last year of the 5-year period. The median value is used as opposed to the average so that both extremely high and extremely low prices do not distort the total amount of income earned by households in an area. Source: American Community SurveyYears Available: 2006-2010, 2007-2011, 2008-2012, 2009-2013, 2010-2014, 2011-2015, 2012-2016, 2013-2017, 2014-2018, 2015-2019, 2016-2020, 2017-2021, 2018-2022, 2019-2023Please note: We do not recommend comparing overlapping years of data due to the nature of this dataset. For more information, please visit: https://www.census.gov/programs-surveys/acs/guidance/comparing-acs-data.html

  10. k

    Average Salary in Germany 2025

    • kummuni.com
    html
    Updated Apr 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KUMMUNI (2025). Average Salary in Germany 2025 [Dataset]. https://kummuni.com/whats-the-average-salary-in-germany
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Apr 30, 2025
    Dataset authored and provided by
    KUMMUNI
    License

    https://kummuni.com/terms/https://kummuni.com/terms/

    Area covered
    Germany
    Variables measured
    Minimum wage, Median salary, Average net salary, Average gross salary (with bonuses), Average gross salary (without bonuses)
    Description

    A structured overview of the average, net, median, and minimum wage in Germany for 2025. This dataset combines original market research conducted by KUMMUNI GmbH with publicly available data from the German Federal Statistical Office. It includes values with and without bonuses, hourly minimum wage, and take-home pay after tax.

  11. f

    Lower middle-income countries

    • figshare.com
    bin
    Updated Nov 2, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Huong Ngo (2021). Lower middle-income countries [Dataset]. http://doi.org/10.6084/m9.figshare.16918285.v2
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 2, 2021
    Dataset provided by
    figshare
    Authors
    Huong Ngo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Data of lower middle-income countries between 1980 and 2018 to study whether indigenous or foreign innovation efforts are more important for the transition of lower middle-income economies to the upper middle-income rank. Data are designed for discrete-time hazard models.

  12. Income of individuals by age group, sex and income source, Canada, provinces...

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +2more
    Updated May 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas [Dataset]. http://doi.org/10.25318/1110023901-eng
    Explore at:
    Dataset updated
    May 1, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.

  13. Country classifications by income 2019-2020

    • kaggle.com
    Updated Dec 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    leesstephanie (2020). Country classifications by income 2019-2020 [Dataset]. https://www.kaggle.com/leesstephanie/country-classifications-by-income-20192020/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 14, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    leesstephanie
    Description

    The World Bank classifies countries based on several criteria, such as by region, by income, and by lending. Countries are divided into four categories of income: high, upper middle, lower middle, and low.

    This dataset covers country classification based on income for the fiscal year of 2020.

    I got the data from World Bank

  14. United States US: Poverty Gap at $1.90 a Day: 2011 PPP: %

    • ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Poverty Gap at $1.90 a Day: 2011 PPP: % [Dataset]. https://www.ceicdata.com/en/united-states/poverty/us-poverty-gap-at-190-a-day-2011-ppp-
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1979 - Dec 1, 2016
    Area covered
    United States
    Description

    United States US: Poverty Gap at $1.90 a Day: 2011 PPP: % data was reported at 1.000 % in 2016. This records an increase from the previous number of 0.900 % for 2013. United States US: Poverty Gap at $1.90 a Day: 2011 PPP: % data is updated yearly, averaging 0.600 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 1.000 % in 2016 and a record low of 0.300 % in 1991. United States US: Poverty Gap at $1.90 a Day: 2011 PPP: % data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Poverty gap at $1.90 a day (2011 PPP) is the mean shortfall in income or consumption from the poverty line $1.90 a day (counting the nonpoor as having zero shortfall), expressed as a percentage of the poverty line. This measure reflects the depth of poverty as well as its incidence. As a result of revisions in PPP exchange rates, poverty rates for individual countries cannot be compared with poverty rates reported in earlier editions.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. The aggregated numbers for low- and middle-income countries correspond to the totals of 6 regions in PovcalNet, which include low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia). See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  15. o

    WPS 9673 - Death and Destitution : The Global Distribution of Welfare Losses...

