81 datasets found
  1. U.S. median household income1970-2020, by income tier

    • statista.com
    Updated Aug 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. median household income1970-2020, by income tier [Dataset]. https://www.statista.com/statistics/500385/median-household-income-in-the-us-by-income-tier/
    Explore at:
    Dataset updated
    Aug 7, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    This statistic shows the median household income in the United States from 1970 to 2020, by income tier. In 2020, the median household income for the middle class stood at 90,131 U.S. dollars, which was approximately a 50 percent increase from 1970. However, the median income of upper income households in the U.S. increased by almost 70 percent compared to 1970.

  2. U.S. median household income 2023, by education of householder

    • statista.com
    Updated Sep 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). U.S. median household income 2023, by education of householder [Dataset]. https://www.statista.com/statistics/233301/median-household-income-in-the-united-states-by-education/
    Explore at:
    Dataset updated
    Sep 17, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    United States
    Description

    U.S. citizens with a professional degree had the highest median household income in 2023, at 172,100 U.S. dollars. In comparison, those with less than a 9th grade education made significantly less money, at 35,690 U.S. dollars. Household income The median household income in the United States has fluctuated since 1990, but rose to around 70,000 U.S. dollars in 2021. Maryland had the highest median household income in the United States in 2021. Maryland’s high levels of wealth is due to several reasons, and includes the state's proximity to the nation's capital. Household income and ethnicity The median income of white non-Hispanic households in the United States had been on the rise since 1990, but declining since 2019. While income has also been on the rise, the median income of Hispanic households was much lower than those of white, non-Hispanic private households. However, the median income of Black households is even lower than Hispanic households. Income inequality is a problem without an easy solution in the United States, especially since ethnicity is a contributing factor. Systemic racism contributes to the non-White population suffering from income inequality, which causes the opportunity for growth to stagnate.

  3. F

    Real Median Family Income in the United States

    • fred.stlouisfed.org
    json
    Updated Sep 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Real Median Family Income in the United States [Dataset]. https://fred.stlouisfed.org/series/MEFAINUSA672N
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 10, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Real Median Family Income in the United States (MEFAINUSA672N) from 1953 to 2023 about family, median, income, real, and USA.

  4. U

    United States US: Income Share Held by Highest 20%

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, United States US: Income Share Held by Highest 20% [Dataset]. https://www.ceicdata.com/en/united-states/poverty/us-income-share-held-by-highest-20
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 1979 - Dec 1, 2016
    Area covered
    United States
    Description

    United States US: Income Share Held by Highest 20% data was reported at 46.900 % in 2016. This records an increase from the previous number of 46.400 % for 2013. United States US: Income Share Held by Highest 20% data is updated yearly, averaging 46.000 % from Dec 1979 (Median) to 2016, with 11 observations. The data reached an all-time high of 46.900 % in 2016 and a record low of 41.200 % in 1979. United States US: Income Share Held by Highest 20% data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Poverty. Percentage share of income or consumption is the share that accrues to subgroups of population indicated by deciles or quintiles. Percentage shares by quintile may not sum to 100 because of rounding.; ; World Bank, Development Research Group. Data are based on primary household survey data obtained from government statistical agencies and World Bank country departments. Data for high-income economies are from the Luxembourg Income Study database. For more information and methodology, please see PovcalNet (http://iresearch.worldbank.org/PovcalNet/index.htm).; ; The World Bank’s internationally comparable poverty monitoring database now draws on income or detailed consumption data from more than one thousand six hundred household surveys across 164 countries in six regions and 25 other high income countries (industrialized economies). While income distribution data are published for all countries with data available, poverty data are published for low- and middle-income countries and countries eligible to receive loans from the World Bank (such as Chile) and recently graduated countries (such as Estonia) only. See PovcalNet (http://iresearch.worldbank.org/PovcalNet/WhatIsNew.aspx) for definitions of geographical regions and industrialized countries.

