In 2022, the states with the highest death rates due to heart disease were Oklahoma, Mississippi, and Alabama. That year, there were around 257 deaths due to heart disease per 100,000 population in the state of Oklahoma. In comparison, the overall death rate from heart disease in the United States was 167 per 100,000 population. The leading cause of death in the United States Heart disease is the leading cause of death in the United States, accounting for 21 percent of all deaths in 2022. That year, cancer was the second leading cause of death, followed by unintentional injuries and COVID-19. In the United States, a person has a one in six chance of dying from heart disease. Death rates for heart disease are higher among men than women, but both have seen steady decreases in heart disease death rates since the 1950s. What are risk factors for heart disease? Although heart disease is the leading cause of death in the United States, the risk of heart disease can be decreased by avoiding known risk factors. Some of the leading preventable risk factors for heart disease include smoking, heavy alcohol use, physical inactivity, an unhealthy diet, and being overweight or obese. It is no surprise that the states with the highest rates of death from heart disease are also the states with the highest rates of heart disease risk factors. For example, Oklahoma, the state with the highest heart disease death rate, is also the state with the third-highest rate of obesity. Furthermore, Mississippi is the state with the highest levels of physical inactivity, and it has the second-highest heart disease death rate in the United States.
The number of deaths caused by heart disease has decreased in the United States from ***** per 100,000 population in 1990 to ***** deaths per 100,000 population in 2019. Nevertheless, heart disease is still the leading cause of death in the country, followed closely by cancer, which has a mortality rate of ***** per 100,000 people. Heart disease in the U.S.Diseases of the heart and blood vessels are often associated with atherosclerosis, which occurs when plaque builds up along arterial walls. This can limit the flow of blood and can lead to blood clots, a common cause of stroke or heart attacks. Other types of heart disease include arrhythmia (abnormal heart rhythms) and heart valve problems. Many of these diseases can be treated with medication, although many complications will still remain. One of the leading cholesterol lowering drugs in the United States, Crestor, generated around **** billion U.S. dollars of revenue in 2024. Risk Factors for heart disease There are many risk factors associated with the development of heart disease, including family history, ethnicity, and age. However, there are other factors that can be modified through lifestyle changes such as physical inactivity, smoking, and unhealthy diets. Obesity has also been commonly associated with risk factors like hypertension and diabetes type II. In the United States, some ** percent of white adults are currently obese.
MMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks. Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths. Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services. Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map. Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10) Heart disease (I00-I09, I11, I13, and I20–I51) Cancer (C00–C97) Unintentional injury (V01–X59 and Y85–Y86) Chronic lower respiratory disease (J40–J47) Stroke (I60–I69) Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme. Benchmarks are based on the three states with the lowest age and cause-specific mortality rates. Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths. Users can explore three benchmarks: “2010 Fixed” is a fixed benchmark based on the best performing States in 2010. “2005 Fixed” is a fixed benchmark based on the best performing States in 2005. “Floating” is based on the best performing States in each year so change from year to year. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8. Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.
