This service identifies U.S. Census Block Groups in which 51% or more of the households earn less than 80 percent of the Area Median Income (AMI). The Community Development Block Grant (CDBG) program requires that each CDBG funded activity must either principally benefit low- and moderate-income persons, aid in the prevention or elimination of slums or blight, or meet a community development need having a particular urgency because existing conditions pose a serious and immediate threat to the health or welfare of the community and other financial resources are not available to meet that need. With respect to activities that principally benefit low- and moderate-income persons, at least 51 percent of the activity's beneficiaries must be low and moderate income.
The Community Development Block Grant (CDBG) program requires that each CDBG funded activity must either principally benefit low- and moderate-income persons, aid in the prevention or elimination of slums or blight, or meet a community development need having a particular urgency because existing conditions pose a serious and immediate threat to the health or welfare of the community and other financial resources are not available to meet that need. With respect to activities that principally benefit low- and moderate-income persons, at least 51 percent of the activity's beneficiaries must be low and moderate income. For CDBG, a person is considered to be of low income only if he or she is a member of a household whose income would qualify as "very low income" under the Section 8 Housing Assistance Payments program. Generally, these Section 8 limits are based on 50% of area median. Similarly, CDBG moderate income relies on Section 8 "lower income" limits, which are generally tied to 80% of area median. These data are from the 2011-2015 American Community Survey (ACS). To learn more about the Low to Moderate Income Populations visit: https://www.hudexchange.info/programs/acs-low-mod-summary-data/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Low to Moderate Income Populations by Block GroupDate of Coverage: ACS 2020-2016
The Community Development Block Grant (CDBG) program requires that each CDBG funded activity must either principally benefit low- and moderate-income persons, aid in the prevention or elimination of slums or blight, or meet a community development need having a particular urgency because existing conditions pose a serious and immediate threat to the health or welfare of the community and other financial resources are not available to meet that need. With respect to activities that principally benefit low- and moderate-income persons, at least 51 percent of the activity's beneficiaries must be low and moderate income. For CDBG, a person is considered to be of low income only if he or she is a member of a household whose income would qualify as "very low income" under the Section 8 Housing Assistance Payments program. Generally, these Section 8 limits are based on 50% of area median. Similarly, CDBG moderate income relies on Section 8 "lower income" limits, which are generally tied to 80% of area median. These data are derived from the 2011-2015 American Community Survey (ACS) and based on Census 2010 geography.
To learn more about the Low to Moderate Income Populations visit: https://www.hudexchange.info/programs/acs-low-mod-summary-data/, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov. Data Dictionary: DD_Low to Moderate Income Populations by Tract
How does your organization use this dataset? What other NYSERDA or energy-related datasets would you like to see on Open NY? Let us know by emailing OpenNY@nyserda.ny.gov. The Low- to Moderate-Income (LMI) New York State (NYS) Census Population Analysis dataset is resultant from the LMI market database designed by APPRISE as part of the NYSERDA LMI Market Characterization Study (https://www.nyserda.ny.gov/lmi-tool). All data are derived from the U.S. Census Bureau’s American Community Survey (ACS) 1-year Public Use Microdata Sample (PUMS) files for 2013, 2014, and 2015. Each row in the LMI dataset is an individual record for a household that responded to the survey and each column is a variable of interest for analyzing the low- to moderate-income population. The LMI dataset includes: county/county group, households with elderly, households with children, economic development region, income groups, percent of poverty level, low- to moderate-income groups, household type, non-elderly disabled indicator, race/ethnicity, linguistic isolation, housing unit type, owner-renter status, main heating fuel type, home energy payment method, housing vintage, LMI study region, LMI population segment, mortgage indicator, time in home, head of household education level, head of household age, and household weight. The LMI NYS Census Population Analysis dataset is intended for users who want to explore the underlying data that supports the LMI Analysis Tool. The majority of those interested in LMI statistics and generating custom charts should use the interactive LMI Analysis Tool at https://www.nyserda.ny.gov/lmi-tool. This underlying LMI dataset is intended for users with experience working with survey data files and producing weighted survey estimates using statistical software packages (such as SAS, SPSS, or Stata).