  5. F

    Real Median Personal Income in the United States

    • fred.stlouisfed.org
    json
    Updated Sep 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Real Median Personal Income in the United States [Dataset]. https://fred.stlouisfed.org/series/MEPAINUSA672N
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Sep 10, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Area covered
    United States
    Description

    Graph and download economic data for Real Median Personal Income in the United States (MEPAINUSA672N) from 1974 to 2023 about personal income, personal, median, income, real, and USA.

  6. Forecast of the global middle class population 2015-2030

    • statista.com
    Updated Jan 23, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Forecast of the global middle class population 2015-2030 [Dataset]. https://www.statista.com/statistics/255591/forecast-on-the-worldwide-middle-class-population-by-region/
    Explore at:
    Dataset updated
    Jan 23, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2017
    Area covered
    World
    Description

    By 2030, the middle-class population in Asia-Pacific is expected to increase from 1.38 billion people in 2015 to 3.49 billion people. In comparison, the middle-class population of sub-Saharan Africa is expected to increase from 114 million in 2015 to 212 million in 2030.

    Worldwide wealth

    While the middle-class has been on the rise, there is still a huge disparity in global wealth and income. The United States had the highest number of individuals belonging to the top one percent of wealth holders, and the value of global wealth is only expected to increase over the coming years. Around 57 percent of the world’s population had assets valued at less than 10,000 U.S. dollars; while less than one percent had assets of more than million U.S. dollars. Asia had the highest percentage of investable assets in the world in 2018, whereas Oceania had the highest percent of non-investable assets.

    The middle-class

    The middle class is the group of people whose income falls in the middle of the scale. China accounted for over half of the global population for middle-class wealth in 2017. In the United States, the debate about the middle class “disappearing” has been a popular topic due to the increase in wealth to the top billionaires in the nation. Due to this, there have been arguments to increase taxes on the rich to help support the middle-class.

  7. Distribution of population according to social and economic class in Poland...

    • statista.com
    Updated Apr 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Distribution of population according to social and economic class in Poland 2019 [Dataset]. https://www.statista.com/statistics/1051917/poland-social-and-economic-class-distribution/
    Explore at:
    Dataset updated
    Apr 10, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Apr 2019
    Area covered
    Poland
    Description

    About half of the Polish population belonged to the middle class in April 2019. Nearly a third were lower-class, and the minority were upper-class. When considering only income, a larger share of the population was upper- and middle-class, whereas when considering the only occupation, a larger share was lower class.

  8. g

    Die Einkommensstruktur in verschiedenen deutschen Ländern 1874-1913

    • search.gesis.org
    • datacatalogue.cessda.eu
    • +2more
    Updated Apr 13, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Müller, Heinz; Geisenberger, Siegfried (2010). Die Einkommensstruktur in verschiedenen deutschen Ländern 1874-1913 [Dataset]. http://doi.org/10.4232/1.8214
    Explore at:
    (90172)Available download formats
    Dataset updated
    Apr 13, 2010
    Dataset provided by
    GESIS search
    GESIS Data Archive
    Authors
    Müller, Heinz; Geisenberger, Siegfried
    License

    https://www.gesis.org/en/institute/data-usage-termshttps://www.gesis.org/en/institute/data-usage-terms