This statistic shows the percentage changes in selected causes of death due to diseases in the United States, between 2000 and 2022. The number of deaths caused by prostate cancer increased by 7.4 percent during this period. Changes in selected causes of deathThere has been a decrease in the rate of death caused by many diseases, including stroke and heart disease. However, the mortality rate due to Alzheimer’s disease increased by 142 percent from 2000 to 2022. Alzheimer’s disease caused 27.7 deaths per 100,000 population in 2023, making it the sixth leading cause of death in the United States. Mortality rates due to different diseases vary by different factors, including race and ethnicity. For example, cancer is the leading cause of death among Asians and Pacific Islanders in the United States, accounting for 22 percent of total deaths among this population, while heart disease is the leading cause of death among the white population. Ischemic heart disease is the leading cause of death worldwide, accounting for around nine million deaths in 2021. In the early 1900's, the mortality rate was primarily concentrated among people of younger ages, but increasingly, this has shifted to older population groups. In recent years, decreased mortality rates are often linked to improved medical care, such as new developments in medical technologies. Shifts in lifestyle habits such as decreased smoking rates and healthier diets may also attribute to lower mortality rates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The role of religion and politics in the responses to the coronavirus pandemic raises the question of their influence on the risk of other diseases. This study focuses on age-adjusted death rates of cancer, heart disease, and infant mortality per 1000 live births before the pandemic (2018-2019) and COVID-19 in 2020-2021. Eight hypothesized predictors of health effects were analyzed by examining their correlation to age-adjusted death rates among U.S. states, percentage who pray once or more daily, Republican influence on state health policies as indicated by the percentage vote for Trump in 2016, percent of household incomes below poverty, median family income divided by a cost-of-living index, the Gini income inequality index, urban concentration of the population, physicians per capita, and public health expenditures per capita. Since prayer for divine intervention is common to otherwise diverse religious beliefs and practices, the percentage of people claiming to pray daily in each state was used to indicate potential religious influence. All of the death rates were higher in states where more people claimed to pray daily, and where Trump received a larger percentage of the vote. Except for COVID-19, the death rates were consistently lower in states with higher public health expenditures per capita. Only COVID-19 was correlated to physicians per capita, lower where there were more physicians. Corrected statistically for the other factors, income per cost of living explains no variance. Heart disease and COVID-19 death rates were higher in areas with more income inequality. All of the disease rates were in correlation with more rural populations. Correlation of daily prayer with smoking cigarettes, and neglect of public health recommendations for fruit and vegetable consumption and COVID-19 vaccination suggests that prayer may be substituted for preventive practices.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Create maps of U.S. heart disease death rates by county. Data can be stratified by age, race/ethnicity, and sex. Visit the CDC/DHDSP Atlas of Heart Disease and Stroke for additional data and maps. Atlas of Heart Disease and StrokeData SourceMortality data were obtained from the National Vital Statistics System. Bridged-Race Postcensal Population Estimates were obtained from the National Center for Health Statistics. International Classification of Diseases, 10th Revision (ICD-10) codes: I00-I09, I11, I13, I20-I51; underlying cause of death.Data DictionaryData for counties with small populations are not displayed when a reliable rate could not be generated. These counties are represented in the data with values of '-1.' CDC/DHDSP excludes these values when classifying the data on a map, indicating those counties as 'Insufficient Data.' Data field names and descriptionsstcty_fips: state FIPS code + county FIPS codeOther fields use the following format: RRR_S_aaaa (e.g., API_M_35UP) RRR: 3 digits represent race/ethnicity All - Overall AIA - American Indian and Alaska Native, non-Hispanic API - Asian and Pacific Islander, non-Hispanic BLK - Black, non-Hispanic HIS - Hispanic WHT - White, non-Hispanic S: 1 digit represents sex A - All F - Female M - Male aaaa: 4 digits represent age. The first 2 digits are the lower bound for age and the last 2 digits are the upper bound for age. 