    • data.opendata.am
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). WPS 9673 - Death and Destitution : The Global Distribution of Welfare Losses from the COVID-19 Pandemic - Dataset - Data Catalog Armenia [Dataset]. https://data.opendata.am/dataset/dcwb0037527
    Explore at:
    Dataset updated
    Jul 7, 2023
    Description

    The COVID-19 pandemic has brought about massive declines in well-being around the world. This paper seeks to quantify and compare two important components of those losses—increased mortality and higher poverty—using years of human life as a common metric. The paper estimates that almost 20 million life-years were lost to COVID-19 by December 2020. Over the same period and by the most conservative definition, more than 120 million additional years were spent in poverty because of the pandemic. The mortality burden, whether estimated in lives or years of life lost, increases sharply with gross domestic product per capita. By contrast, the poverty burden declines with per capita national income when a constant absolute poverty line is used, or is uncorrelated with national income when a more relative approach is taken to poverty lines. In both cases, the poverty burden of the pandemic, relative to the mortality burden, is much higher for poor countries. The distribution of aggregate welfare losses—combining mortality and poverty and expressed in terms of life-years —depends on the choice of poverty line(s) and the relative weights placed on mortality and poverty. With a constant absolute poverty line and a relatively low welfare weight on mortality, poorer countries are found to bear a greater welfare loss from the pandemic. When poverty lines are set differently for poor, middle-income, and high-income countries and/or a greater welfare weight is placed on mortality, upper-middle-income and rich countries suffer the most.

  16. Namibia NA: Imports: Low- and Middle-Income Economies: % of Total Goods...

    • ceicdata.com
    Updated Apr 9, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2021). Namibia NA: Imports: Low- and Middle-Income Economies: % of Total Goods Imports: Within Region [Dataset]. https://www.ceicdata.com/en/namibia/imports/na-imports-low-and-middleincome-economies--of-total-goods-imports-within-region
    Explore at:
    Dataset updated
    Apr 9, 2021
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2005 - Dec 1, 2016
    Area covered
    Namibia
    Description

    Namibia NA: Imports: Low- and Middle-Income Economies: % of Total Goods Imports: Within Region data was reported at 69.420 % in 2016. This records a decrease from the previous number of 71.557 % for 2015. Namibia NA: Imports: Low- and Middle-Income Economies: % of Total Goods Imports: Within Region data is updated yearly, averaging 77.959 % from Dec 2000 (Median) to 2016, with 17 observations. The data reached an all-time high of 86.783 % in 2004 and a record low of 62.161 % in 2014. Namibia NA: Imports: Low- and Middle-Income Economies: % of Total Goods Imports: Within Region data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Namibia – Table NA.World Bank: Imports. Merchandise imports from low- and middle-income economies within region are the sum of merchandise imports by the reporting economy from other low- and middle-income economies in the same World Bank region according to the World Bank classification of economies. Data are as a percentage of total merchandise imports by the economy. Data are computed only if at least half of the economies in the partner country group had non-missing data. No figures are shown for high-income economies, because they are a separate category in the World Bank classification of economies.; ; World Bank staff estimates based data from International Monetary Fund's Direction of Trade database.; Weighted average;

  17. Research on Early Life and Aging Trends and Effects (RELATE): A...

    • search.gesis.org
    Updated Mar 11, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    McEniry, Mary (2021). Research on Early Life and Aging Trends and Effects (RELATE): A Cross-National Study - Archival Version [Dataset]. http://doi.org/10.3886/ICPSR34241
    Explore at:
    Dataset updated
    Mar 11, 2021
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    GESIS search
    Authors
    McEniry, Mary
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de450289https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de450289

    Description

    Abstract (en): The Research on Early Life and Aging Trends and Effects (RELATE) study compiles cross-national data that contain information that can be used to examine the effects of early life conditions on older adult health conditions, including heart disease, diabetes, obesity, functionality, mortality, and self-reported health. The complete cross sectional/longitudinal dataset (n=147,278) was compiled from major studies of older adults or households across the world that in most instances are representative of the older adult population either nationally, in major urban centers, or in provinces. It includes over 180 variables with information on demographic and geographic variables along with information about early life conditions and life course events for older adults in low, middle and high income countries. Selected variables were harmonized to facilitate cross national comparisons. In this first public release of the RELATE data, a subset of the data (n=88,273) is being released. The subset includes harmonized data of older adults from the following regions of the world: Africa (Ghana and South Africa), Asia (China, India), Latin America (Costa Rica, major cities in Latin America), and the United States (Puerto Rico, Wisconsin). This first release of the data collection is composed of 19 downloadable parts: Part 1 includes the harmonized cross-national RELATE dataset, which harmonizes data from parts 2 through 19. Specifically, parts 2 through 19 include data from Costa Rica (Part 2), Puerto Rico (Part 3), the United States (Wisconsin) (Part 4), Argentina (Part 5), Barbados (Part 6), Brazil (Part 7), Chile (Part 8), Cuba (Part 9), Mexico (Parts 10 and 15), Uruguay (Part 11), China (Parts 12, 18, and 19), Ghana (Part 13), India (Part 14), Russia (Part 16), and South Africa (Part 17). The Health and Retirement Study (HRS) was also used in the compilation of the larger RELATE data set (HRS) (N=12,527), and these data are now available for public release on the HRS data products page. To access the HRS data that are part of the RELATE data set, please see the collection notes below. The purpose of this study was to compile and harmonize cross-national data from both the developing and developed world to allow for the examination of how early life conditions are related to older adult health and well being. The selection of countries for this study was based on their diversity but also on the availability of comprehensive cross sectional/panel survey data for older adults born in the early to mid 20th century in low, middle and high income countries. These data were then utilized to create the harmonized cross-national RELATE data (Part 1). Specifically, data that are being released in this version of the RELATE study come from the following studies: CHNS (China Health and Nutrition Study) CLHLS (Chinese Longitudinal Healthy Longevity Survey) CRELES (Costa Rican Study of Longevity and Healthy Aging) PREHCO (Puerto Rican Elderly: Health Conditions) SABE (Study of Aging Survey on Health and Well Being of Elders) SAGE (WHO Study on Global Ageing and Adult Health) WLS (Wisconsin Longitudinal Study) Note that the countries selected represent a diverse range in national income levels: Barbados and the United States (including Puerto Rico) represent high income countries; Argentina, Cuba, Uruguay, Chile, Costa Rica, Brazil, Mexico, and Russia represent upper middle income countries; China and India represent lower middle income countries; and Ghana represents a low income country. Users should refer to the technical report that accompanies the RELATE data for more detailed information regarding the study design of the surveys used in the construction of the cross-national data. The Research on Early Life and Aging Trends and Effects (RELATE) data includes an array of variables, including basic demographic variables (age, gender, education), variables relating to early life conditions (height, knee height, rural/urban birthplace, childhood health, childhood socioeconomic status), adult socioeconomic status (income, wealth), adult lifestyle (smoking, drinking, exercising, diet), and health outcomes (self-reported health, chronic conditions, difficulty with functionality, obesity, mortality). Not all countries have the same variables. Please refer to the technical report that is part of the documentation for more detail regarding the variables available across countries. Sample weights are applicable to all countries exc...