    Time period covered
    1874 - 1913
    Area covered
    Germany
    Description

    Part A. Heinz Müller: The income structure in several German states, 1874-1913. The entire material of this study was developed by the institute for regional politics and transportation science at the University of Freiburg. The first part of the study deals with an analysis of the income structure (=personnel income distribution) in chosen German states for the period from 1873 to 1913. Analysis of income structures can be planned and realized with different aims and with the use of different methods. The following structuring of income recipients is most commonly used: a) By sources of income b) By the income of sociologically important recipient groups c) By income level The structuring by income sources addresses a registration of the functional income distribution. This is instructive but difficult to carry out. For example it is hardly possible to subdivide the income resulting from entrepreneurial activity in the structural components as this term includes employer´s salary, basic pension for entrepreneurs, enterprise interests and entrepreneurial profit. Even theoretically it is difficult to subdivide income resulting from entrepreneurial activity in these components but in the practical implementation this division faces insurmountable difficulties. On the other hand such a structuring is an important perquisite for a proper analysis of income sources especially in the area of agriculture. Another criteria used for classification is the division by sociologically important recipient groups. The aim of such an analysis could be to estimate the share of specific groups of persons in the national income and the changes that are taking place in the process of economic development. Alternatively such an analysis can be based on a division in economic sectors; one could estimate for example the share of agriculture or services in the national income and its changes over time. Also this procedure allows interesting conclusions on social and economic development of the national economy. The third and particularly important criterion consists in the division by income level. This type of investigation serves to generate important findings on the social and economic situation and development of different income groups. Development of wealth within a national economy can be assessed looking at the economic situation of the lower income classes in relation to the higher classes and on how fast one class integrates into another. These three different types of structuring of income recipients can be combined with each other. Doings so one can generate more insights on the development of the industrialization process co pared to using only one classification type (Müller, Heinz/Geisenberger, Siegfried, 1972: Die Einkommensstruktur in verschiedenen deutschen Ländern 1874-1913. Berlin: Duncker & Humblot, S. 13f). The first part of the study exclusively deals with the investigation of the income size structure. These are the summarized results for the investigation on the temporal development of distribution coefficients:

    (1) Differentiated according to the different states The share of the very highest incomes in the total income is increasing in all states (Besides Hesse) during the investigation period.

    (2) Differentiated according to the surveyed areas According to the distribution coefficient and its development over time one can say that developments differ a lot between rural and industrial areas.

    Part B. Siegfried Geisenberger: Important determinants for changes in the income structure. An attempt of an economic interpretation of the development in Prussia 1874-1913. The results from the first part of the investigation gave the impulse for further investigations at the institute of regional politics and transportation science (University of Freiburg). They wanted to investigate the development of the distribution situation for further regions and to control for different income tax laws in several states. The typical differences in the development of income distribution between rural and industrial areas could also be detected for the Prussian governmental districts. The second part of the investigation aims to explain this phenomenon using theoretical economic and statistical instruments.

    Register of tables in HISTAT: A. Data on income structure in Prussia and in chosen Prussian governmental districts A.1 Data on income structure in Prussia (1874-1913) A.2 Data on income structure in Prussia, governme...

  9. Table 3.1a Percentile points from 1 to 99 for total income before and after...

    • gov.uk
    Updated Mar 12, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Table 3.1a Percentile points from 1 to 99 for total income before and after tax [Dataset]. https://www.gov.uk/government/statistics/percentile-points-from-1-to-99-for-total-income-before-and-after-tax
    Explore at:
    Dataset updated
    Mar 12, 2025
    Dataset provided by
    GOV.UKhttp://gov.uk/
    Authors
    HM Revenue & Customs
    Description

    The table only covers individuals who have some liability to Income Tax. The percentile points have been independently calculated on total income before tax and total income after tax.

    These statistics are classified as accredited official statistics.

    You can find more information about these statistics and collated tables for the latest and previous tax years on the Statistics about personal incomes page.

    Supporting documentation on the methodology used to produce these statistics is available in the release for each tax year.

    Note: comparisons over time may be affected by changes in methodology. Notably, there was a revision to the grossing factors in the 2018 to 2019 publication, which is discussed in the commentary and supporting documentation for that tax year. Further details, including a summary of significant methodological changes over time, data suitability and coverage, are included in the Background Quality Report.

  10. Birth rate by family income in the U.S. 2021

    • statista.com
    Updated Oct 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Birth rate by family income in the U.S. 2021 [Dataset]. https://www.statista.com/statistics/241530/birth-rate-by-family-income-in-the-us/
    Explore at:
    Dataset updated
    Oct 25, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2021
    Area covered
    United States
    Description

    In 2021, the birth rate in the United States was highest in families that had under 10,000 U.S. dollars in income per year, at 62.75 births per 1,000 women. As the income scale increases, the birth rate decreases, with families making 200,000 U.S. dollars or more per year having the second-lowest birth rate, at 47.57 births per 1,000 women. Income and the birth rate Income and high birth rates are strongly linked, not just in the United States, but around the world. Women in lower income brackets tend to have higher birth rates across the board. There are many factors at play in birth rates, such as the education level of the mother, ethnicity of the mother, and even where someone lives. The fertility rate in the United States The fertility rate in the United States has declined in recent years, and it seems that more and more women are waiting longer to begin having children. Studies have shown that the average age of the mother at the birth of their first child in the United States was 27.4 years old, although this figure varies for different ethnic origins.