'UP' indicates the data includes the maximum age available and 'LT' indicates ages less than the upper bound. Example: The column 'BLK_M_65UP' displays rates per 100,000 black men aged 65 years and older.MethodologyRates are calculated using a 3-year average and are age-standardized in 10-year age groups using the 2000 U.S. Standard Population. Rates are calculated and displayed per 100,000 population. Rates were spatially smoothed using a Local Empirical Bayes algorithm to stabilize risk by borrowing information from neighboring geographic areas, making estimates more statistically robust and stable for counties with small populations. Data for counties with small populations are coded as '-1' when a reliable rate could not be generated. County-level rates were generated when the following criteria were met over a 3-year time period within each of the filters (e.g., age, race, and sex).At least one of the following 3 criteria: At least 20 events occurred within the county and its adjacent neighbors.ORAt least 16 events occurred within the county.ORAt least 5,000 population years within the county.AND all 3 of the following criteria:At least 6 population years for each age group used for age adjustment if that age group had 1 or more event.The number of population years in an age group was greater than the number of events.At least 100 population years within the county.More Questions?Interactive Atlas of Heart Disease and StrokeData SourcesStatistical Methods
2019 - 2021, county-level U.S. heart disease death rates. Dataset developed by the Centers for Disease Control and Prevention, Division for Heart Disease and Stroke Prevention.Data SourceMortality data were obtained from the National Vital Statistics System. Bridged-Race Postcensal Population Estimates were obtained from the National Center for Health Statistics. International Classification of Diseases, 10th Revision (ICD-10) codes: I00-I09, I11, I13, I20-I51; underlying cause of death.Data DictionaryData for counties with small populations are not displayed when a reliable rate could not be generated. These counties are represented in the data with values of '-1.' CDC excludes these values when classifying the data on a map, indicating those counties as 'Insufficient Data.'Data field names and descriptionsstcty_fips: state FIPS code + county FIPS codeOther fields use the following format: RRR_S_aaaa (e.g., API_M_35UP) RRR: 3 digits represent race/ethnicity All - Overall AIA - American Indian and Alaska Native, non-Hispanic ASN - Asian, non-Hispanic BLK - Black, non-Hispanic HIS - Hispanic NHP – Native Hawaiian or Other Pacific Islander, non-Hispanic MOR – More than one race, non-Hispanic WHT - White, non-Hispanic S: 1 digit represents sex A - All F - Female M - Male aaaa: 4 digits represent age. The first 2 digits are the lower bound for age and the last 2 digits are the upper bound for age. 'UP' indicates the data includes the maximum age available and 'LT' indicates ages less than the upper bound. Example: The column 'BLK_M_65UP' displays rates per 100,000 black men aged 65 years and older.MethodologyRates are calculated using a 3-year average and are age-standardized in 10-year age groups using the 2000 U.S. Standard Population. Rates are calculated and displayed per 100,000 population. Rates were spatially smoothed using a Local Empirical Bayes algorithm to stabilize risk by borrowing information from neighboring geographic areas, making estimates more statistically robust and stable for counties with small populations. Data for counties with small populations are coded as '-1' when a reliable rate could not be generated. County-level rates were generated when the following criteria were met over a 3-year time period within each of the filters (e.g., age, race, and sex).At least one of the following 3 criteria:At least 20 events occurred within the county and its adjacent neighbors.ORAt least 16 events occurred within the county.ORAt least 5,000 population years within the county.AND all 3 of the following criteria:At least 6 population years for each age group used for age adjustment if that age group had 1 or more event.The number of population years in an age group was greater than the number of events.At least 100 population years within the county.More Questions?Interactive Atlas of Heart Disease and StrokeData SourcesStatistical Methods
Decrease heart disease deaths from 9,703 in 2013 to 8,403 by 2019.