This dataset and map service provides information on the U.S. Housing and Urban Development's (HUD) low to moderate income areas. The term Low to Moderate Income, often referred to as low-mod, has a specific programmatic context within the Community Development Block Grant (CDBG) program. Over a 1, 2, or 3-year period, as selected by the grantee, not less than 70 percent of CDBG funds must be used for activities that benefit low- and moderate-income persons. HUD uses special tabulations of Census data to determine areas where at least 51% of households have incomes at or below 80% of the area median income (AMI). This dataset and map service contains the following layer.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
FY2024 full and partial census tracts that qualify as Low-Moderate Income Areas (LMA) where 51% or more of the population are considered as having Low-Moderate Income. The low- and moderate-income summary data (LMISD) is based on the 2016-2020 American Community Survey (ACS). As of August 1, 2024, to qualify any new low- and moderate-income area (LMA) activities, Community Development Block Grant (CDBG) grantees should use this map and data.
For more information about LMA/LMI click the following link to open in new browser tab https://www.hudexchange.info/programs/cdbg/cdbg-low-moderate-income-data/
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This map is made using content created and owned by the federal Department of Housing and Urban Development (Esri user HUD.Official.Content). The map uses their Low to Moderate Income Population by Tract layer, filtered for only census tracts in Monroe County, NY where at least 51% of households earn less than 80 percent of the Area Median Income (AMI). The map is centered on Rochester, NY, with the City of Rochester, NY border added for context. Users can zoom out to see the Revitalization Areas for the broader county region.The Community Development Block Grant (CDBG) program requires that each CDBG funded activity must either principally benefit low- and moderate-income persons, aid in the prevention or elimination of slums or blight, or meet a community development need having a particular urgency because existing conditions pose a serious and immediate threat to the health or welfare of the community and other financial resources are not available to meet that need. With respect to activities that principally benefit low- and moderate-income persons, at least 51 percent of the activity's beneficiaries must be low and moderate income. For CDBG, a person is considered to be of low income only if he or she is a member of a household whose income would qualify as "very low income" under the Section 8 Housing Assistance Payments program. Generally, these Section 8 limits are based on 50% of area median. Similarly, CDBG moderate income relies on Section 8 "lower income" limits, which are generally tied to 80% of area median. These data are derived from the 2011-2015 American Community Survey (ACS) and based on Census 2010 geography.Please refer to the Feature Layer for date of last update.Data Dictionary: DD_Low to Moderate Income Populations by Tract
The Community Development Block Grant (CDBG) program requires that each CDBG funded activity must either principally benefit low- and moderate-income persons, aid in the prevention or elimination of slums or blight or meet a community development need having a particular urgency because existing conditions pose a serious and immediate threat to the health or welfare of the community and other financial resources are not available to meet that need. With respect to activities that principally benefit low- and moderate-income persons, at least 51 percent of the activity's beneficiaries must be low and moderate income. For CDBG, a person is considered to be of low income only if he or she is a member of a household whose income would qualify as "very low income" under the Section 8 Housing Assistance Payments program. Generally, these Section 8 limits are based on 50% of area median. Similarly, CDBG moderate income relies on Section 8 "lower income" limits, which are generally tied to 80% of area median. These data are from the 2016-2020 American Community Survey (ACS).To learn more about the Low to Moderate Income Populations visit: https://www.hudexchange.info/programs/acs-low-mod-summary-data/ Data Dictionary: DD_Low to Moderate Income Populations by Block Group Date of Coverage: ACS 2016-2020 Data Updated: Every Five Years
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
While the San Francisco Bay Region added 114,317 low- and moderate-income renters between 2000 and 2013 (or 72 households per census tract on average), the distribution of these new and existing households was not uniform across the region. Census tracts that gained low- and moderate-income renters (green and blue on the map) were largely in more suburban areas of the region. Census tracts that lost a substantial number of low- and moderate-income renters (orange to red on the map), though concentrated in more urban areas, also are spread across the region, highlighting the fact that potential displacement of lower-income renter households is not just a three-big-cities issue. Low-income renters is defined as households earning less than 80% of the county median income, and moderate-income renters as earning less than 120% county median income.
This layer shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2019-2023ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: December 12, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2023 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
This dataset provides access to Qualified Census Tracts (QCTs) in Connecticut to assist in administration of American Rescue Plan (ARP) funds.
The Secretary of HUD must designate QCTs, which are areas where either 50 percent or more of the households have an income less than 60 percent of the AMGI for such year or have a poverty rate of at least 25 percent.
HUD designates QCTs based on new income and poverty data released in the American Community Survey (ACS). Specifically, HUD relies on the most recent three sets of ACS data to ensure that anomalous estimates, due to sampling, do not affect the QCT status of tracts.