  11. Households by annual income India FY 2021

    • statista.com
    Updated May 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Households by annual income India FY 2021 [Dataset]. https://www.statista.com/statistics/482584/india-households-by-annual-income/
    Explore at:
    Dataset updated
    May 14, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    India
    Description

    In the financial year 2021, a majority of Indian households fell under the aspirers category, earning between 125,000 and 500,000 Indian rupees a year. On the other hand, about three percent of households that same year, accounted for the rich, earning over 3 million rupees annually. The middle class more than doubled that year compared to 14 percent in financial year 2005.

    Middle-class income group and the COVID-19 pandemic

    During the COVID-19 pandemic specifically during the lockdown in March 2020, loss of incomes hit the entire household income spectrum. However, research showed the severest affected groups were the upper middle- and middle-class income brackets. In addition, unemployment rates were rampant nationwide that further lead to a dismally low GDP. Despite job recoveries over the last few months, improvement in incomes were insignificant.

    Economic inequality

    While India maybe one of the fastest growing economies in the world, it is also one of the most vulnerable and severely afflicted economies in terms of economic inequality. The vast discrepancy between the rich and poor has been prominent since the last three decades. The rich continue to grow richer at a faster pace while the impoverished struggle more than ever before to earn a minimum wage. The widening gaps in the economic structure affect women and children the most. This is a call for reinforcement in in the country’s social structure that emphasizes access to quality education and universal healthcare services.

  12. N

    Income Distribution by Quintile: Mean Household Income in Deptford Township,...

    • neilsberg.com
    csv, json
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Income Distribution by Quintile: Mean Household Income in Deptford Township, New Jersey // 2025 Edition [Dataset]. https://www.neilsberg.com/insights/deptford-township-nj-median-household-income/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Deptford, New Jersey
    Variables measured
    Income Level, Mean Household Income
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. It delineates income distributions across income quintiles (mentioned above) following an initial analysis and categorization. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset presents the mean household income for each of the five quintiles in Deptford Township, New Jersey, as reported by the U.S. Census Bureau. The dataset highlights the variation in mean household income across quintiles, offering valuable insights into income distribution and inequality.

    Key observations

    • Income disparities: The mean income of the lowest quintile (20% of households with the lowest income) is 21,507, while the mean income for the highest quintile (20% of households with the highest income) is 257,345. This indicates that the top earners earn 12 times compared to the lowest earners.
    • *Top 5%: * The mean household income for the wealthiest population (top 5%) is 384,780, which is 149.52% higher compared to the highest quintile, and 1789.09% higher compared to the lowest quintile.
    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Income Levels:

    • Lowest Quintile
    • Second Quintile
    • Third Quintile
    • Fourth Quintile
    • Highest Quintile
    • Top 5 Percent

    Variables / Data Columns

    • Income Level: This column showcases the income levels (As mentioned above).
    • Mean Household Income: Mean household income, in 2023 inflation-adjusted dollars for the specific income level.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Deptford township median household income. You can refer the same here

  13. Income of individuals by age group, sex and income source, Canada, provinces...

    • www150.statcan.gc.ca
    • open.canada.ca
    • +2more
    Updated Apr 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas [Dataset]. http://doi.org/10.25318/1110023901-eng
    Explore at:
    Dataset updated
    Apr 26, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Income of individuals by age group, sex and income source, Canada, provinces and selected census metropolitan areas, annual.