2020 - 2022, county-level U.S. stroke death rates. Dataset developed by the Centers for Disease Control and Prevention, Division for Heart Disease and Stroke Prevention.Create maps of U.S. stroke death rates by county. Data can be stratified by age, race/ethnicity, and sex.Visit the CDC Atlas of Heart Disease and Stroke for additional data and maps. Atlas of Heart Disease and StrokeData SourceMortality data were obtained from the National Vital Statistics System. Bridged-Race Postcensal Population Estimates were obtained from the National Center for Health Statistics. International Classification of Diseases, 10th Revision (ICD-10) codes: I60-I69; underlying cause of death.Data DictionaryData for counties with small populations are not displayed when a reliable rate could not be generated. These counties are represented in the data with values of '-1.' CDC excludes these values when classifying the data on a map, indicating those counties as 'Insufficient Data.'Data field names and descriptionsstcty_fips: state FIPS code + county FIPS codeOther fields use the following format: RRR_S_aaaa (e.g., API_M_35UP) RRR: 3 digits represent race/ethnicity All - Overall AIA - American Indian and Alaska Native, non-Hispanic ASN - Asian, non-Hispanic BLK - Black, non-Hispanic HIS - Hispanic NHP – Native Hawaiian or Other Pacific Islander, non-Hispanic MOR – More than one race, non-Hispanic WHT - White, non-Hispanic S: 1 digit represents sex A - All F - Female M - Male aaaa: 4 digits represent age. The first 2 digits are the lower bound for age and the last 2 digits are the upper bound for age. 'UP' indicates the data includes the maximum age available and 'LT' indicates ages less than the upper bound. Example: The column 'BLK_M_65UP' displays rates per 100,000 black men aged 65 years and older.MethodologyRates are calculated using a 3-year average and are age-standardized in 10-year age groups using the 2000 U.S. Standard Population. Rates are calculated and displayed per 100,000 population. Rates were spatially smoothed using a Local Empirical Bayes algorithm to stabilize risk by borrowing information from neighboring geographic areas, making estimates more statistically robust and stable for counties with small populations. Data for counties with small populations are coded as '-1' when a reliable rate could not be generated. County-level rates were generated when the following criteria were met over a 3-year time period within each of the filters (e.g., age, race, and sex).At least one of the following 3 criteria:At least 20 events occurred within the county and its adjacent neighbors.ORAt least 16 events occurred within the county.ORAt least 5,000 population years within the county.AND all 3 of the following criteria:At least 6 population years for each age group used for age adjustment if that age group had 1 or more event.The number of population years in an age group was greater than the number of events.At least 100 population years within the county.More Questions?Interactive Atlas of Heart Disease and StrokeData SourcesStatistical Methods
In 2023, there were approximately 750.5 deaths by all causes per 100,000 inhabitants in the United States. This statistic shows the death rate for all causes in the United States between 1950 and 2023. Causes of death in the U.S. Over the past decades, chronic conditions and non-communicable diseases have come to the forefront of health concerns and have contributed to major causes of death all over the globe. In 2022, the leading cause of death in the U.S. was heart disease, followed by cancer. However, the death rates for both heart disease and cancer have decreased in the U.S. over the past two decades. On the other hand, the number of deaths due to Alzheimer’s disease – which is strongly linked to cardiovascular disease- has increased by almost 141 percent between 2000 and 2021. Risk and lifestyle factors Lifestyle factors play a major role in cardiovascular health and the development of various diseases and conditions. Modifiable lifestyle factors that are known to reduce risk of both cancer and cardiovascular disease among people of all ages include smoking cessation, maintaining a healthy diet, and exercising regularly. An estimated two million new cases of cancer in the U.S. are expected in 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘NCHS - Potentially Excess Deaths from the Five Leading Causes of Death’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/3d1da62a-9f1c-47e8-b5a1-b473f57d7fdc on 28 January 2022.
--- Dataset description provided by original source is as follows ---
MMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks.
Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths.
Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services.
Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map.
Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10)
Heart disease (I00-I09, I11, I13, and I20–I51) Cancer (C00–C97) Unintentional injury (V01–X59 and Y85–Y86) Chronic lower respiratory disease (J40–J47) Stroke (I60–I69) Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme.
Benchmarks are based on the three states with the lowest age and cause-specific mortality rates.
Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths.
Users can explore three benchmarks:
“2010 Fixed” is a fixed benchmark based on the best performing States in 2010. “2005 Fixed” is a fixed benchmark based on the best performing States in 2005. “Floating” is based on the best performing States in each year so change from year to year.
SOURCES
CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov).
REFERENCES
Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8.
Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Deaths from cardiovascular diseases, ischaemic heart diseases and ischaemic stroke that were attributed to changes in risk factors in Brazilian states, 2005 to 2017.