QCTs are identified for the purpose of Low-Income Housing Credits under IRC Section 42, with the purpose of increasing the availability of low-income rental housing by providing an income tax credit to certain owners of newly constructed or substantially rehabilitated low-income rental housing projects.
Also included are the number of households from the 2010 census (the “p0150001” variable), the average poverty rate using the 2014-2018 ACS data (the “pov_rate_18” variable), and the ratio of Tract Average Household Size Adjusted Income Limit to Tract Median Household Income using the 2014-2018 ACS data (the “inc_factor_18” variable). For the last variable mentioned in the previous paragraph, the income limit is the limit for being considered a very low income household (size-adjusted and based on Area Mean Gross Income). This value is divided by the median household income for the given tract, to get a sense of how the limit and median incomes compare. For example, if ratio>1, it implies that the tract is very low income because the limit income is greater than the median income. This ratio is a compact way to include the separate variables for the household income limit and median household income for each tract.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
California State Income Limits reflect updated median income and household income levels for acutely low-, extremely low-, very low-, low- and moderate-income households for California’s 58 counties (required by Health and Safety Code Section 50093). These income limits apply to State and local affordable housing programs statutorily linked to HUD income limits and differ from income limits applicable to other specific federal, State, or local programs.
This layer shows census tracts that meet the following definitions: Census tracts with median household incomes at or below 80 percent of the statewide median income or with median household incomes at or below the threshold designated as low income by the Department of Housing and Community Development’s list of state income limits adopted under Healthy and Safety Code section 50093 and/or Census tracts receiving the highest 25 percent of overall scores in CalEnviroScreen 4.0 or Census tracts lacking overall scores in CalEnviroScreen 4.0 due to data gaps, but receiving the highest 5 percent of CalEnviroScreen 4.0 cumulative population burden scores or Census tracts identified in the 2017 DAC designation as disadvantaged, regardless of their scores in CalEnviroScreen 4.0 or Lands under the control of federally recognized Tribes.Data downloaded in May 2022 from https://webmaps.arb.ca.gov/PriorityPopulations/.
The Rooftop Energy Potential of Low Income Communities in America REPLICA data set provides estimates of residential rooftop solar technical potential at the tract-level with emphasis on estimates for Low and Moderate Income LMI populations. In addition to technical potential REPLICA is comprised of 10 additional datasets at the tract-level to provide socio-demographic and market context. The model year vintage of REPLICA is 2015. The LMI solar potential estimates are made at the tract level grouped by Area Median Income AMI income tenure and building type. These estimates are based off of LiDAR data of 128 metropolitan areas statistical modeling and ACS 2011-2015 demographic data. The remaining datasets are supplemental datasets that can be used in conjunction with the technical potential data for general LMI solar analysis planning and policy making. The core dataset is a wide-format CSV file seeds_ii_replica.csv that can be tagged to a tract geometry using the GEOID or GISJOIN fields. In addition users can download geographic shapefiles for the main or supplemental datasets. This dataset was generated as part of the larger NREL-led SEEDSII Solar Energy Evolution and Diffusion Studies project and specifically for the NREL technical report titled Rooftop Solar Technical Potential for Low-to-Moderate Income Households in the United States by Sigrin and Mooney 2018. This dataset is intended to give researchers planners advocates and policy-makers access to credible data to analyze low-income solar issues and potentially perform cost-benefit analysis for program design. To explore the data in an interactive web mapping environment use the NREL SolarForAll app.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This data, maintained by the Mayor’s Office of Housing (MOH), is an inventory of all income-restricted units in the city. This data includes public housing owned by the Boston Housing Authority (BHA), privately- owned housing built with funding from DND and/or on land that was formerly City-owned, and privately-owned housing built without any City subsidy, e.g., created using Low-Income Housing Tax Credits (LIHTC) or as part of the Inclusionary Development Policy (IDP). Information is gathered from a variety of sources, including the City's IDP list, permitting and completion data from the Inspectional Services Department (ISD), newspaper advertisements for affordable units, Community Economic Development Assistance Corporation’s (CEDAC) Expiring Use list, and project lists from the BHA, the Massachusetts Department of Housing and Community Development (DHCD), MassHousing, and the U.S. Department of Housing and Urban Development (HUD), among others. The data is meant to be as exhaustive and up-to-date as possible, but since many units are not required to report data to the City of Boston, MOH is constantly working to verify and update it. See the data dictionary for more information on the structure of the data and important notes.