  14. a

    Dallas Median Income by Census Tract

    • gisservices-dallasgis.opendata.arcgis.com
    • hub.arcgis.com
    • +1more
    Updated Mar 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Dallas GIS Services (2022). Dallas Median Income by Census Tract [Dataset]. https://gisservices-dallasgis.opendata.arcgis.com/maps/c29c531bd1ba454a8cfba78f39c43764
    Explore at:
    Dataset updated
    Mar 28, 2022
    Dataset authored and provided by
    City of Dallas GIS Services
    Area covered
    Description

    This map shows median household income by race and by age of householder. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. This layer is symbolized to show median household income. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2016-2020ACS Table(s): B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053Data downloaded from: Census Bureau's API for American Community Survey Date of API call: March 17, 2022The United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. For more information about ACS layers, visit the FAQ. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Click here to learn more about ACS data releases.Boundaries come from the US Census TIGER geodatabases, specifically, the National Sub-State Geography Database (named tlgdb_(year)_a_us_substategeo.gdb). Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For census tracts, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract level boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters).The States layer contains 52 records - all US states, Washington D.C., and Puerto RicoCensus tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99).Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page.Negative values (e.g., -4444...) have been set to null, with the exception of -5555... which has been set to zero. These negative values exist in the raw API data to indicate the following situations:The margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.Either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.The median falls in the lowest interval of an open-ended distribution, or in the upper interval of an open-ended distribution. A statistical test is not appropriate.The estimate is controlled. A statistical test for sampling variability is not appropriate.The data for this geographic area cannot be displayed because the number of sample cases is too small.Copyright Text: U.S. Census Bureau's American Community Survey (ACS) 2016-2020 5-year estimates, Table(s) B19013B, B19013C, B19013D, B19013E, B19013F, B19013G, B19013H, B19013I, B19049, B19053

  15. f

    Data from: HOW EMPLOYMENT SHAPES INCOME INEQUALITY: A COMPARISON BETWEEN...

    • scielo.figshare.com
    jpeg
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexandre Gori Maia; Arthur Sakamoto; Sharron Xuanren Wang (2023). HOW EMPLOYMENT SHAPES INCOME INEQUALITY: A COMPARISON BETWEEN BRAZIL AND THE U.S. [Dataset]. http://doi.org/10.6084/m9.figshare.11265791.v1
    Explore at:
    jpegAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    SciELO journals
    Authors
    Alexandre Gori Maia; Arthur Sakamoto; Sharron Xuanren Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brazil, United States
    Description

    ABSTRACT In this study, we analyze the relationship between the development of occupational structure and income inequality in Brazil and the U.S. While both Brazil and the U.S. face high levels of inequality, low socioeconomic development in Brazil notably reduces the proportion of total income that accrues in the bottom two quintiles of the income distribution. In the U.S., inequality is mostly due to unobserved differences within occupations and has grown in large part because of higher earnings among high-skilled workers. Our results highlight that the effects of occupational structure are generally more pronounced at lower levels of economic development. At the higher level of economic development found in the U.S., inequality appears to increase largely due to rising inequality among high-skilled employees, which may be a function of unobserved organizational variables such as firm productivity and market advantage.

  16. F

    Share of Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles)

    • fred.stlouisfed.org
    json
    Updated Dec 20, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Share of Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles) [Dataset]. https://fred.stlouisfed.org/series/WFRBST01134
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 20, 2024
    License

    https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain

    Description

    Graph and download economic data for Share of Net Worth Held by the Top 1% (99th to 100th Wealth Percentiles) (WFRBST01134) from Q3 1989 to Q3 2024 about net worth, wealth, percentile, Net, and USA.

  17. High income tax filers in Canada

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Oct 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). High income tax filers in Canada [Dataset]. http://doi.org/10.25318/1110005501-eng
    Explore at:
    Dataset updated
    Oct 28, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Government of Canadahttp://www.gg.ca/
    Area covered
    Canada
    Description

    This table presents income shares, thresholds, tax shares, and total counts of individual Canadian tax filers, with a focus on high income individuals (95% income threshold, 99% threshold, etc.). Income thresholds are based on national threshold values, regardless of selected geography; for example, the number of Nova Scotians in the top 1% will be calculated as the number of taxfiling Nova Scotians whose total income exceeded the 99% national income threshold. Different definitions of income are available in the table namely market, total, and after-tax income, both with and without capital gains.