2019 - 2021, county-level U.S. stroke death rates. Dataset developed by the Centers for Disease Control and Prevention, Division for Heart Disease and Stroke Prevention.Create maps of U.S. stroke death rates by county. Data can be stratified by age, race/ethnicity, and sex.Visit the CDC Atlas of Heart Disease and Stroke for additional data and maps. Atlas of Heart Disease and StrokeData SourceMortality data were obtained from the National Vital Statistics System. Bridged-Race Postcensal Population Estimates were obtained from the National Center for Health Statistics. International Classification of Diseases, 10th Revision (ICD-10) codes: I60-I69; underlying cause of death.Data DictionaryData for counties with small populations are not displayed when a reliable rate could not be generated. These counties are represented in the data with values of '-1.' CDC excludes these values when classifying the data on a map, indicating those counties as 'Insufficient Data.'Data field names and descriptionsstcty_fips: state FIPS code + county FIPS codeOther fields use the following format: RRR_S_aaaa (e.g., API_M_35UP) RRR: 3 digits represent race/ethnicity All - Overall AIA - American Indian and Alaska Native, non-Hispanic ASN - Asian, non-Hispanic BLK - Black, non-Hispanic HIS - Hispanic NHP – Native Hawaiian or Other Pacific Islander, non-Hispanic MOR – More than one race, non-Hispanic WHT - White, non-Hispanic S: 1 digit represents sex A - All F - Female M - Male aaaa: 4 digits represent age. The first 2 digits are the lower bound for age and the last 2 digits are the upper bound for age. 'UP' indicates the data includes the maximum age available and 'LT' indicates ages less than the upper bound. Example: The column 'BLK_M_65UP' displays rates per 100,000 black men aged 65 years and older.MethodologyRates are calculated using a 3-year average and are age-standardized in 10-year age groups using the 2000 U.S. Standard Population. Rates are calculated and displayed per 100,000 population. Rates were spatially smoothed using a Local Empirical Bayes algorithm to stabilize risk by borrowing information from neighboring geographic areas, making estimates more statistically robust and stable for counties with small populations. Data for counties with small populations are coded as '-1' when a reliable rate could not be generated. County-level rates were generated when the following criteria were met over a 3-year time period within each of the filters (e.g., age, race, and sex).At least one of the following 3 criteria:At least 20 events occurred within the county and its adjacent neighbors.ORAt least 16 events occurred within the county.ORAt least 5,000 population years within the county.AND all 3 of the following criteria:At least 6 population years for each age group used for age adjustment if that age group had 1 or more event.The number of population years in an age group was greater than the number of events.At least 100 population years within the county.More Questions?Interactive Atlas of Heart Disease and StrokeData SourcesStatistical Methods
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract Background: Diseases of the circulatory system are the leading cause of death in Brazil and the world, falling progressively during the twentieth century, preceded by an increase in Gross Domestic Product. Objective: To correlate balanced and adjusted mortality rates from circulatory system diseases in the municipalities of Rio de Janeiro state between 1979 and 2010 with the gross domestic product per capita (GDPpc) beginning in 1950. Methods: Population and death data were obtained from the Department of Information and Computer Services at the National Health System/Brazilian Ministry of Health (Departamento de Informática do Sistema Único de Saúde - Ministério da Saúde - DATASUS-MS). Mortality rates were calculated for Ischemic Heart Disease (IHD), Cerebrovascular Disease (CBVD), and Circulatory System Disease (CSD); adjusted by the direct method; and balanced for ill-defined causes. The GDPpc data were obtained from the Institute of Applied Economic Research (Instituto de Pesquisas Econômicas Aplicadas - IPEA). Mortality rates were correlated with socioeconomic indicators using Pearson's linear correlation coefficient to determine the annual optimized lag time. Regression slope coefficients between the dependent disease and independent socioeconomic indicator were estimated. Results: In recent decades, there has been a reduction in mortality from CSD in all Rio de Janeiro state municipalities, mainly due to a decline in mortality from CBVD. The decline in mortality from CSD was preceded by an increase in the GDPpc, and a strong correlation was observed between this index and mortality rates. Conclusion: The evolution of the variation in GDPpc demonstrated a strong correlation with the reduction in CSD mortality. This relationship demonstrates the importance of improving the living conditions of the population to reduce cardiovascular mortality.