  18. United States US: Income Share Held by Lowest 10%

    • ceicdata.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2025). United States US: Income Share Held by Lowest 10% [Dataset]. https://www.ceicdata.com/en/united-states/poverty/us-income-share-held-by-lowest-10
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1979 - Dec 1, 2016
    Area covered
    United States
    Description

    United States US: Income Share Held by Lowest 10% data was reported at 1.700 % in 2016. This stayed constant from the previous number of 1.700 % for 2013. United States US: Income Share Held by Lowest 10% data is updated yearly, averaging 1.800 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 2.300 % in 1979 and a record low of 1.700 % in 2016. United States US: Income Share Held by Lowest 10% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  19. Ghana GH: Income Share Held by Lowest 20%

    • ceicdata.com
    Updated Apr 18, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2012). Ghana GH: Income Share Held by Lowest 20% [Dataset]. https://www.ceicdata.com/en/ghana/poverty/gh-income-share-held-by-lowest-20
    Explore at:
    Dataset updated
    Apr 18, 2012
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1987 - Dec 1, 2012
    Area covered
    Ghana
    Description

    Ghana GH: Income Share Held by Lowest 20% data was reported at 5.400 % in 2012. This records an increase from the previous number of 5.200 % for 2005. Ghana GH: Income Share Held by Lowest 20% data is updated yearly, averaging 6.200 % from Dec 1987 (Median) to 2012, with 6 observations. The data reached an all-time high of 7.000 % in 1988 and a record low of 5.200 % in 2005. Ghana GH: Income Share Held by Lowest 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Ghana – Table GH.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  20. United States US: Income Share Held by Lowest 20%

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Income Share Held by Lowest 20% [Dataset]. https://www.ceicdata.com/en/united-states/poverty/us-income-share-held-by-lowest-20
    Explore at:
    Dataset provided by
    CEIC Data
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1979 - Dec 1, 2016
    Area covered
    United States
    Description

    United States US: Income Share Held by Lowest 20% data was reported at 5.000 % in 2016. This records a decrease from the previous number of 5.100 % for 2013. United States US: Income Share Held by Lowest 20% data is updated yearly, averaging 5.300 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 6.400 % in 1979 and a record low of 5.000 % in 2016. United States US: Income Share Held by Lowest 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CEICdata.com, United States US: Income Share Held by Highest 20% [Dataset]. https://www.ceicdata.com/en/united-states/poverty/us-income-share-held-by-highest-20
Organization logo

United States US: Income Share Held by Highest 20%

Explore at:
Dataset provided by
CEIC Data
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Dec 1, 1979 - Dec 1, 2016
Area covered
United States
Description

United States US: Income Share Held by Highest 20% data was reported at 46.900 % in 2016. This records an increase from the previous number of 46.400 % for 2013. United States US: Income Share Held by Highest 20% data is updated yearly, averaging 46.000 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 46.900 % in 2016 and a record low of 41.200 % in 1979. United States US: Income Share Held by Highest 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

Search
Clear search
Close search
Google apps
Main menu