  18. a

    Children in Poverty by School District 2012

    • hub.arcgis.com
    • indianamap.org
    • +1more
    Updated Jul 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IndianaMap (2024). Children in Poverty by School District 2012 [Dataset]. https://hub.arcgis.com/datasets/2b4c874ab60e4ed38c4ca5e0f4434965
    Explore at:
    Dataset updated
    Jul 23, 2024
    Dataset authored and provided by
    IndianaMap
    Area covered
    Description

    CHILDREN_POVERTY_2012_USCB_IN.SHP is a polygon shapefile showing 2012 census data showing percentages of children in poverty for each 2012-2013 school district within Indiana. Poverty data were provided by personnel of the Indiana Business Research Center (Rachel Strange, Geodemographic Analyst, Managing Editor, IBRC), which were obtained from the Web page of the U. S. Department of Commerce, U. S. Census Bureau, titled "Small Area Income and Poverty Estimates," http://www.census.gov/did/www/saipe/data/interactive/#. Discussion of these data, which are estimates produced under the Census Bureau's Small Area Income and Poverty Estimates (SAIPE) program, are provided at http://www.census.gov/did/www/saipe/about/index.html. The following is excerpted from metata of the U.S. Census Bureau (2012-2013 School Districts) and also from the Web page of the SAIPE program ( http://www.census.gov/did/www/saipe/downloads/sd13/README.txt ) : "School Districts are single-purpose administrative units within which local officials provide public educational services for the area's residents. The Census Bureau obtains school district boundaries, names, local education agency codes, grade ranges, and school district levels biennially from state school officials. The Census Bureau collects this information for the primary purpose of providing the U.S. Department of Education with annual estimates of the number of children in poverty within each school district, county, and state. This information serves as the basis for the Department of Education to determine the annual allocation of Title I funding to states and school districts. "The 2013 TIGER/Line Shapefiles include separate shapefiles for elementary, secondary, and unified school districts. The 2013 shapefiles contain information from the 2012-2013 school year. The 2012-2013 school districts represent districts in operation as of January 1, 2013. "The elementary school districts provide education to the lower grade/age levels and the secondary school districts provide education to the upper grade/age levels. The unified school districts are districts that provide education to children of all school ages. In general, where there is a unified school district, no elementary or secondary school district exists (see exceptions described below), and where there is an elementary school district the secondary school district may or may not exist (see explanation below). "The U.S. Census Bureau's Small Area Income and Poverty Estimates (SAIPE) program provides annual estimates of income and poverty statistics for all school districts, counties, and states. The main objective of this program is to provide estimates of income and poverty for the administration of federal programs and the allocation of federal funds to local jurisdictions. In addition to these federal programs, state and local programs use the income and poverty estimates for distributing funds and managing programs. "The SAIPE program produces the following county and state estimates: Total number of people in poverty. Number of childer under age 5 in poevery (for states only). â¢number of related children ages 5 to 17 in families in poverty. Number of children under age 18 in poverty. Median household income."

  19. 2020 American Community Survey: S1902 | MEAN INCOME IN THE PAST 12 MONTHS...

    • data.census.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ACS, 2020 American Community Survey: S1902 | MEAN INCOME IN THE PAST 12 MONTHS (IN 2020 INFLATION-ADJUSTED DOLLARS) (ACS 5-Year Estimates Subject Tables) [Dataset]. https://data.census.gov/table?q=S1902&tid=ACSST5Y2020.S1902
    Explore at:
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Authors
    ACS
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2020
    Description