The indicator measures the standardised death rate of chronic diseases. Chronic diseases included in the indicator are malignant neoplasms, diabetes mellitus, ischaemic heart diseases, cerebrovascular diseases, chronic lower respiratory diseases and chronic liver diseases (International Classification of Diseases (ICD) codes C00 to C97, E10 to E14, I20 to I25, I60 to I69 and J40 to J47). Death due to chronic diseases is considered premature if it occurs before the age of 65. The rate is calculated by dividing the number of people under 65 dying due to a chronic disease by the total population under 65. Data on causes of death (COD) refer to the underlying cause which - according to the World Health Organisation (WHO) - is "the disease or injury which initiated the train of morbid events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury". COD data are derived from death certificates. The medical certification of death is an obligation in all Member States. The data are presented as standardised death rates, meaning they are adjusted to a standard age distribution in order to measure death rates independently of different age structures of populations. This approach improves comparability over time and between countries. The standardised death rates used here are calculated on the basis of the standard European population referring to the residents of the countries.
The leading cause of death in low-income countries worldwide in 2021 was lower respiratory infections, followed by stroke and ischemic heart disease. The death rate from lower respiratory infections that year was 59.4 deaths per 100,000 people. While the death rate from stroke was around 51.6 per 100,000 people. Many low-income countries suffer from health issues not seen in high-income countries, including infectious diseases, malnutrition and neonatal deaths, to name a few. Low-income countries worldwide Low-income countries are defined as those with per gross national incomes (GNI) per capita of 1,045 U.S. dollars or less. A majority of the world’s low-income countries are located in sub-Saharan Africa and South East Asia. Some of the lowest-income countries as of 2023 include Burundi, Sierra Leone, and South Sudan. Low-income countries have different health problems that lead to worse health outcomes. For example, Chad, Lesotho, and Nigeria have some of the lowest life expectancies on the planet. Health issues in low-income countries Low-income countries also tend to have higher rates of HIV/AIDS and other infectious diseases as a consequence of poor health infrastructure and a lack of qualified health workers. Eswatini, Lesotho, and South Africa have some of the highest rates of new HIV infections worldwide. Likewise, tuberculosis, a treatable condition that affects the respiratory system, has high incident rates in lower income countries. Other health issues can be affected by the income of a country as well, including maternal and infant mortality. In 2023, Afghanistan had one of the highest rates of infant mortality rates in the world.
World Health Organization has estimated 12 million deaths occur worldwide, every year due to Heart diseases. Half the deaths in the United States and other developed countries are due to cardio vascular diseases. The early prognosis of cardiovascular diseases can aid in making decisions on lifestyle changes in high risk patients and in turn reduce the complications. This research intends to pinpoint the most relevant/risk factors of heart disease as well as predict the overall risk using logistic regression Data Preparation
The task is to predict whether patient have 10 year risk of coronary heart disease CHD or not. Additionally, participants also asked to create some data visualization about the data to gained actionable insight about the topic.
The dataset is publically available on the Kaggle website, and it is from an ongoing cardiovascular study on residents of the town of Framingham, Massachusetts. The classification goal is to predict whether the patient has 10-year risk of future coronary heart disease (CHD).The dataset provides the patients’ information. It includes over 4,000 records and 15 attributes. Variables Each attribute is a potential risk factor. There are both demographic, behavioral and medical risk factors.