The database only includes units that have a deed-restriction. It does not include tenant-based (also known as mobile) vouchers, which subsidize rent, but move with the tenant and are not attached to a particular unit. There are over 22,000 tenant-based vouchers in the city of Boston which provide additional affordability to low- and moderate-income households not accounted for here.
The Income-Restricted Housing report can be directly accessed here:
https://www.boston.gov/sites/default/files/file/2023/04/Income%20Restricted%20Housing%202022_0.pdf
Learn more about income-restricted housing (as well as other types of affordable housing) here: https://www.boston.gov/affordable-housing-boston#income-restricted
Geospatial data about Dakota County, Minnesota Low to Moderate Income (2010 BG adjusted). Export to CAD, GIS, PDF, CSV and access via API.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Real Median Family Income in the United States (MEFAINUSA672N) from 1953 to 2023 about family, median, income, real, and USA.
In 2023, the real median household income in the state of Alabama was 60,660 U.S. dollars. The state with the highest median household income was Massachusetts, which was 106,500 U.S. dollars in 2023. The average median household income in the United States was at 80,610 U.S. dollars.
These low- and moderate-income summary data (LMISD) are based on special tabulations of the American Community Survey 2011-2015 5-year estimates (2015 ACS). These data will replace the prior LMISD based on the American Community Survey 2006-2010 5-year estimates (2010 ACS) for the purposes of demonstrating compliance with the CDBG National Objective of providing benefit to low- and moderate-income persons on an area basis (“Area Benefit” or LMA) and other purposes discussed in CPD Notice 19-02.Category: Census
description: ABOUT THIS TOOL: The Better Building s Clean Energy for Low Income Communities Accelerator (CELICA) was launched in 2016 to help state and local partners across the nation meet their goals for increasing uptake of energy efficiency and renewable energy technologies in low and moderate income communities. As a part of the Accelerator, DOE created this Low-Income Energy Affordability Data (LEAD) Tool to assist partners with understanding their LMI community characteristics. This can be utilized for low income and moderate income energy policy and program planning, as it provides interactive state, county and city level worksheets with graphs and data including number of households at different income levels and numbers of homeowners versus renters. It provides a breakdown based on fuel type, building type, and construction year. It also provides average monthly energy expenditures and energy burden (percentage of income spent on energy). HOW TO USE: The LEAD tool can be used to support program design and goal setting, and they can be paired with other data to improve LMI community energy benchmarking and program evaluation. Datasets are available for all 50 states, census divisions, and tract levels. You will have to enable macros in MS Excel to interact with the data. A description of each of the files and what states are included in each U.S. Census Division can be found in the file "DESCRIPTION OF FILES". For more information, visit: https://betterbuildingsinitiative.energy.gov/accelerators/clean-energy-low-income-communities; abstract: ABOUT THIS TOOL: The Better Building s Clean Energy for Low Income Communities Accelerator (CELICA) was launched in 2016 to help state and local partners across the nation meet their goals for increasing uptake of energy efficiency and renewable energy technologies in low and moderate income communities. As a part of the Accelerator, DOE created this Low-Income Energy Affordability Data (LEAD) Tool to assist partners with understanding their LMI community characteristics. This can be utilized for low income and moderate income energy policy and program planning, as it provides interactive state, county and city level worksheets with graphs and data including number of households at different income levels and numbers of homeowners versus renters. It provides a breakdown based on fuel type, building type, and construction year. It also provides average monthly energy expenditures and energy burden (percentage of income spent on energy). HOW TO USE: The LEAD tool can be used to support program design and goal setting, and they can be paired with other data to improve LMI community energy benchmarking and program evaluation. Datasets are available for all 50 states, census divisions, and tract levels. You will have to enable macros in MS Excel to interact with the data. A description of each of the files and what states are included in each U.S. Census Division can be found in the file "DESCRIPTION OF FILES". For more information, visit: https://betterbuildingsinitiative.energy.gov/accelerators/clean-energy-low-income-communities
This service identifies U.S. Census Block Groups in which 51% or more of the households earn less than 80 percent of the Area Median Income (AMI). The Community Development Block Grant (CDBG) program requires that each CDBG funded activity must either principally benefit low- and moderate-income persons, aid in the prevention or elimination of slums or blight, or meet a community development need having a particular urgency because existing conditions pose a serious and immediate threat to the health or welfare of the community and other financial resources are not available to meet that need. With respect to activities that principally benefit low- and moderate-income persons, at least 51 percent of the activity's beneficiaries must be low and moderate income.