    Although the American Community Survey (ACS) produces population, demographic and housing unit estimates, for 2020, the 2020 Census provides the official counts of the population and housing units for the nation, states, counties, cities, and towns. For 2016 to 2019, the Population Estimates Program provides estimates of the population for the nation, states, counties, cities, and towns and intercensal housing unit estimates for the nation, states, and counties..Supporting documentation on code lists, subject definitions, data accuracy, and statistical testing can be found on the American Community Survey website in the Technical Documentation section.Sample size and data quality measures (including coverage rates, allocation rates, and response rates) can be found on the American Community Survey website in the Methodology section..Source: U.S. Census Bureau, 2016-2020 American Community Survey 5-Year Estimates.Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted roughly as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see ACS Technical Documentation). The effect of nonsampling error is not represented in these tables..Between 2018 and 2019 the American Community Survey retirement income question changed. These changes resulted in an increase in both the number of households reporting retirement income and higher aggregate retirement income at the national level. For more information see Changes to the Retirement Income Question ..The categories for relationship to householder were revised in 2019. For more information see Revisions to the Relationship to Household item..In 2019, methodological changes were made to the class of worker question. These changes involved modifications to the question wording, the category wording, and the visual format of the categories on the questionnaire. The format for the class of worker categories are now listed under the headings "Private Sector Employee," "Government Employee," and "Self-Employed or Other." Additionally, the category of Active Duty was added as one of the response categories under the "Government Employee" section for the mail questionnaire. For more detailed information about the 2019 changes, see the 2016 American Community Survey Content Test Report for Class of Worker located at http://www.census.gov/library/working-papers/2017/acs/2017_Martinez_01.html..The 2016-2020 American Community Survey (ACS) data generally reflect the September 2018 Office of Management and Budget (OMB) delineations of metropolitan and micropolitan statistical areas. In certain instances, the names, codes, and boundaries of the principal cities shown in ACS tables may differ from the OMB delineation lists due to differences in the effective dates of the geographic entities..Estimates of urban and rural populations, housing units, and characteristics reflect boundaries of urban areas defined based on Census 2010 data. As a result, data for urban and rural areas from the ACS do not necessarily reflect the results of ongoing urbanization..Explanation of Symbols:- The estimate could not be computed because there were an insufficient number of sample observations. For a ratio of medians estimate, one or both of the median estimates falls in the lowest interval or highest interval of an open-ended distribution.N The estimate or margin of error cannot be displayed because there were an insufficient number of sample cases in the selected geographic area. (X) The estimate or margin of error is not applicable or not available.median- The median falls in the lowest interval of an open-ended distribution (for example "2,500-")median+ The median falls in the highest interval of an open-ended distribution (for example "250,000+").** The margin of error could not be computed because there were an insufficient number of sample observations.*** The margin of error could not be computed because the median falls in the lowest interval or highest interval of an open-ended distribution.***** A margin of error is not appropriate because the corresponding estimate is controlled to an independent population or housing estimate. Effectively, the corresponding estimate has no sampling error and the margin of error may be treated as zero.

  20. i

    Richest Zip Codes in North Carolina

    • incomebyzipcode.com
    Updated Dec 18, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cubit Planning, Inc. (2024). Richest Zip Codes in North Carolina [Dataset]. https://www.incomebyzipcode.com/northcarolina
    Explore at:
    Dataset updated
    Dec 18, 2024
    Dataset authored and provided by
    Cubit Planning, Inc.
    License

    https://www.incomebyzipcode.com/terms#TERMShttps://www.incomebyzipcode.com/terms#TERMS

    Area covered
    North Carolina
    Description

    A dataset listing the richest zip codes in North Carolina per the most current US Census data, including information on rank and average income.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2024). U.S. median household income1970-2020, by income tier [Dataset]. https://www.statista.com/statistics/500385/median-household-income-in-the-us-by-income-tier/
Organization logo

U.S. median household income1970-2020, by income tier

Explore at:
Dataset updated
Aug 7, 2024
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

This statistic shows the median household income in the United States from 1970 to 2020, by income tier. In 2020, the median household income for the middle class stood at 90,131 U.S. dollars, which was approximately a 50 percent increase from 1970. However, the median income of upper income households in the U.S. increased by almost 70 percent compared to 1970.

Search
Clear search
Close search
Google apps
Main menu