Demographic: • Sex: male or female("M" or "F") • Age: Age of the patient;(Continuous - Although the recorded ages have been truncated to whole numbers, the concept of age is continuous) Behavioral • is_smoking: whether or not the patient is a current smoker ("YES" or "NO") • Cigs Per Day: the number of cigarettes that the person smoked on average in one day.(can be considered continuous as one can have any number of cigarettes, even half a cigarette.) Medical( history) • BP Meds: whether or not the patient was on blood pressure medication (Nominal) • Prevalent Stroke: whether or not the patient had previously had a stroke (Nominal) • Prevalent Hyp: whether or not the patient was hypertensive (Nominal) • Diabetes: whether or not the patient had diabetes (Nominal) Medical(current) • Tot Chol: total cholesterol level (Continuous) • Sys BP: systolic blood pressure (Continuous) • Dia BP: diastolic blood pressure (Continuous) • BMI: Body Mass Index (Continuous) • Heart Rate: heart rate (Continuous - In medical research, variables such as heart rate though in fact discrete, yet are considered continuous because of large number of possible values.) • Glucose: glucose level (Continuous) Predict variable (desired target) • 10 year risk of coronary heart disease CHD(binary: “1”, means “Yes”, “0” means “No”)
In 2023, around *** out of 100,000 Canadians died from major cardiovascular diseases. In 2000, the death rate stood at over *** deaths per 100,000. This statistic displays the age-standardized death rate for major cardiovascular diseases in Canada from 2000 to 2023. Cardiovascular health Cardiovascular health and disease has come to the forefront of healthcare in recent years, as the burden due to these diseases and related conditions has increased over time in an aging population. Public health strategies are focused on reducing the impact of cardiovascular conditions through education and interventions targeted at decreasing the modifiable risk factors for cardiovascular diseases- many of which involve lifestyle and diet elements. Medical interventions for cardiovascular disease can range from emergency interventions to surgical procedures to pharmacological treatments: in Canada, medications for the cardiovascular system held over *** percent of the sales share for patented drugs in 2021. Causes of death in Canada Worldwide, Canada ranks in the top twenty countries for life expectancy and is well above the OECD average, with the average life expectancy higher for Canadian women than for men. Much like in other developed countries, malignant neoplasms join cardiovascular diseases in the leading causes of death in Canada; other main causes of death in the country include accidents, cerebrovascular diseases, and chronic lower respiratory diseases. Over the past couple decades, the age-standardized death rate for all causes among Canada’s population has increased; in 2023, it reached nearly *** per 100,000 population.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Fitting MAPE of incidence rates (ages 45–89, single-age).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mortality rates of cardiorenal- and heart failure-related deaths, by selected demographic factors, 2011–2020.
In 2022, the states with the highest death rates due to heart disease were Oklahoma, Mississippi, and Alabama. That year, there were around 257 deaths due to heart disease per 100,000 population in the state of Oklahoma. In comparison, the overall death rate from heart disease in the United States was 167 per 100,000 population. The leading cause of death in the United States Heart disease is the leading cause of death in the United States, accounting for 21 percent of all deaths in 2022. That year, cancer was the second leading cause of death, followed by unintentional injuries and COVID-19. In the United States, a person has a one in six chance of dying from heart disease. Death rates for heart disease are higher among men than women, but both have seen steady decreases in heart disease death rates since the 1950s. What are risk factors for heart disease? Although heart disease is the leading cause of death in the United States, the risk of heart disease can be decreased by avoiding known risk factors. Some of the leading preventable risk factors for heart disease include smoking, heavy alcohol use, physical inactivity, an unhealthy diet, and being overweight or obese. It is no surprise that the states with the highest rates of death from heart disease are also the states with the highest rates of heart disease risk factors. For example, Oklahoma, the state with the highest heart disease death rate, is also the state with the third-highest rate of obesity. Furthermore, Mississippi is the state with the highest levels of physical inactivity, and it has the second-highest heart disease death rate in the United States.